Investigation of Acid Tolerance Mechanism of Acetobacter pasteurianus under Different Concentrations of Substrate Acetic Acid Based on 4D Label-Free Proteomic Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains Cultivation, Collection and Sampling
2.2. Proteomic Analysis
2.2.1. Protein Extraction and Trypsin Digestion
2.2.2. Liquid Chromatography–Tandem Mass Spectrometry (LC-MS/MS) Analysis
2.2.3. Protein Identification and Bioinformatics Analysis
2.3. Statistical Analysis
3. Results
3.1. Overview of Acetobacter pasteurianus under Different Concentrations of Substrate Acetic Acid
3.2. Proteomic Analysis
3.2.1. Identification and PCA of Proteins in Different Samples
3.2.2. Screening of DEPs in Different Samples
3.2.3. Subcellular Localization of DEPs in Different Samples
3.2.4. GO Enrichment Analysis of DEPs in Different Samples
3.2.5. KEGG Pathway Analysis of DEPs in Different Samples
3.2.6. PPI Network Analysis of DEPs in Different Samples
4. Discussion
4.1. Fatty Acid Biosynthesis and Glycerophospholipid Metabolism
4.2. Acetic Acid Assimilation and the TCA Cycle
4.3. Pyruvate Metabolism and Glycolysis
4.4. Energy Metabolism
4.5. Cell Cycle Regulation and Translation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gao, L.; Wu, X.D.; Zhu, C.L.; Jin, Z.Y.; Wang, W.; Xia, X.L. Metabolic engineering to improve the biomanufacturing efficiency of acetic acid bacteria: Advances and prospects. Crit. Rev. Biotechnol. 2020, 40, 522–538. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Zhang, Y.; Hong, H. Classification of acetic acid bacteria and their acid resistant mechanism. AMB Express 2021, 11, 29. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Wang, X.W.; Li, C.Y.; Fu, Q.Q.; Xu, X.Y.; Sun, J.K.; Wang, C.Q.; Du, J.; Wang, B.; Shi, X.W. Investigation of microbial succession and volatile compounds dynamics during the fermentation of traditional cereal vinegar in Xinjiang. LWT 2023, 186, 115258. [Google Scholar] [CrossRef]
- Wang, B.; Shao, Y.C.; Chen, T.; Chen, W.P.; Chen, F.S. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics. Sci. Rep. 2015, 5, 18330. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Bai, Y.; Li, D.S.; Wang, C.; Xu, N.; Hu, Y. Improvement of the flavor and quality of watermelon vinegar by high ethanol fermentation using ethanol-tolerant acetic acid bacteria. Int. J. Food Eng. 2017, 13, 20160222. [Google Scholar] [CrossRef]
- Trček, J.; Mira, N.P.; Jarboe, L.R. Adaptation and tolerance of bacteria against acetic acid. Appl. Microbiol. Biotechnol. 2015, 99, 6215–6229. [Google Scholar] [CrossRef]
- Yang, Y.S.; Kadim, M.I.; Khoo, W.J.; Zheng, Q.W.; Setyawati, M.I.; Shin, Y.J.; Lee, S.C.; Yuk, H.G. Membrane lipid composition and stress/virulence related gene expression of Salmonella Enteritidis cells adapted to lactic acid and trisodium phosphate and their resistance to lethal heat and acid stress. Int. J. Food Microbiol. 2014, 191, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Tang, H.; Lin, Z.; Xu, P. Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation. Biotechnol. Adv. 2015, 33, 1484–1492. [Google Scholar] [CrossRef]
- Xia, K.; Han, C.C.; Xu, J.; Liang, X.L. Transcriptome response of Acetobacter pasteurianus Ab3 to high acetic acid stress during vinegar production. Appl. Microbiol. Biot. 2020, 104, 10585–10599. [Google Scholar] [CrossRef]
- Monedero, V.; Revilla-Guarinos, A.; Zúñiga, M. Physiological role of two component signal transduction systems in food-associated lactic acid bacteria. Adv. Appl. Microbiol. 2017, 99, 1–51. [Google Scholar] [CrossRef]
- Yang, H.R.; Yu, Y.J.; Fu, C.X.; Chen, F.S. Bacterial acid resistance toward organic weak acid revealed by RNA-Seq transcriptomic analysis in Acetobacter pasteurianus. Front. Microbiol. 2019, 10, 1616. [Google Scholar] [CrossRef] [PubMed]
- Nakano, S.; Fukaya, M.; Horinouchi, S. Putative ABC transporter responsible for acetic acid resistance in Acetobacter aceti. Appl. Environ. Microb. 2006, 72, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Shao, Y.C.; Chen, F.S. Overview on mechanisms of acetic acid resistance in acetic acid bacteria. World J. Microbiol. Biotechnol. 2015, 31, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Xia, K.; Han, C.C.; Xu, J.; Liang, X.L. Toxin-antitoxin HicAB regulates the formation of persister cells responsible for the acid stress resistance in Acetobacter pasteurianus. Appl. Microbiol. Biot. 2021, 105, 725–739. [Google Scholar] [CrossRef] [PubMed]
- Altelaar, A.F.M.; Munoz, J.; Heck, A.J.R. Next-generation proteomics: Towards an integrative view of proteome dynamics. Nat. Rev. Genet. 2012, 14, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Andrés-Barrao, C.; Saad, M.M.; Chappuis, M.L.; Boffa, M.; Perret, X.; Ortega Perez, R.; Barja, F. Proteome analysis of Acetobacter pasteurianus during acetic acid fermentation. J. Proteom. 2012, 75, 1701–1717. [Google Scholar] [CrossRef]
- Xia, K.; Zang, N.; Zhang, J.M.; Zhang, H.; Li, Y.D.; Liu, Y.; Feng, W.; Liang, X.L. New insights into the mechanisms of acetic acid resistance in Acetobacter pasteurianus using iTRAQ-dependent quantitative proteomic analysis. Int. J. Food Microbiol. 2016, 238, 241–251. [Google Scholar] [CrossRef]
- Hao, C.L.; Lam, H.H.N. Quantitative proteomics reveals UGA-independent misincorporation of selenocysteine throughout the Escherichia coli proteome. J. Proteome Res. 2020, 20, 212–221. [Google Scholar] [CrossRef]
- Zhao, H.G.; Ji, R.; Zha, X.R.; Xu, Z.; Lin, Y.Y.; Zhou, S.L. Investigation of the bactericidal mechanism of Penicilazaphilone C on Escherichia coli based on 4D label-free quantitative proteomic analysis. Eur. J. Pharm. Sci. 2022, 179, 106299. [Google Scholar] [CrossRef]
- Prianichnikov, N.; Koch, H.; Koch, S.; Lubeck, M.; Heilig, R.; Brehmer, S.; Fischer, R.; Cox, J. MaxQuant software for ion mobility enhanced shotgun proteomics. Mol. Cell. Proteom. 2020, 19, 1058–1069. [Google Scholar] [CrossRef]
- Li, J.; Pan, H.; Yang, H.; Wang, C.; Liu, H.H.; Zhou, H.; Li, P.W.; Li, C.Z.; Lu, X.Y.; Tian, Y. Rhamnolipid enhances the nitrogen fixation activity of Azotobacter chroococcum by influencing lysine succinylation. Front. Microbiol. 2021, 12, 697963. [Google Scholar] [CrossRef] [PubMed]
- Pei, M.S.; Liu, H.N.; Wei, T.L.; Guo, D.L. Proteome-wide identification of non-histone lysine methylation during grape berry ripening. J. Agri. Food Chem. 2023, 71, 12140–12152. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Y.; Zhang, N.N.; Jiao, X.D.; Zhang, W.H.; Yan, B.W.; Huang, J.L.; Zhao, J.X.; Zhang, H.; Chen, W.; Fan, D.M. Insight into Ionic strength-induced solubilization of myofibrillar proteins from Silver Carp (Hypophthalmichthys molitrix): Structural changes and 4D label-free proteomics analysis. J. Agric. Food Chem. 2023, 71, 13920–13933. [Google Scholar] [CrossRef] [PubMed]
- Dalabasmaz, S.; DelaTorre, E.P.; Gensberger-Reigl, S.; Pischetsrieder, M.; Rodríguez-Ortega, M.J. Identification of potential bioactive peptides in sheep milk kefir through peptidomic analysis at different fermentation times. Foods 2023, 12, 2974. [Google Scholar] [CrossRef] [PubMed]
- Zai, X.D.; Yang, Q.L.; Yin, Y.; Li, R.H.; Qian, M.Y.; Zhao, T.R.; Li, Y.H.; Zhang, J.; Fu, L.; Xu, J.J.; et al. Relative quantitative proteomic analysis of Brucella abortus reveals metabolic adaptation to multiple environmental stresses. Front. Microbiol. 2017, 8, 2347. [Google Scholar] [CrossRef]
- Song, W.; Tang, F.X.; Cai, W.C.; Zhang, Q.; Zhou, F.K.; Ning, M.; Tian, H.; Shan, C.H. iTRAQ-based quantitative proteomics analysis of cantaloupe (Cucumis melo var. saccharinus) after cold storage. BMC Genomics 2020, 21, 390. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.L.; Zheng, Z.H.; Zhou, H.B.; Qu, H.; Gao, H.Y. Proteomics reveals the mechanism underlying the autolysis of postharvest Coprinus comatus fruiting bodies. J. Agric. Food Chem. 2022, 70, 1346–1357. [Google Scholar] [CrossRef]
- Suetsugu, S.; Kurisu, S.K.; Takenawa, T.M. Dynamic shaping of cellular membranes by phospholipids and membrane-deforming proteins. Physiol. Rev. 2014, 94, 1219–1248. [Google Scholar] [CrossRef]
- Wang, C.N.; Zhao, R.; Fu, W.F.; Li, S.Y.; Cheng, J.J.; Jiang, S.L.; Guo, M.R. Insights from 4D label-free proteomic analysis into variation of milk fat gobule membrane proteins of human milk associated with infant’s gender. J. Agric. Food Chem. 2023, 71, 12116–12128. [Google Scholar] [CrossRef]
- Li, L.X.; Qin, X.H.; Mi, L.Z. Nucleic acid-barcoding technologies: A new method for extending high-throughput protein-protein interactions. Chin. J. Biochem. Mol. Biol. 2023, 1–20. [Google Scholar] [CrossRef]
- Dong, S.K.; Wang, X.; Li, X.M.; Tian, Y.M.; Zhou, X.Y.; Qu, Z.P.; Wang, X.Y.; Liu, L.J. Mechanism of mepiquat chloride regulating soybean response to drought stress revealed by proteomics. Plants 2023, 12, 2037. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.J.; Ma, J.C.; Chen, Q.Y.; Chen, B.; Liang, L.J.; Liao, Y.L.; Song, Y.L.; Wang, H.H.; Cronan, J.E. A cryptic long-chain 3-ketoacyl-ACP synthase in the Pseudomonas putida F1 unsaturated fatty acid synthesis pathway. J. Biol. Chem. 2021, 297, 100920. [Google Scholar] [CrossRef] [PubMed]
- Kondakova, T.; D’Heygère, F.; Feuilloley, M.J.; Orange, N.; Heipieper, H.J.; Duclairoir Poc, C. Glycerophospholipid synthesis and functions in Pseudomonas. Chem. Phys. Lipids 2015, 190, 27–42. [Google Scholar] [CrossRef]
- Luo, Q.X.; Shi, M.M.; Ren, Y.D.; Gao, H.C. Transcription factors FabR and FadR regulate both aerobic and anaerobic pathways for unsaturated fatty acid biosynthesis in Shewanella oneidensis. Front. Microbiol. 2014, 5, 736. [Google Scholar] [CrossRef] [PubMed]
- Eberlein, C.; Baumgarten, T.; Starke, S.; Heipieper, H.J. Immediate response mechanisms of gram-negative solvent-tolerant bacteria to cope with environmental stress: Cis-trans isomerization of unsaturated fatty acids and outer membrane vesicle secretion. Appl. Microbiol. Biot. 2018, 102, 2583–2593. [Google Scholar] [CrossRef] [PubMed]
- Royce, L.A.; Yoon, J.M.; Chen, Y.X.; Rickenbach, E.; Shanks, J.V.; Jarboe, L.R. Evolution for exogenous octanoic acid tolerance improves carboxylic acid production and membrane integrity. Metab. Eng. 2015, 29, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.D.; Zhang, J.; Wang, M.; Du, G.C.; Chen, J. Lactobacillus casei combats acid stress by maintaining cell membrane functionality. J. Ind. Microbiol. Biotechnol. 2012, 39, 1031–1039. [Google Scholar] [CrossRef] [PubMed]
- Trček, J.; Jernejc, K.; Matsushita, K. The highly tolerant acetic acid bacterium Gluconacetobacter europaeus adapts to the presence of acetic acid by changes in lipid composition, morphological properties and PQQ-dependent ADH expression. Extremophiles 2007, 11, 627–635. [Google Scholar] [CrossRef]
- Yang, Q.; Sun, Z.Y.; Man, D.L.; Wang, J.; Liu, J.; Jin, J.J.; Cheng, Z.J. Effect of heterologous expression of acetyl-CoA carboxylase in Escherichia coli on fatty acid production. Food Res. Dev. 2021, 42, 150–155. [Google Scholar] [CrossRef]
- Prochownik, E.V.; Wang, H.H. The metabolic fates of pyruvate in normal and neoplastic cells. Cells 2021, 10, 762. [Google Scholar] [CrossRef]
- Franke, T.; Deppenmeier, U. Physiology and central carbon metabolism of the gut bacterium Prevotella copri. Mol. Microbiol. 2018, 109, 528–540. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.G.; Zhang, Y.H. Enzymatic regeneration and conservation of ATP: Challenges and opportunities. Crit. Rev. Biotechnol. 2020, 41, 16–33. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.X.; Thompson, K.; Taylor, R.W.; Oláhová, M. Mitochondrial OXPHOS biogenesis: Co-regulation of protein synthesis, import, and assembly pathways. Int. J. Mol. Sci. 2020, 21, 3820. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.R.; He, Y.T.; Liao, J.; Li, X.; Zhang, J.H.; Liebl, W.G.; Chen, F.S. RNA-Seq transcriptomic analysis reveals gene expression profiles of acetic acid bacteria under high-acidity submerged industrial fermentation process. Front. Microbiol. 2022, 13, 956729. [Google Scholar] [CrossRef] [PubMed]
- Curtis, P.D.; Brun, Y.V. Getting in the loop: Regulation of development in Caulobacter crescentus. Microbiol. Mol. Biol. Rev. 2010, 74, 13–41. [Google Scholar] [CrossRef]
- Woldemeskel, S.A.; McQuillen, R.; Hessel, A.M.; Xiao, J.; Goley, E.D. A conserved coiled-coil protein pair focuses the cytokinetic Z-ring in Caulobacter crescentus. Mol. Microbiol. 2017, 105, 721–740. [Google Scholar] [CrossRef]
- Gamba, P.; Hamoen, L.W.; Daniel, R.A. Cooperative recruitment of FtsW to the division site of Bacillus subtilis. Front. Microbiol. 2016, 7, 1808. [Google Scholar] [CrossRef]
- Laursen, B.S.; Sorensen, H.P.; Mortensen, K.K.; Sperling-Petersen, H.U. Initiation of protein synthesis in bacteria. Microbiol. Mol. Biol. R. 2005, 69, 101–123. [Google Scholar] [CrossRef]
Protein Accession | Protein Description | Gene Name | P3-L/P0-L Fold Change | Type | P6-L/P0-L Fold Change | Type | P3-E/P0-E Fold Change | Type | P6-E/P0-E Fold Change | Type |
---|---|---|---|---|---|---|---|---|---|---|
fig_HN.783 | Pyruvate ferredoxin/flavodoxin oxidoreductase | APA01_14730 | 0.73 | 0.39 | down | 1.89 | up | 1.29 | ||
fig_HN.784 | Pyruvate ferredoxin/flavodoxin oxidoreductase | nifJ | 0.69 | 0.37 | down | 2.32 | up | 1.61 | up | |
fig_HN.786 | Phosphate acetyltransferase | pta | 1.52 | up | 1.78 | up | 2.06 | up | 1.65 | up |
fig_HN.787 | Acetate kinase | ackA | 0.83 | 0.42 | down | 1.25 | 0.95 | |||
fig_HN.1094 | Chromosomal replication initiator protein | dnaA | 0.74 | 0.37 | down | 0.86 | 1.43 | |||
fig_HN.1095 | Chromosomal replication initiator protein DnaA | dnaA | 0.74 | 0.40 | down | 0.99 | 1.28 | |||
fig_HN.1103 | Triosephosphate isomerase | tpiA | 1.61 | up | 2.30 | up | 2.31 | up | 1.95 | up |
fig_HN.1114 | Dihydrolipoyl dehydrogenase | lpdA | 1.09 | 0.63 | down | 0.72 | 0.67 | |||
fig_HN.1135 | Phospholipase | cls | 0.93 | 0.45 | down | 1.18 | 1.53 | up | ||
fig_HN.1158 | Malonyl CoA-acyl carrier protein transacylase | fabD | 1.70 | up | 2.58 | up | 1.23 | 1.39 | ||
fig_HN.1159 | 3-oxoacyl-[acyl-carrier-protein] reductase | fabG | 1.61 | up | 2.31 | up | 1.60 | up | 1.38 | |
fig_HN.1181 | Probable malate:quinone oxidoreductase | mqo | 0.83 | 0.56 | down | 1.59 | up | 1.30 | ||
fig_HN.1209 | 2-nitropropane dioxygenase | fabI | 1.50 | up | 1.44 | 0.81 | 0.66 | down | ||
fig_HN.1241 | Enolase | eno | 1.26 | 1.25 | 2.18 | up | 1.35 | |||
fig_HN.1272 | Succinyl-CoA:acetate CoA transferase | aarC | 0.53 | down | 0.53 | down | 4.37 | up | 3.34 | up |
fig_HN.1277 | Citrate synthase | gltA | 0.38 | down | 0.18 | down | 2.95 | up | 2.77 | up |
fig_HN.1306 | Isocitrate dehydrogenase (NAD+) | icd1 | 0.60 | down | 0.43 | down | 3.53 | up | 3.11 | up |
fig_HN.1367 | 2,3-bisphosphoglycerate-independent phosphoglycerate mutase | gpmI | 1.23 | 1.33 | 1.65 | up | 1.18 | |||
fig_HN.1544 | Histidine phosphatase family protein | gpmB | 0.91 | 0.76 | 2.45 | up | 2.15 | up | ||
fig_HN.1562 | Phosphatidylserine decarboxylase proenzyme | psd | 1.09 | 0.66 | down | 0.62 | down | 0.81 | ||
fig_HN.1563 | CDP-diacylglycerol--serine O-phosphatidyltransferase | pssA | 1.22 | 0.59 | down | 0.80 | 0.76 | |||
fig_HN.1577 | 1-acyl-sn-glycerol-3-phosphate acyltransferase | plsC | 1.01 | 0.59 | down | 1.29 | 1.62 | up | ||
fig_HN.1585 | 2-oxoglutarate dehydrogenase | sucA | 0.43 | down | 0.20 | down | 2.53 | up | 2.71 | up |
fig_HN.1595 | Glycerol-3-phosphate acyltransferase | plsY | 0.85 | 0.44 | down | 0.78 | 0.84 | |||
fig_HN.1610 | Proton-translocating NADH-quinone oxidoreductase | nuoM | 0.62 | down | 0.33 | down | 2.16 | up | 1.78 | up |
fig_HN.1654 | Acetate-CoA ligase | acs | 0.89 | 0.50 | down | 0.81 | 0.92 | |||
fig_HN.1755 | Isocitrate dehydrogenase [NADP] | icd | 0.41 | down | 0.18 | down | 0.71 | 1.16 | ||
fig_HN.2080 | Acetate-CoA ligase | acs | 0.64 | down | 0.30 | down | 1.03 | 1.15 | ||
fig_HN.2347 | Cytochrome bo (3) ubiquinol oxidase | cyoC | 1.10 | 0.64 | down | 0.94 | 0.63 | down | ||
fig_HN.2415 | Glyceraldehyde-3-phosphate dehydrogenase | gap | 1.36 | 2.16 | up | 1.99 | up | 1.72 | up | |
fig_HN.2416 | Phosphoglycerate kinase | pgk | 1.59 | up | 1.95 | up | 2.54 | up | 1.63 | up |
fig_HN.2419 | Succinate dehydrogenase iron-sulfur subunit | sdhB | 0.77 | 0.53 | down | 2.89 | up | 2.42 | up | |
fig_HN.2420 | Succinate dehydrogenase flavoprotein subunit | sdhA | 0.48 | down | 0.21 | down | 2.43 | up | 2.13 | up |
fig_HN.2422 | Succinate dehydrogenase | sdhD | 0.59 | down | 0.29 | down | 2.49 | up | 2.09 | up |
fig_HN.2423 | Succinate dehydrogenase cytochrome b556 subunit | sdhC | 0.57 | down | 0.29 | down | 2.68 | up | 2.56 | up |
fig_HN.2949 | Biotin carboxyl carrier protein of acetyl-CoA carboxylase | FCN51_10970 | 2.35 | up | 2.38 | up | 2.01 | up | 2.08 | up |
fig_HN.3098 | Cell division protein FtsZ | ftsZ | 1.53 | up | 2.25 | up | 1.32 | 1.27 | ||
fig_HN.3100 | Cell division protein FtsQ | ftsQ | 1.48 | 1.91 | up | 1.2 | 1.37 | |||
fig_HN.3152 | Cytochrome b | cyt b/cyt 1 | 1.07 | 0.60 | down | 0.44 | down | 0.41 | down | |
fig_HN.3299 | Protoheme IX farnesyltransferase | cyoE | 1.03 | 0.61 | down | 0.68 | 0.58 | down | ||
fig_HN.3342 | NADH-quinone oxidoreductase subunit B | nuoB | 0.39 | down | 0.24 | down | 2.72 | up | 2.05 | up |
fig_HN.3343 | NADH-quinone oxidoreductase subunit B | nuoB | 0.51 | down | 0.34 | down | 2.37 | up | 1.77 | up |
fig_HN.3344 | NADH-quinone oxidoreductase subunit C | nuoC | 0.33 | down | 0.20 | down | 2.54 | up | 2.40 | up |
fig_HN.3345 | NADH-quinone oxidoreductase subunit D | nuoD | 0.29 | down | 0.11 | down | 2.07 | up | 2.15 | up |
fig_HN.3346 | NAD(P)H-dependent oxidoreductase subunit E | nuoE | 0.50 | down | 0.51 | down | 2.38 | up | 2.07 | up |
fig_HN.3347 | NADH-quinone oxidoreductase subunit F | nuoF | 0.29 | down | 0.15 | down | 2.09 | up | 1.99 | up |
fig_HN.3348 | NADH-quinone oxidoreductase subunit G | nuoG | 0.33 | down | 0.16 | down | 1.96 | up | 1.70 | up |
fig_HN.3349 | NADH-quinone oxidoreductase subunit H | nuoH | 0.29 | down | 0.09 | down | 2.43 | up | 1.85 | up |
fig_HN.3350 | NADH-quinone oxidoreductase subunit I | nuoI | 0.36 | down | 0.34 | down | 3.56 | up | 3.16 | up |
fig_HN.3354 | NADH-quinone oxidoreductase subunit N | nuoN | 0.93 | 0.31 | down | 2.22 | up | 2.12 | up | |
fig_HN.3414 | Biotin carboxyl carrier protein of acetyl-CoA carboxylase | accB | 1.64 | up | 3.42 | up | 1.73 | up | 2.05 | up |
fig_HN.3423 | Aconitate hydratase | acnA | 0.67 | 0.42 | down | 2.53 | up | 2.19 | up | |
fig_HN.3424 | Aconitate hydratase | acnA | 0.70 | 0.47 | down | 2.80 | up | 2.37 | up | |
fig_HN.3446 | Fumarate hydratase class I | fumA | 0.61 | down | 0.31 | down | 1.57 | up | 1.35 | |
fig_HN.3447 | Fumarate hydratase class I | fumA | 0.64 | down | 0.33 | down | 1.55 | up | 1.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Wang, X.; Li, C.; Fu, Q.; Shi, X.; Wang, B. Investigation of Acid Tolerance Mechanism of Acetobacter pasteurianus under Different Concentrations of Substrate Acetic Acid Based on 4D Label-Free Proteomic Analysis. Foods 2023, 12, 4471. https://doi.org/10.3390/foods12244471
Li T, Wang X, Li C, Fu Q, Shi X, Wang B. Investigation of Acid Tolerance Mechanism of Acetobacter pasteurianus under Different Concentrations of Substrate Acetic Acid Based on 4D Label-Free Proteomic Analysis. Foods. 2023; 12(24):4471. https://doi.org/10.3390/foods12244471
Chicago/Turabian StyleLi, Tian, Xinwei Wang, Chunyan Li, Qingquan Fu, Xuewei Shi, and Bin Wang. 2023. "Investigation of Acid Tolerance Mechanism of Acetobacter pasteurianus under Different Concentrations of Substrate Acetic Acid Based on 4D Label-Free Proteomic Analysis" Foods 12, no. 24: 4471. https://doi.org/10.3390/foods12244471
APA StyleLi, T., Wang, X., Li, C., Fu, Q., Shi, X., & Wang, B. (2023). Investigation of Acid Tolerance Mechanism of Acetobacter pasteurianus under Different Concentrations of Substrate Acetic Acid Based on 4D Label-Free Proteomic Analysis. Foods, 12(24), 4471. https://doi.org/10.3390/foods12244471