Study on Black Spot Disease Detection and Pathogenic Process Visualization on Winter Jujubes Using Hyperspectral Imaging System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Winter Jujube Samples
2.2. Physical, Chemical and Microstructural Characterizations
2.3. Hyperspectral Imaging System and Acquisition
2.4. Spectral Extraction and Processing
2.4.1. Spectral Extraction
2.4.2. Spectral Processing
2.5. Statistic and Analysis
3. Results and Discussion
3.1. Physical, Chemical and Microstructural Changes of Winter Jujubes
3.2. Spectral Characteristics of Winter Jujubes
3.2.1. Variations of Spectra during the Infection
3.2.2. Variations of Spectra between Healthy and Diseased Area
3.3. Supervised Classification Models
3.4. Visualizing the Pathogenetic Process of Jujubes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dong, Y.; Zhi, H.H.; Xu, J.; Zhang, L.H.; Liu, M.P.; Zong, W. Effect of methyl jasmonate on reactive oxygen species, antioxidant systems, and microstructure of Chinese winter jujube at two major ripening stages during shelf life. J. Hortic. Sci. Biotechnol. 2016, 91, 316–323. [Google Scholar] [CrossRef]
- Cao, J.; Yan, J.; Zhao, Y.; Jiang, W. Effects of postharvest salicylic acid dipping on Alternaria rot and disease resistance of jujube fruit during storage. J. Sci. Food Agric. 2013, 93, 3252–3258. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yuan, S.; Li, Q.; Sang, W.; Cao, J.; Jiang, W. Methyl p-coumarate inhibits black spot rot on jujube fruit through membrane damage and oxidative stress against Alternaria alternata. Postharvest Biol. Technol. 2018, 145, 230–238. [Google Scholar] [CrossRef]
- Yuan, S.; Ding, X.; Zhang, Y.; Cao, J.; Jiang, W. Characterization of defense responses in the ‘green ring’ and ‘red ring’ on jujube fruit upon postharvest infection by Alternaria alternata and the activation by the elicitor treatment. Postharvest Biol. Technol. 2019, 149, 166–176. [Google Scholar] [CrossRef]
- Pan, T.-T.; Chyngyz, E.; Sun, D.-W.; Paliwal, J.; Pu, H. Pathogenetic process monitoring and early detection of pear black spot disease caused by Alternaria alternata using hyperspectral imaging. Postharvest Biol. Technol. 2019, 154, 96–104. [Google Scholar] [CrossRef]
- Pandiselvam, R.; Kaavya, R.; Monteagudo, S.I.M.; Divya, V.; Jain, S.; Khanashyam, A.C.; Kothakota, A.; Prasath, V.A.; Ramesh, S.V.; Sruthi, N.U.; et al. Contemporary Developments and Emerging Trends in the Application of Spectroscopy Techniques: A Particular Reference to Coconut (Cocos nucifera L.). Molecules 2022, 27, 3250. [Google Scholar] [CrossRef]
- Jiang, X.; Zhu, M.; Yao, J.; Zhang, Y.; Liu, Y. Calibration of Near Infrared Spectroscopy of Apples with Different Fruit Sizes to Improve Soluble Solids Content Model Performance. Foods 2022, 11, 1923. [Google Scholar] [CrossRef]
- Lorente, D.; Escandell-Montero, P.; Cubero, S.; Gómez-Sanchis, J.; Blasco, J. Visible–NIR reflectance spectroscopy and manifold learning methods applied to the detection of fungal infections on citrus fruit. J. Food Eng. 2015, 163, 17–24. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, J.; Fu, L.; Majeed, Y.; Feng, Y.; Li, R.; Cui, Y. Improved Kiwifruit Detection Using Pre-Trained VGG16 With RGB and NIR Information Fusion. IEEE Access 2020, 8, 2327–2336. [Google Scholar] [CrossRef]
- Xu, S.; Lu, H.; Wang, X.; Ference, C.M.; Liang, X.; Qiu, G. Nondestructive Detection of Internal Flavor in ‘Shatian’ Pomelo Fruit Based on Visible/Near Infrared Spectroscopy. Hortscience 2021, 56, 1325–1330. [Google Scholar] [CrossRef]
- Pan, L.; Sun, Y.; Xiao, H.; Gu, X.; Hu, P.; Wei, Y.; Tu, K. Hyperspectral imaging with different illumination patterns for the hollowness classification of white radish. Postharvest Biol. Technol. 2017, 126, 40–49. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, Y.; Sun, Y.; Zhou, H.; Chen, K. Identification of Apple Varieties Using a Multichannel Hyperspectral Imaging System. Sensors 2020, 20, 5120. [Google Scholar] [CrossRef] [PubMed]
- Lan, W.; Jaillais, B.; Renard, C.; Leca, A.; Chen, S.; Le Bourvellec, C.; Bureau, S. A method using near infrared hyperspectral imaging to highlight the internal quality of apple fruit slices. Postharvest Biol. Technol. 2021, 175, 111497. [Google Scholar] [CrossRef]
- Guo, Z.; Huang, W.; Chen, L.; Peng, Y.; Wang, X. Shortwave infrared hyperspectral imaging for detection of pH value in Fuji apple. Int. J. Agric. Biol. Eng. 2014, 7, 130–137. [Google Scholar]
- Ma, X.; Luo, H.; Zhang, F.; Gao, F. Study on the influence of region of interest on the detection of total sugar content in apple using hyperspectral imaging technology. Food Sci. Technol. 2022, 42, e87922. [Google Scholar] [CrossRef]
- Huang, M.; Zhu, Q. Feature Extraction of Hyperspectral Scattering Image for Apple Mealiness Based on Singular Value Decomposition. Spectrosc. Spect. Anal. 2011, 31, 767–770. [Google Scholar]
- Fan, S.; Huang, W.; Guo, Z.; Zhang, B.; Zhao, C. Prediction of Soluble Solids Content and Firmness of Pears Using Hyperspectral Reflectance Imaging. Food Anal. Methods 2015, 8, 1936–1946. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.; Xiao, H.; Gu, X.; Pan, L.; Tu, K. Hyperspectral imaging detection of decayed honey peaches based on their chlorophyll content. Food Chem. 2017, 235, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Sanchis, J.; Gomez-Chova, L.; Aleixos, N.; Camps-Valls, G.; Montesinos-Herrero, C.; Molto, E.; Blasco, J. Hyperspectral system for early detection of rottenness caused by Penicillium digitatum in mandarins. J. Food Eng. 2008, 89, 80–86. [Google Scholar] [CrossRef]
- Pieczywek, P.M.; Cybulska, J.; Szymariska-Chargot, M.; Siedliska, A.; Zdunek, A.; Nosalewicz, A.; Baranowski, P.; Kurenda, A. Early detection of fungal infection of stored apple fruit with optical sensors—Comparison of biospeckle, hyperspectral imaging and chlorophyll fluorescence. Food Control 2018, 85, 327–338. [Google Scholar] [CrossRef]
- Li, J.-B.; Wang, F.-J.; Ying, Y.-B.; Rao, X.-Q. Application of hyperspectral fluorescence image technology in detection of early rotten oranges. Spectrosc. Spect. Anal. 2012, 32, 142–146. [Google Scholar]
- Fazari, A.; Pellicer-Valero, O.J.; Gómez-Sanchıs, J.; Bernardi, B.; Cubero, S.; Benalia, S.; Zimbalatti, G.; Blasco, J. Application of deep convolutional neural networks for the detection of anthracnose in olives using VIS/NIR hyperspectral images. Comput. Electron. Agric. 2021, 187, 106252. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, Y.; Chang, L.; Wang, X.; Zhang, S. Melatonin enhanced the disease resistance by regulating reactive oxygen species metabolism in postharvest jujube fruit. J. Food Process. Preserv. 2022, 46, e16363. [Google Scholar] [CrossRef]
- Sun, Y.; Lu, R.; Pan, L.; Wang, X.; Tu, K. Assessment of the optical properties of peaches with fungal infection using spatially-resolved diffuse reflectance technique and their relationships with tissue structural and biochemical properties. Food Chem. 2020, 321, 126704. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Udupa, J.K.; Tong, Y.; Sin, S.; Wagshul, M.; Torigian, D.A.; Arens, R. Segmentation of 4D images via space-time neural networks. Proc. SPIE Int. Soc. Opt. Eng. 2020, 11317, 113170J. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, S.; Zhou, D.; Ding, C.; Wang, J.; Zhou, H.; Tu, K.; Pan, L.; Li, P. Nondestructive Detection of Weight Loss Rate, Surface Color, Vitamin C Content, and Firmness in Mini-Chinese Cabbage with Nanopackaging by Fourier Transform-Near Infrared Spectroscopy. Foods 2021, 10, 2309. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Huo, Y.; Wang, Y.; Zhao, H.; Li, K.; Liu, L.; Shi, Y. Grading detection of “Red Fuji” apple in Luochuan based on machine vision and near-infrared spectroscopy. PLoS ONE 2022, 17, e0271352. [Google Scholar] [CrossRef]
- Mao, M.; Hu, Y.; Yang, Y.; Qian, Y.; Wei, H.; Fan, W.; Yang, Y.; Li, X.; Wang, Z. Modeling and Predicting the Activities of Trans-Acting Splicing Factors with Machine Learning. Cell Syst. 2018, 7, 510–520.e4. [Google Scholar] [CrossRef] [Green Version]
- Reddy, P.; Guthridge, K.M.; Panozzo, J.; Ludlow, E.J.; Spangenberg, G.C.; Rochfort, S.J. Near-Infrared Hyperspectral Imaging Pipelines for Pasture Seed Quality Evaluation: An Overview. Sensors 2022, 22, 1981. [Google Scholar] [CrossRef]
- Camiletti, B.X.; Lichtemberg, P.S.; Paredes, J.A.; Carraro, T.A.; Velascos, J.; Michailides, T.J. Characterization, pathogenicity, and fungicide sensitivity of Alternaria isolates associated with preharvest fruit drop in California citrus. Fungal Biol. 2022, 126, 277–289. [Google Scholar] [CrossRef]
- Lu, R. Multispectral imaging for predicting firmness and soluble solids content of apple fruit. Postharvest Biol. Technol. 2004, 31, 147–157. [Google Scholar] [CrossRef]
- Liu, G.; He, J.; Wang, S.; Luo, Y.; Wang, W.; Wu, L.; Si, Z.; He, X. Application of near-infrared hyperspectral imaging for detection of external insect infestations on jujube fruit. Int. J. Food Prop. 2016, 19, 41–52. [Google Scholar] [CrossRef]
- Sun, Y.; Pessane, I.; Pan, L.; Wang, X. Hyperspectral characteristics of bruised tomatoes as affected by drop height and fruit size. LWT 2021, 141, 110863. [Google Scholar] [CrossRef]
- Ji, Y.; Sun, L.; Li, Y.; Li, J.; Liu, S.; Xie, X.; Xu, Y. Non-destructive classification of defective potatoes based on hyperspectral imaging and support vector machine. Infrared Phys. Technol. 2019, 99, 71–79. [Google Scholar] [CrossRef]
- Pan, L.; Zhang, Q.; Zhang, W.; Sun, Y.; Hu, P.; Tu, K. Detection of cold injury in peaches by hyperspectral reflectance imaging and artificial neural network. Food Chem. 2016, 192, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Sarma, N. Guidelines and recommendation on surgery for venous incompetence and leg ulcer. Indian Dermatol. Online J. 2014, 5, 390–395. [Google Scholar] [CrossRef]
- Wand, S.J.E.; Theron, K.I.; Ackerman, J.; Marais, S.J.S. Harvest and post-harvest apple fruit quality following applications of kaolin particle film in South African orchards. Sci. Hortic. 2006, 107, 271–276. [Google Scholar] [CrossRef]
- Tan, W.; Sun, L.; Yang, F.; Che, W.; Ye, D.; Zhang, D.; Zou, B. The feasibility of early detection and grading of apple bruises using hyperspectral imaging. J. Chemom. 2018, 32, e3067. [Google Scholar] [CrossRef]
- Siedliska, A.; Baranowski, P.; Zubik, M.; Mazurek, W.; Sosnowska, B. Detection of fungal infections in strawberry fruit by VNIR/SWIR hyperspectral imaging. Postharvest Biol. Technol. 2018, 139, 115–126. [Google Scholar] [CrossRef]
- Baiano, A.; Terracone, C.; Peri, G.; Romaniello, R. Application of hyperspectral imaging for prediction of physico-chemical and sensory characteristics of table grapes. Comput. Electron. Agric. 2012, 87, 142–151. [Google Scholar] [CrossRef]
- Wu, L.; He, J.; Liu, G.; Wang, S.; He, X. Detection of common defects on jujube using Vis-NIR and NIR hyperspectral imaging. Postharvest Biol. Technol. 2016, 112, 134–142. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, C.; Zhu, S.; Li, Y.; He, Y.; Liu, F. Shape induced reflectance correction for non-destructive determination and visualization of soluble solids content in winter jujubes using hyperspectral imaging in two different spectral ranges. Postharvest Biol. Technol. 2020, 161, 111080. [Google Scholar] [CrossRef]
Group | Storage Periods | L* | a* | b* | Moisture Content | SSC (%) | Chlorophyll (×10−2 g/kg) |
---|---|---|---|---|---|---|---|
Control group I (Healthy) | Day 0 | 71.2 ± 0.4 a | −3.3 ± 0.9 a | 41.0 ± 0.6 a | 85.4 ± 0.8 a | 15.6 ± 0.1 a | 8.7 ± 0.3 a |
Day 1 | 70.3 ± 1.0 ab | −2.5 ± 0.4 a | 41.1 ± 1.0 a | 85.2 ± 0.9 a | 15.7 ± 0.3 a | 8.7 ± 0.2 a | |
Day 2 | 69.6 ± 1.3 abc | −1.7 ± 0.7 ab | 40.7 ± 0.8 a | 85.0 ± 1.0 ab | 15.5 ± 0.2 a | 8.4 ± 0.2 ab | |
Day 3 | 68.2 ± 1.0 bcd | −1.4 ± 0.6 ab | 41.0 ± 1.0 a | 84.7 ± 0.4 ab | 15.4 ± 0.3 a | 8.1 ± 0.4 ab | |
Day 4 | 67.7 ± 1.0 cd | −0.9 ± 0.8 bc | 40.0 ± 0.5 a | 84.4 ± 0.7 ab | 15.4 ± 0.1 a | 7.7 ± 0.4 b | |
Day 5 | 66.5 ± 1.7 d | −0.4 ± 0.5 c | 40.1 ± 0.7 a | 83.7 ± 0.6 c | 15.3 ± 0.2 a | 6.7 ± 0.4 c | |
Control group II (Inoculated with Sterile water) | Day 0 | 70.7 ± 0.5 a | −3.3 ± 0.9 a | 41.4 ± 0.7 a | 85.3 ± 0.7 a | 15.7 ± 0.3 a | 8.8 ± 0.2 a |
Day 1 | 70.4 ± 1.0 a | −2.0 ± 0.3 a | 40.7 ± 1.0 a | 85.0 ± 0.4 ab | 15.7 ± 0.1 a | 8.6 ± 0.3 a | |
Day 2 | 68.1 ± 1.0 b | −1.4 ± 1.3 a | 40.5 ± 1.0 a | 84.8 ± 0.8 ab | 15.4 ± 0.3 a | 8.2 ± 0.2 ab | |
Day 3 | 67.4 ± 1.0 bc | −1.0 ± 1.0 ab | 41.1 ± 0.3 a | 84.4 ± 0.7 ab | 15.5 ± 0.1 a | 7.8 ± 0.4 bc | |
Day 4 | 66.9 ± 1.1 bc | −1.0 ± 1.2 ab | 40.7 ± 0.9 a | 84.2 ± 0.4 b | 15.4 ± 0.2 a | 7.1 ± 0.4 cd | |
Day 5 | 65.4 ± 1.3 c | −0.3 ± 0.8 b | 40.3 ± 1.0 a | 83.1 ± 0.5 c | 15.2 ± 0.4 a | 6.5 ± 0.3 d | |
Infected group (Inoculated with A. alternata) | Day 0 | 71.8 ± 0.7 a | −3.2 ± 1.1 a | 41.4 ± 1.0 a | 85.6 ± 0.9 a | 15.7 ± 0.2 a | 8.8 ± 0.2 a |
Day 1 | 69.2 ± 1.0 b | −2.1 ± 0.7 b | 41.1 ± 0.6 a | 84.6 ± 0.8 a | 15.5 ± 0.2 a | 8.7 ± 0.3 ab | |
Day 2 | 67.9 ± 0.4 b | −0.8 ± 1.1 b | 41.5 ± 1.2 a | 84.3 ± 0.6 a | 15.4 ± 0.1 a | 7.9 ± 0.1 b | |
Day 3 | 61.7 ± 0.6 c | 2.4 ± 1.2 c | 41.5 ± 1.2 a | 82.8 ± 0.9 b | 15.2 ± 0.2 a | 6.7 ± 0.1 c | |
Day 4 | 57.0 ± 1.2 d | 3.3 ± 1.0 cd | 42.2 ± 1.2 a | 81.7 ± 0.9 bc | 14.7 ± 1.6 b | 4.9 ± 0.5 d | |
Day 5 | 55.7 ± 0.9 d | 5.5 ± 0.8 d | 40.0 ± 0.5 a | 81.2 ± 0.7 c | 14.3 ± 0.3 b | 3.4 ± 0.6 e |
Overall Accuracy (%) | Vis-NIR (400–1000 nm) | SWIR (1000–2000 nm) | |||
---|---|---|---|---|---|
PLS-DA | SVM-DA | PLS-DA | SVM-DA | ||
Raw | Cal. | 95.06 | 93.83 | 84.57 | 84.57 |
Pre. | 89.74 | 80.77 | 73.08 | 73.08 | |
MSC | Cal. | 96.30 | 91.98 | 90.74 | 91.98 |
Pre. | 91.02 | 88.46 | 88.46 | 87.18 | |
SNV | Cal. | 95.68 | 93.83 | 93.21 | 92.59 |
Pre. | 92.31 | 88.46 | 91.03 | 87.18 | |
Auto scale | Cal. | 95.06 | 94.44 | 90.12 | 78.40 |
Pre. | 88.46 | 81.62 | 85.90 | 70.51 |
Overall Accuracy (%) | 400–1000 nm | 1000–2000 nm | ||||||
---|---|---|---|---|---|---|---|---|
PLS-DA | SVM-DA | PLS-DA | SVM-DA | |||||
Cal. | Pre. | Cal. | Pre. | Cal. | Pre. | Cal. | Pre. | |
Day 0 | 100.00 | 100.00 | 100.00 | 100.00 | 96.30 | 84.62 | 100.00 | 92.31 |
Day 1 | 96.30 | 92.31 | 96.30 | 84.62 | 96.30 | 100.00 | 88.89 | 92.31 |
Day 2 | 100.00 | 92.31 | 100.00 | 92.31 | 77.78 | 69.23 | 74.07 | 61.54 |
Day 3 | 100.00 | 92.31 | 92.59 | 84.62 | 92.59 | 100.00 | 100.00 | 100.00 |
Day 4 | 85.19 | 92.31 | 85.19 | 84.62 | 100.00 | 92.31 | 96.30 | 92.31 |
Day 5 | 92.59 | 84.62 | 88.89 | 84.62 | 96.30 | 100.00 | 96.30 | 84.62 |
Overall | 95.68 | 92.31 | 93.83 | 88.46 | 93.21 | 91.03 | 92.59 | 87.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, M.; Li, Y.; Song, J.; Wang, Z.; Zhang, L.; Song, L.; Bai, B.; Tu, K.; Lan, W.; Pan, L. Study on Black Spot Disease Detection and Pathogenic Process Visualization on Winter Jujubes Using Hyperspectral Imaging System. Foods 2023, 12, 435. https://doi.org/10.3390/foods12030435
Jiang M, Li Y, Song J, Wang Z, Zhang L, Song L, Bai B, Tu K, Lan W, Pan L. Study on Black Spot Disease Detection and Pathogenic Process Visualization on Winter Jujubes Using Hyperspectral Imaging System. Foods. 2023; 12(3):435. https://doi.org/10.3390/foods12030435
Chicago/Turabian StyleJiang, Mengwei, Yiting Li, Jin Song, Zhenjie Wang, Li Zhang, Lijun Song, Bingyao Bai, Kang Tu, Weijie Lan, and Leiqing Pan. 2023. "Study on Black Spot Disease Detection and Pathogenic Process Visualization on Winter Jujubes Using Hyperspectral Imaging System" Foods 12, no. 3: 435. https://doi.org/10.3390/foods12030435
APA StyleJiang, M., Li, Y., Song, J., Wang, Z., Zhang, L., Song, L., Bai, B., Tu, K., Lan, W., & Pan, L. (2023). Study on Black Spot Disease Detection and Pathogenic Process Visualization on Winter Jujubes Using Hyperspectral Imaging System. Foods, 12(3), 435. https://doi.org/10.3390/foods12030435