Effect of High-Protein and High-Fiber Breaders on Oil Absorption and Quality Attributes in Chicken Nuggets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Physicochemical Properties of Flour Samples and Breaders
2.3. Viscosity Profile by the Rapid Visco Analyser
2.4. Breaders’ Formulations
2.5. Preparation of Unbreaded Chicken Nuggets
2.6. Test of the Breaders’ Adhesion to Chicken Nuggets
2.7. Physicochemical Evaluation of Breaded and Fried Chicken Nuggets
2.8. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties of Flour Samples and Breaders
3.2. Viscosity Profile Analysis
3.3. Breaders Formulations and Percentage of Adhesion
3.4. Texture Profile Analysis and Color of Breaded and Fried Chicken Nuggets
3.5. Proximal Analysis and Dietary Fiber Content of Breaded and Fried Chicken Nuggets
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Frakolali, G.; Kekes, T.; Bizymis, A.P.; Giannou, V.; Tzia, C. Fundamentals of food frying processes. In High-Temperature Processing of Food Products; Jhari, S.M., Ed.; Elsevier: Cambridge, MA, USA, 2022; pp. 227–291. [Google Scholar] [CrossRef]
- Cui, L.; Chen, J.; Wang, Y.; Xiong, Y.L. The effect of batter characteristics on protein-aided control of fat absorption in deep-fried breaded fish nuggets. Foods 2022, 11, 147. [Google Scholar] [CrossRef] [PubMed]
- Ananey-Obiri, D.; Matthews, L.; Tahergorabi, R. Chicken processing by-product: A source of protein for fat uptake reduction in deep-fried chicken. Food Hydrocoll. 2020, 101, 105500. [Google Scholar] [CrossRef]
- Kurek, M.; Ščetar, M. Edible coatings minimize fat uptake in deep fat fried products: A review. Food Hydrocoll. 2017, 71, 225–235. [Google Scholar] [CrossRef]
- Cahill, L.E.; Pan, A.; Chiuve, S.E.; Sun, Q.; Willett, W.C.; Hu, F.B.; Rimm, E.B. Fried-food consumption and risk of type 2 diabetes and coronary artery disease: A prospective study in 2 cohorts of US women and men. Am. J. Clin. Nutr. 2014, 100, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Sayon-Orea, C.; Bes-Rastrollo, M.; Gea, A.; Zazpe, I.; Basterra-Gortari, F.J.; Martinez-Gonzalez, M.A. Reported fried food consumption and the incidence of hypertension in a Mediterranean cohort: The SUN (Seguimiento Universidad de Navarra) project. Br. J. Nutr. 2014, 112, 984–999. [Google Scholar] [CrossRef] [PubMed]
- Brannan, R.G.; Mah, E.; Schott, M.; Yuan, S.; Casher, K.L.; Myers, A.; Herrick, C. Influence of ingredients that reduce oil absorption during immerseon frying of battered and breaded foods. Eur. J. Lipid Sci. Technol. 2014, 116, 240–254. [Google Scholar] [CrossRef]
- Zeb, A. Concept of Food Frying. In Food Frying: Chemistry, Biochemistry and Safety; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2019; pp. 3–17. [Google Scholar]
- Dana, D.; Saguy, S.I. Mechanism of oil uptake during deep-fat frying and the surfactant effect-theory and myth. Adv. Colloid. Interface Sci. 2006, 128, 267–272. [Google Scholar] [CrossRef]
- Ziaiifar, A.M.; Achir, N.; Courtois, F.; Trezzani, I.; Trystram, G. Review of mechanisms, conditions, and factors involved in the oil uptake phenomenon during the deep—Fat frying process. Int. J. Food Sci. Technol. 2008, 43, 1410–1423. [Google Scholar] [CrossRef]
- Shan, J.; Chen, J.; Xie, D.; Xia, W.; Xu, W.; Xiong, Y.L. Effect of xanthan gum/soybean fiber ratio in the batter on oil absorption and quality attributes of fried breaded fish nuggets. J. Food Sci. 2018, 83, 1832–1838. [Google Scholar] [CrossRef]
- Zeng, H.; Chen, J.; Zhai, J.; Wang, H.; Xia, W.; Xiong, Y.L. Reduction of the fat content of battered and breaded fish balls during deep-fat frying using fermented bamboo shoot dietary fiber. LWT-Food Sci. Tecnol. 2016, 73, 425–431. [Google Scholar] [CrossRef]
- Dogan, S.F.; Sahin, S.; Sumnu, G. Effects of batters containing different protein types on the quality of deep-fat-fried chicken nuggets. Eur. Food Res. Technol. 2005, 220, 502–508. [Google Scholar] [CrossRef]
- Islas-Rubio, A.R.; Laborin-Escalante, F.; Vásquez-Lara, F.; Montoya-Ballesteros, L.C.; Ramos-Clamont Montfort, G.; Calderón de la Barca, A.M.; Heredia-Sandoval, N.G. Coconut flour (Cocos nucifera L.) as a partial replacement in wheat flour (triticum aestivum)-based tortillas and its effect on dough rheology and tortilla quality. Plant Foods Hum. Nutr. 2023, 78, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Fonseca-Bustos, V.; Madera-Santana, T.J.; Valenzuela-Melendres, M.; Islas-Rubio, A.R.; Montoya-Ballesteros, L.D.C. Effect of the incorporation of virgin coconut oil byproduct in the optimization process of a baked snack. J. Food Process Preserv. 2023, 2023, 4851416. [Google Scholar] [CrossRef]
- Sahin, A.W.; Hardiman, K.; Atzler, J.J.; Vogelsang-O’Dwyer, M.; Valdeperez, D.; Münch, S.; Cattaneo, G.; O’Riordan, P.; Arendt, E.K. Rejuvenated Brewer’s Spent Grain: The impact of two BSG-derived ingredients on techno-functional and nutritional characteristics of fibre-enriched pasta. Innov. Food Sci. Emerg. Technol. 2021, 68, 102633. [Google Scholar] [CrossRef]
- Wang, A.; Zhu, Y.; Zou, L.; Zhao, G.; Wu, J. Development of protein-enriched biscuit based on oat-milk byproduct fortified with chickpea flour. LWT-Food Sci. Tecnol. 2023, 177, 114594. [Google Scholar] [CrossRef]
- AACC. Approved Methods of Analysis, 11th ed.; The American Association of Cereal Chemists: St. Paul, MN, USA, 2000. [Google Scholar]
- Sarangapani, C.; Thirumdas, R.; Devi, Y.; Trimukhe, A.; Deshmukh, R.R.; Annapure, U.S. Effect of low-pressure plasma on physico–chemical and functional properties of parboiled rice flour. LWT-Food Sci. Tecnol. 2016, 69, 482–489. [Google Scholar] [CrossRef]
- Brannan, R.G.; Myers, A.S.; Herrick, C.S. Reduction of fat content during frying using dried egg white and fiber solutions. Eur. J. Lipid Sci. Technol. 2013, 115, 946–955. [Google Scholar] [CrossRef]
- Salvador, A.; Sanz, T.; Fiszman, S.M. Effect of the addition of different ingredients on the characteristics of a batter coating for fried seafood prepared without a pre-frying step. Food Hydrocoll. 2005, 19, 703–708. [Google Scholar] [CrossRef]
- Trinidad, T.P.; Mallillin, A.C.; Valdez, D.H.; Loyola, A.S.; Askali-Mercado, F.C.; Castillo, J.C.; Encabo, R.R.; Masa, D.B.; Maglaya, A.S.; Chua, M.T. Dietary fiber from coconut flour: A functional food. Innov. Food Sci. Emerg. Technol. 2006, 7, 309–317. [Google Scholar] [CrossRef]
- Yada, R.Y. Proteins in Food Processing; Woodhead Publishing: Kidlington, UK, 2017; p. 674. [Google Scholar]
- De Falco, B.; Amato, M.; Lanzotti, V. Chia seeds products: An overview. Phytochem. Rev. 2017, 16, 745–760. [Google Scholar] [CrossRef]
- Raihan, M.; Saini, S.C. Evaluation of various properties of composite flour from oats, sorghum, amaranth and wheat flour and production of cookies thereof. Int. Food Res. J. 2017, 24, 2278–2284. [Google Scholar]
- Ahmed, J.; Hasan, A.; Yasir, A.A. Effect of particle size on compositional, functional, pasting and rheological properties of commercial water chestnut flour. Food Hydrocoll. 2016, 52, 888–895. [Google Scholar] [CrossRef]
- Rui, L.; Yimin, W.; Yangyang, L.; Yanan, X.; Yingquan, Z. Performance of industrial dough mixers and its effects on noodle quality. Int. J. Agric. Biol. Eng. 2016, 9, 125–134. [Google Scholar] [CrossRef]
- Bressiani, J.; Oro, T.; Santetti, G.S.; Almeida, J.L.; Bertolin, T.E.; Gómez, M.; Gutkoski, L.C. Properties of whole grain wheat flour and performance in bakery products as a function of particle size. J. Cereal Sci. 2017, 75, 269–277. [Google Scholar] [CrossRef]
- Dat, L.Q. Functional properties and influences of coconut flour on texture of dough and cookies. Vietnam. J. Sci. Technol. 2017, 55, 100. [Google Scholar] [CrossRef]
- Batey, I.L.; Blakeney, B. Interpretation of RVA curves. In The RVA Handbook; Crosbie, G.B., Ross, A.S., Eds.; AACC International: St. Paul, MN, USA, 2007; pp. 19–30. [Google Scholar]
- BeMiller, J.N. Starches, modified food starches, and other products from starches. In Carbohydrate Chemistry for Food Scientists, 2nd ed.; AACC International: St Paul, MN, USA, 2007; pp. 173–223. [Google Scholar]
- Yu, S.; Ying, M.; Da-Wen, S. Impact of amylose content on starch retrogradation and texture of cooked milled rice during storage. J. Cereal Sci. 2009, 50, 139–144. [Google Scholar] [CrossRef]
- Meares, C.A.; Bogracheva, T.; Hill, S.E.; Hedley, C.L. Development and testing of methods to screen chickpea flour for starch characteristics. Starch/Stärke 2004, 56, 215–224. [Google Scholar] [CrossRef]
- Ghribi, A.M.; Maklouf, I.; Blecker, C.; Attia, H.; Besbes, S. Nutritional and compositional study of Desi and Kabuli chickpea (Cicer arietinum L.) flours from Tunisian cultivars. Adv. Food Nutr. Res. 2015, 1, 38–47. [Google Scholar] [CrossRef]
- Chen, R.Y.; Wang, Y.; Dyson, D. Breadings—What they are and how they are used. In Batters and Breadings in Food Processing, 2nd ed.; Kulp, K., Loewe, R., Lorenz, K., Gelroth, J., Eds.; AACC International: St Paul, MN, USA, 2011; pp. 169–184. [Google Scholar]
- Santiesteban-López, N.A.; Carrillo, T.C.; Acle-Mena, R.; Paredes, Y.M. Breading Process Using Legumes: Chickpea (Cicer arietinum), Pea (Pisum sativum) and Fava Bean (Vicia faba). CIBA Rev. Iberoam. Cienc. Biológicas Y Agropecu. 2017, 6, 73–90. [Google Scholar] [CrossRef]
- Barros, J.C.; Munekata, P.E.S.; Pires, M.A.; Rodrigues, I.; Andaloussi, O.S.; da Costa Rodrigues, C.E.; Trindade, M.A. Omega-3-and fibre-enriched chicken nuggets by replacement of chicken skin with chia (Salvia hispanica L.) flour. LWT-Food Sci. Tecnol. 2018, 90, 283–289. [Google Scholar] [CrossRef]
- Aryee, A.N.A.; Agyei, D.; Udenigwe, C.C. Impact of processing on the chemistry and functionality of food proteins. In Proteins in Food Processing, 2nd ed.; Yada, R.Y., Ed.; Woodhead Publishing: Kidlington, UK, 2017; pp. 27–45. [Google Scholar] [CrossRef]
- Marion, D.; Dubreil, L.; Douliez, J.P. Functionality of lipids and lipid-protein interactions in cereal-derived food products. Oléagineux Corps Gras Lipides 2003, 10, 47–56. [Google Scholar] [CrossRef]
- Verma, A.K.; Sharma, B.D.; Banerjee, R. Quality characteristics of low--fat chicken nuggets: Effect of common salt replacement and added bottle gourd (Lagenaria siceraria L.). J. Sci. Food Agric. 2012, 92, 1848–1854. [Google Scholar] [CrossRef] [PubMed]
- Bouasla, A.; Wójtowicz, A.; Zidoune, M.N. Gluten-free precooked rice pasta enriched with legumes flours: Physical properties, texture, sensory attributes and microstructure. LWT-Food Sci. Tecnol. 2017, 75, 569–577. [Google Scholar] [CrossRef]
- Smita, M.; Bashir, M.; Haripriya, S. Physicochemical and functional properties of peeled and unpeeled coconut haustorium flours. J. Food Meas. Charact. 2019, 13, 61–69. [Google Scholar] [CrossRef]
- World Health Organization. Carbohydrate intake for adults and children: WHO guideline. In Carbohydrate Intake for Adults and Children: WHO Guideline; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- European Parliament & Council. Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. Off. J. Eur. Union 2006, 404, 9–25. [Google Scholar]
Sample | Formulations (%) | |
---|---|---|
F1 | F2 | |
Wheat flour | 50 | 0 |
Coconut flour | 10 | 0 |
Chickpeas flour | 20 | 0 |
Soy protein concentrate | 10 | 0 |
Brewers’ spent grain | 10 | 0 |
Oats | 0 | 88 |
Quinoa | 0 | 8.8 |
Chia | 0 | 3.2 |
Sample | Moisture | Protein | Fat (%) | Ash | WRC | ORC (g/g) |
---|---|---|---|---|---|---|
WF | 8.0 ± 0.1 cd | 14.3 ± 0.1 c | 0.9 ± 0.1 a | 0.6 ± 0.2 a | 63.1 ± 4.9 a | 1.83 ± 0.02 ab |
CF | 10.4 ± 0.4 f | 23.1 ± 0.5 e | 12.9 ± 0.2 f | 3.2 ± 0.0 e | 408.0 ± 2.7 e | 2.16 ± 0.04 e |
CPF | 7.5 ± 0.0 c | 21.2 ± 0.0 d | 6.3 ± 0.5 d | 2.6 ± 0.0 d | 145.0 ± 2.5 b | 1.93 ± 0.02 bc |
SPC | 5.9 ± 0.2 b | 83.3 ± 0.2 f | 0.4 ± 0.0 a | 3.7 ± 0.0 f | 356.2 ± 3.5 d | 2.02 ± 0.06 d |
BSG | 4.8 ± 0.3 a | 24.3 ± 0.0 e | 8.7 ± 0.0 e | 1.7 ± 0.0 c | 274.6 ± 0.5 c | 2.68 ± 0.02 f |
F1 | 5.1 ± 0.0 a | 22.0 ± 0.3 c | 4.5 ± 0.3 c | 1.8 ± 0.0 b | 124.4 ± 0.8 b | 1.97 ± 0.01 cd |
F2, OQC | 9.4 ± 0.5 e | 12.6 ± 0.0 b | 5.5 ± 0.3 c | 1.0 ± 0.0 b | 269.5 ± 0.7 c | 1.89 ± 0.01 abc |
CB | 8.6 ± 0.0 de | 11.3 ± 0.3 a | 1.7 ± 0.1 b | 7.7 ± 0.4 g | 69.3 ± 6.6 a | 1.82 ± 0.03 a |
Sample | Pick Up (%) | Moisture (%) | Fat (%) |
---|---|---|---|
CB | 3.6 ± 0.6 a | 64.9 ± 0.0 a | 5.0 ± 0.4 b |
F1 | 3.1 ± 0.3 a | 67.6 ± 0.5 b | 4.5 ± 0.1 a |
F2 | 4.0 ± 0.2 a | 65.1 ± 0.5 a | 6.3 ± 0.4 c |
Sample | Hardness (g) | Cohesiveness | Chewiness | Springiness | L* | a* | b* |
---|---|---|---|---|---|---|---|
CB | 379.3 ± 46.8 b | 0.5 ± 0.0 a | 154.4 ± 24.1 b | 0.8 ± 0.1 a | 49.1 ± 2.4 a | 2.4 ± 0.7 b | 27.8 ± 1.2 b |
F1 | 449.1 ± 49.4 c | 0.5 ± 0.1 a | 182.7 ± 24.1 c | 0.9 ± 0.1 a | 54.3 ± 0.7 b | 3.2 ± 0.3 b | 28.5 ± 0.9 b |
F2 | 293.3 ± 34.9 a | 0.5 ± 0.0 a | 114.2 ± 14.3 a | 0.8 ± 0.0 a | 51.3 ± 2.8 a | 0.0 ± 1.2 a | 18.0 ± 1.3 a |
Sample | Moisture (%) | Protein (%) | Fat (%) | Ash (%) | Carbohydrates (%) | |||
---|---|---|---|---|---|---|---|---|
Total | IDF | SDF | TFD | |||||
CB | 64.9 ± 0.0 a | 23.3 ± 0.2 b | 5.0 ± 0.1 b | 1.2 ± 0.0 a | 5.6 * | 2.1 ± 0.5 a | 0.2 ± 0.1 a | 2.3 ± 0.4 a |
F1 | 67.6 ± 0.5 b | 21.9 ± 0.2 a | 4.5 ± 0.1 a | 1.1 ± 0.0 a | 4.9 * | 3.9 ± 0.6 a | 0.6 ± 0.3 a | 4.5 ± 0.9 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez-Silva, G.; Vásquez-Lara, F.; Heredia-Sandoval, N.G.; Islas-Rubio, A.R. Effect of High-Protein and High-Fiber Breaders on Oil Absorption and Quality Attributes in Chicken Nuggets. Foods 2023, 12, 4463. https://doi.org/10.3390/foods12244463
Gutiérrez-Silva G, Vásquez-Lara F, Heredia-Sandoval NG, Islas-Rubio AR. Effect of High-Protein and High-Fiber Breaders on Oil Absorption and Quality Attributes in Chicken Nuggets. Foods. 2023; 12(24):4463. https://doi.org/10.3390/foods12244463
Chicago/Turabian StyleGutiérrez-Silva, Glenda, Francisco Vásquez-Lara, Nina G. Heredia-Sandoval, and Alma R. Islas-Rubio. 2023. "Effect of High-Protein and High-Fiber Breaders on Oil Absorption and Quality Attributes in Chicken Nuggets" Foods 12, no. 24: 4463. https://doi.org/10.3390/foods12244463
APA StyleGutiérrez-Silva, G., Vásquez-Lara, F., Heredia-Sandoval, N. G., & Islas-Rubio, A. R. (2023). Effect of High-Protein and High-Fiber Breaders on Oil Absorption and Quality Attributes in Chicken Nuggets. Foods, 12(24), 4463. https://doi.org/10.3390/foods12244463