Effect of Rice Bran and Retrograded Time on the Qualities of Brown Rice Noodles: Edible Quality, Microstructure, and Moisture Migration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of BRFs
2.3. Preparation of BRNs
2.4. Physical and Chemical Indicators of BRFs
2.4.1. Solubility and Swelling Power
2.4.2. Pasting Properties
2.4.3. Properties of BRF Gel
2.5. Edible Quality and Microstructure of BRNs
2.5.1. Cooking Quality
2.5.2. Texture Properties of BRNs
2.5.3. Chromaticity Characteristics
2.5.4. Sensory Evaluation
2.5.5. X-ray Diffraction (XRD)
2.5.6. Low-Field Nuclear Magnetic Resonance (LF-NMR)
2.5.7. Microstructures of the BRNs
2.6. Statistical Analysis
3. Results and Discussion
3.1. Physical and Chemical Indicators of BRFs
3.1.1. Solubility and Swelling Power of BRFs
3.1.2. Pasting Properties of BRFs
3.1.3. Gelation Properties of BRFs
3.2. The Edible Quality of BRNs
3.2.1. Cooking Quality
3.2.2. Textural Properties of BRNs
3.2.3. Chromaticity Characteristics of BRNs
3.2.4. Sensory Evaluation
3.3. Microstructure of BRNs
3.4. XRD and Crystallinity
3.5. Water Distribution and Migration of BRNs
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Honda, Y.; Inoue, N.; Kurita, M.; Okunishi, T. Alpha-Glutelin Degradation and Its Hydrolysate by Protease Enhance the Specific Volume of Gluten-Free Rice Starch Bread. J. Cereal Sci. 2021, 102, 103338. [Google Scholar] [CrossRef]
- Wu, P.; Deng, R.; Wu, X.; Wang, Y.; Dong, Z.; Dhital, S.; Chen, X.D. In Vitro Gastric Digestion of Cooked White and Brown Rice Using a Dynamic Rat Stomach Model. Food Chem. 2017, 237, 1065–1072. [Google Scholar] [CrossRef]
- Xia, Q.; Green, B.D.; Zhu, Z.; Li, Y.; Gharibzahedi, S.M.T.; Roohinejad, S.; Barba, F.J. Innovative Processing Techniques for Altering the Physicochemical Properties of Wholegrain Brown Rice (Oryza sativa L.)—Opportunities for Enhancing Food Quality and Health Attributes. Crit. Rev. Food Sci. Nutr. 2019, 59, 3349–3370. [Google Scholar] [CrossRef]
- Fu, M.; Sun, X.; Wu, D.; Meng, L.; Feng, X.; Cheng, W.; Gao, C.; Yang, Y.; Shen, X.; Tang, X. Effect of Partial Substitution of Buckwheat on Cooking Characteristics, Nutritional Composition, and in Vitro Starch Digestibility of Extruded Gluten-Free Rice Noodles. LWT 2020, 126, 109332. [Google Scholar] [CrossRef]
- Sohail, M.; Rakha, A.; Butt, M.S.; Iqbal, M.J.; Rashid, S. Rice Bran Nutraceutics: A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2017, 57, 3771–3780. [Google Scholar] [CrossRef]
- Imam, M.U.; Azmi, N.H.; Bhanger, M.I.; Ismail, N.; Ismail, M. Antidiabetic Properties of Germinated Brown Rice: A Systematic Review. Evid.-Based Complement. Altern. Med. 2012, 2012, 816501. [Google Scholar] [CrossRef]
- Doan, N.T.T.; Lai, Q.D.; Vo, H.V.; Nguyen, H.D. Influence of Adding Rice Bran on Physio-Chemical and Sensory Properties of Bread. Food Meas. 2021, 15, 5369–5378. [Google Scholar] [CrossRef]
- Tian, X.; Tan, B.; Wang, L.; Zhai, X.; Jiang, P.; Qiao, C.; Wu, N. Effect of Rice Bran with Extrusion Cooking on Quality and Starch Retrogradation of Fresh Brown Rice Noodles during Storage at Different Temperatures. Cereal Chem. 2022, 99, 1296–1307. [Google Scholar] [CrossRef]
- Wu, N.; Ma, Z.; Li, H.; Tian, X.; Fang, Y.; Tan, B. Nutritional and Cooking Quality Improvement of Brown Rice Noodles Prepared with Extruded Rice Bran. Cereal Chem. 2020, 98, 346–354. [Google Scholar] [CrossRef]
- Fredriksson, H.; Silverio, J.; Andersson, R.; Eliasson, A.-C.; Åman, P. The Influence of Amylose and Amylopectin Characteristics on Gelatinization and Retrogradation Properties of Different Starches. Carbohydr. Polym. 1998, 35, 119–134. [Google Scholar] [CrossRef]
- Han, J.-A.; Seo, T.-R.; Lim, S.-T.; Park, D.J. Utilization of Rice Starch with Gums in Asian Starch Noodle Preparation as Substitute for Sweet Potato Starch. Food Sci. Biotechnol. 2011, 20, 1173–1178. [Google Scholar] [CrossRef]
- Fu, B.X.; Kovacs, M.I.P.; Wang, C. A Simple Wheat Flour Swelling Test. Cereal Chem. J. 1998, 75, 566–567. [Google Scholar] [CrossRef]
- Jia, Y.; Zhang, Z.; Li, M.; Ji, N.; Qin, Y.; Wang, Y.; Shi, R.; Wang, T.; Xiong, L.; Sun, Q. The Effect of Hydroxypropyl Starch on the Improvement of Mechanical and Cooking Properties of Rice Noodles. Food Res. Int. 2022, 162, 963–969. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Chen, Y.; Lv, C.; Wu, W.; Qin, S. Study on Optimization of Removing Cadmium by Lactobacillus Fermentation and Its Effect on Physicochemical and Quality Properties of Rice Noodles. Food Control 2019, 106, 106740. [Google Scholar] [CrossRef]
- Geng, D.-H.; Lin, Z.; Liu, L.; Qin, W.; Wang, A.; Wang, F.; Tong, L.-T. Effects of Ultrasound-Assisted Cellulase Enzymatic Treatment on the Textural Properties and in Vitro Starch Digestibility of Brown Rice Noodles. LWT 2021, 146, 111543. [Google Scholar] [CrossRef]
- Yadav, B.S.; Yadav, R.B.; Kumari, M.; Khatkar, B.S. Studies on Suitability of Wheat Flour Blends with Sweet Potato, Colocasia and Water Chestnut Flours for Noodle Making. LWT-Food Sci. Technol. 2014, 57, 352–358. [Google Scholar] [CrossRef]
- Chi, C.; Li, X.; Zhang, Y.; Chen, L.; Li, L. Understanding the Mechanism of Starch Digestion Mitigation by Rice Protein and Its Enzymatic Hydrolysates. Food Hydrocoll. 2018, 84, 473–480. [Google Scholar] [CrossRef]
- Qiao, S.; Tian, Y.; Song, P.; He, K.; Song, S. Analysis and Detection of Decayed Blueberry by Low Field Nuclear Magnetic Resonance and Imaging. Postharvest Biol. Technol. 2019, 156, 110951. [Google Scholar] [CrossRef]
- Baxter, G.; Blanchard, C.; Zhao, J. Effects of Prolamin on the Textural and Pasting Properties of Rice Flour and Starch. J. Cereal Sci. 2004, 40, 205–211. [Google Scholar] [CrossRef]
- Ibañez Ana, M.; Wood Delilah, F.; Yokoyama Wallace, H.; Park, I.M.; Tinoco Mario, A.; McKenzie Kent, S.; Shoemaker, C.F. Viscoelastic Properties of Waxy and Nonwaxy Rice Flours, Their Fat and Protein-Free Starch, and the Microstructure of Their Cooked Kernels. J. Agric. Food Chem. 2007, 55, 61–71. [Google Scholar]
- Martin, M.; Fitzgerald, M.A. Proteins in Rice Grains Influence Cooking Properties! J. Cereal Sci. 2001, 36, 285–294. [Google Scholar] [CrossRef]
- Tester, R.F.; Morrison, W.R. Swelling and Gelatinization of Cereal Starches. I. Effects of Amylopectin, Amylose, and Lipids. Cereal Chem. 1990, 67, 551–557. [Google Scholar]
- Chung, H.-J.; Cho, A.; Lim, S.-T. Effect of Heat-Moisture Treatment for Utilization of Germinated Brown Rice in Wheat Noodle. LWT 2012, 47, 342–347. [Google Scholar] [CrossRef]
- Chen, L.; Tong, Q.; Ren, F.; Zhu, G. Pasting and Rheological Properties of Rice Starch as Affected by Pullulan. Int. J. Biol. Macromol. 2014, 66, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Fang, L.; Zhou, H.; Yang, H. Effects of Amino Acids on the Physiochemical Properties of Potato Starch. Food Chem. 2014, 151, 162–167. [Google Scholar] [CrossRef]
- Xiao, J.; Zhong, Q. Suppression of Retrogradation of Gelatinized Rice Starch by Anti-Listerial Grass Carp Protein Hydrolysate. Food Hydrocoll. 2017, 72, 338–345. [Google Scholar] [CrossRef]
- Kang, M.J.; Bae, I.Y.; Lee, H.G. Rice Noodle Enriched with Okara: Cooking Property, Texture, and in Vitro Starch Digestibility. Food Biosci. 2018, 22, 178–183. [Google Scholar] [CrossRef]
- Liu, T.; Wang, K.; Xue, W.; Wang, L.; Zhang, C.; Zhang, X.; Chen, Z. In Vitro Starch Digestibility, Edible Quality and Microstructure of Instant Rice Noodles Enriched with Rice Bran Insoluble Dietary Fiber. LWT 2021, 142, 111008. [Google Scholar] [CrossRef]
- Aravind, N.; Sissons, M.; Egan, N.; Fellows, C. Effect of Insoluble Dietary Fibre Addition on Technological, Sensory, and Structural Properties of Durum Wheat Spaghetti. Food Chem. 2012, 130, 299–309. [Google Scholar] [CrossRef]
- Choi, Y.; Jeong, H.-S.; Lee, J. Antioxidant Activity of Methanolic Extracts from Some Grains Consumed in Korea. Food Chem. 2007, 103, 130–138. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, C.; Chen, Y.; Chen, Y. Effect of Rice Protein on the Water Mobility, Water Migration and Microstructure of Rice Starch during Retrogradation. Food Hydrocoll. 2019, 91, 136–142. [Google Scholar] [CrossRef]
- Srikaeo, K.; Laothongsan, P.; Lerdluksamee, C. Effects of Gums on Physical Properties, Microstructure and Starch Digestibility of Dried-Natural Fermented Rice Noodles. Int. J. Biol. Macromol. 2018, 109, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Shang, J.; Zhao, B.; Li, L.; Liu, M.; Hong, J.; Fan, X.; Wu, T.; Liu, C.; Zheng, X. Impact of A/B-Type Wheat Starch Granule Ratio on Rehydration Behavior and Cooking Quality of Noodles and the Underlying Mechanisms. Food Chem. 2023, 405, 134896. [Google Scholar] [CrossRef]
- Nawaz, A.; Li, E.; Khalifa, I.; Irshad, S.; Walayat, N.; Mohammed, H.H.H.; Zhang, Z.; Ahmed, S.; Simirgiotis, M.J. Evaluation of Fish Meat Noodles: Physical Property, Dough Rheology, Chemistry and Water Distribution Properties. Int. J. Food Sci. Technol. 2021, 56, 1061–1069. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, L.; Wang, H.; Ai, L.; Xiong, W. Insight into Protein-Starch Ratio on the Gelatinization and Retrogradation Characteristics of Reconstituted Rice Flour. Int. J. Biol. Macromol. 2020, 146, 524–529. [Google Scholar] [CrossRef]
Sensory Attribute | Definition | Score |
---|---|---|
Firmness | The required force to bite through brown rice noodles. | 1~20 |
Chewiness | Time required for chewing the sample at a constant speed to achieve a swallowing consistency. | 1~20 |
Elasticity | The elasticity felt during tooth occlusion. | 1~20 |
Slipperiness | The feeling of brown rice noodles sliding over your tongue. | 1~20 |
Overall acceptability | Acceptability of the appearance of cooked brown rice noodles. | 1~20 |
Sample | BRF100 | BRF97 | BRF94 | BRF91 | BRF89 |
---|---|---|---|---|---|
Peak viscosity/cp | 3200.50 ± 59.50 a | 2758.50 ± 80.50 b | 2569.00 ± 25.00 c | 2351.50 ± 6.50 d | 2287.50 ± 10.50 d |
Trough viscosity/cp | 1658.50 ± 3.50 a | 1460.00 ± 41.00 b | 1346.00 ± 3.00 c | 1278.50 ± 6.50 cd | 1272.50 ± 8.50 d |
Breakdown value/cp | 1542.00 ± 63.00 a | 1298.50 ± 39.50 b | 1240.50 ± 4.50 b | 1068.50 ± 4.50 c | 1009.50 ± 7.50 c |
Final viscosity/cp | 3280.00 ± 6.00 a | 3292.00 ± 93.00 a | 3307.50 ± 6.50 a | 3261.50 ± 8.50 a | 3334.50 ± 8.50 a |
Setback value/cp | 1621.50 ± 9.50 d | 1832.00 ± 52.00 c | 1960.00 ± 5.00 b | 2010.50 ± 12.50 ab | 2053.50 ± 8.50 a |
Peak time/min | 5.60 ± 0.00 b | 5.73 ± 0.00 a | 5.70 ± 0.03 a | 5.73 ± 0.00 a | 5.73 ± 0.00 a |
Pasting temperature/°C | 85.85 ± 0.00 c | 88.31 ± 0.38 b | 88.50 ± 0.20 b | 89.08 ± 0.07 b | 91.07 ± 0.31 a |
Sample | BRF100 | BRF97 | BRF94 | BRF91 | BRF89 |
---|---|---|---|---|---|
Hardness/N | 3.46 ± 0.01 a | 3.10 ± 0.05 a | 2.94 ± 0.01 ab | 3.03 ± 0.10 ab | 2.46 ± 0.35 b |
Adhesiveness /N.mm | 1.67 ± 0.02 a | 1.24 ± 0.14 b | 1.09 ± 0.03 b | 1.05 ± 0.03 b | 0.76 ± 0.10 c |
Cohesiveness/g·s | 0.52 ± 0.00 a | 0.53 ± 0.05 a | 0.60 ± 0.00 a | 0.58 ± 0.01 a | 0.59 ± 0.01 a |
Springiness/mm | 7.65 ± 0.39 a | 6.41 ± 0.01 b | 6.13 ± 0.13 bc | 5.35 ± 0.15 c | 5.33 ± 0.22 c |
Gumminess/N | 1.79 ± 0.31 a | 1.78 ± 0.06 a | 1.77 ± 0.23 a | 1.84 ± 0.09 a | 1.68 ± 0.28 a |
Chewiness/g·s | 11.95 ± 0.45 a | 10.68 ± 0.05 b | 9.82 ± 0.10 bc | 9.09 ± 0.04 c | 8.90 ± 0.37 c |
Sample | Optimal Cooking Time/min | Water Absorption/% | Breaking Rate/% |
---|---|---|---|
BRN100 | 10.47 ± 0.08 a | 75.29 ± 1.65 a | 2.22 ± 1.57 a |
BRN97 | 10.23 ± 0.02 b | 66.03 ± 1.14 b | 7.78 ± 1.57 b |
BRN94 | 9.72 ± 0.21 c | 51.21 ± 0.44 c | 13.33 ± 2.72 c |
BRN91 | 9.17 ± 0.05 d | 48.21 ± 0.87 c | 17.78 ± 1.57 d |
BRN89 | 8.91 ± 0.07 e | 43.74 ± 0.67 d | 23.33 ± 2.72 e |
BRN1h | 6.42 ± 0.04 a | 50.64 ± 1.64 a | 29.95 ± 1.64 a |
BRN3h | 7.71 ± 0.13 b | 48.86 ± 0.92 a | 19.11 ± 1.14 b |
BRN5h | 8.14 ± 0.14 c | 34.73 ± 0.68 b | 10.53 ± 0.43 c |
BRN7h | 9.16 ± 0.16 c | 32.30 ± 1.40 b | 2.45 ± 0.87 d |
BRN9h | 9.97 ± 0.14 d | 25.05 ± 2.30 c | 8.86 ± 0.67 c |
Sample | Hardness/g | Cohesiveness/g·s | Chewiness/g·s |
---|---|---|---|
BRN100 | 3001.44 ± 65.91 a | 0.70 ± 0.00 a | 1976.87 ± 41.34 a |
BRN97 | 2665.99 ± 61.74 a | 0.69 ± 0.00 ab | 1726.56 ± 37.45 a |
BRN94 | 2257.61 ± 49.51 b | 0.68 ± 0.00 ab | 1437.74 ± 89.00 b |
BRN91 | 1786.93 ± 9.20 c | 0.68 ± 0.00 bc | 1122.11 ± 7.34 c |
BRN89 | 1300.62 ± 54.15 d | 0.66 ± 0.01 c | 765.78 ± 134.28 d |
BRN1h | 1022.05 ± 20.15 c | 0.68 ± 0.00 a | 626.05 ± 12.23 d |
BRN3h | 1048.41 ± 1.51 c | 0.70 ± 0.01 a | 677.98 ± 13.74 c |
BRN5h | 1181.17 ± 11.55 b | 0.69 ± 0.01 a | 739.18 ± 10.85 b |
BRN7h | 1188.98 ± 13.75 b | 0.69 ± 0.00 a | 749.48 ± 2.23 b |
BRN9h | 1311.40 ± 41.33 a | 0.69 ± 0.01 a | 824.64 ± 15.81 a |
Sample | L | a | b | W |
---|---|---|---|---|
BRN100 | 89.96 ± 0.74 a | 11.63 ± 0.36 ab | 6.82 ± 0.27 a | 83.19 ± 0.74 a |
BRN97 | 88.38 ± 0.18 a | 11.40 ± 0.28 ab | 8.40 ± 0.02 b | 81.68 ± 0.18 a |
BRN94 | 85.08 ± 0.21 b | 11.88 ± 0.29 a | 13.27 ± 0.28 c | 76.76 ± 0.21 b |
BRN91 | 80.26 ± 1.63 c | 11.54 ± 0.08 ab | 14.65 ± 0.79 d | 72.84 ± 1.63 c |
BRN89 | 79.51 ± 0.48 c | 11.16 ± 0.15 b | 17.51 ± 0.42 e | 70.82 ± 0.48 c |
BRN1h | 88.35 ± 0.41 a | 5.02 ± 0.57 a | 12.24 ± 0.32 a | 82.36 ± 0.55 a |
BRN3h | 87.15 ± 0.04 b | 4.58 ± 0.35 b | 12.79 ± 0.30 a | 81.28 ± 0.28 b |
BRN5h | 85.49 ± 0.40 b | 4.15 ± 0.15 b | 13.54 ± 0.17 b | 79.73 ± 0.35 c |
BRN7h | 84.50 ± 0.45 d | 4.16 ± 0.59 b | 14.1 ± 0.19 c | 78.47 ± 0.13 d |
BRN9h | 82.67 ± 0.42 e | 2.31 ± 0.05 c | 14.18 ± 0.10 d | 77.49 ± 0.38 e |
Sample | Firmness | Chewiness | Elasticity | Slipperiness | Overall Acceptability | Total |
---|---|---|---|---|---|---|
BRN100 | 19.33 | 18.27 | 18.00 | 18.40 | 19.73 | 93.73 |
BRN97 | 17.47 | 17.47 | 17.60 | 16.27 | 17.73 | 86.53 |
BRN94 | 16.40 | 14.27 | 15.87 | 16.00 | 16.93 | 79.47 |
BRN91 | 14.00 | 12.27 | 13.73 | 14.80 | 16.13 | 70.93 |
BRN89 | 12.53 | 11.47 | 11.60 | 12.53 | 13.73 | 61.87 |
BRN1h | 11.97 | 14.00 | 12.47 | 10.00 | 11.00 | 59.43 |
BRN3h | 12.43 | 12.80 | 13.03 | 12.90 | 12.00 | 63.17 |
BRN5h | 14.57 | 13.87 | 13.97 | 13.83 | 13.33 | 69.57 |
BRN7h | 18.33 | 13.00 | 15.90 | 16.40 | 16.33 | 79.97 |
BRN9h | 16.23 | 13.83 | 14.43 | 15.40 | 14.97 | 74.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, H.; Li, T.; Zhou, Y.; Lyu, Q.; Chen, L.; Wang, X.; Ding, W. Effect of Rice Bran and Retrograded Time on the Qualities of Brown Rice Noodles: Edible Quality, Microstructure, and Moisture Migration. Foods 2023, 12, 4509. https://doi.org/10.3390/foods12244509
Feng H, Li T, Zhou Y, Lyu Q, Chen L, Wang X, Ding W. Effect of Rice Bran and Retrograded Time on the Qualities of Brown Rice Noodles: Edible Quality, Microstructure, and Moisture Migration. Foods. 2023; 12(24):4509. https://doi.org/10.3390/foods12244509
Chicago/Turabian StyleFeng, Hong, Ting Li, You Zhou, Qingyun Lyu, Lei Chen, Xuedong Wang, and Wenping Ding. 2023. "Effect of Rice Bran and Retrograded Time on the Qualities of Brown Rice Noodles: Edible Quality, Microstructure, and Moisture Migration" Foods 12, no. 24: 4509. https://doi.org/10.3390/foods12244509
APA StyleFeng, H., Li, T., Zhou, Y., Lyu, Q., Chen, L., Wang, X., & Ding, W. (2023). Effect of Rice Bran and Retrograded Time on the Qualities of Brown Rice Noodles: Edible Quality, Microstructure, and Moisture Migration. Foods, 12(24), 4509. https://doi.org/10.3390/foods12244509