Effect of Catechin on Yolk Immunoglobulin Structure and Properties: A Polyphenol–Protein Interaction Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of IgY and IgY-Catechin Complex
2.3. Molecular Docking Study
2.4. UV-Vis Absorption Study of the Interaction between Catechin and IgY
2.5. Fluorescence Spectroscopy of the Interaction between Catechin and IgY
2.6. Three-Dimensional Fluorescence Spectrometric Determination of the Interaction between Catechin and IgY
2.7. Bacteriostatic Thermal Stability Analysis
2.8. Stability Analysis of Bacteriostatic Acid and Base
2.9. Analysis of Antioxidant Activity
2.9.1. DPPH Free Radical Scavenging Rate
2.9.2. OH Free Radical Scavenging Rate
2.10. Differential Scanning Calorimetry Analysis
2.11. Rheological Analysis
2.12. Statistical Analysis
3. Results and Discussion
3.1. Molecular Docking Analysis
3.2. UV-Vis Absorption Spectra Study
3.3. Fluorescence Spectroscopy
3.4. Three-Dimensional Fluorescence Spectra
3.5. Effects of IgY and Catechin on Antibacterial Thermal Stability
3.6. Effects of IgY and Catechin on Stability of Bacteriostatic Acid and Base
3.7. Effect of the Interaction between IgY and Catechin on Antioxidation
3.8. Effect of IgY and Catechin on Rheological Properties
3.9. DSC
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, X.; Ahn Dong, U. How Can the Value and Use of Egg Yolk Be Increased? J. Food Sci. 2019, 84, 205–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schade, R.; Staak, C.; Hendriksen, C.; Erhard, M.; Hugl, H.; Koch, G.; Larsson, A.; Pollmann, W.; Regenmortel, M.; Rijke, E.; et al. The Production of Avian (Egg Yolk) Antibodies: IgY: The Report and Recommendations of ECVAM Workshop 211, 2. Altern. Lab. Anim. 1996, 24, 925–934. [Google Scholar] [CrossRef]
- Hendriksen, C. Book Review: Chicken Egg Yolk Antibodies, Production and Application, Igy-Technology. Altern. Lab. Anim. 2001, 29, 373. [Google Scholar] [CrossRef]
- Schade, R.; Calzado, E.G.; Sarmiento, R.; Chacana, P.A.; Joanna, P.-A.; Terzolo, H.R. Chicken Egg Yolk Antibodies (IgY-technology): A Review of Progress in Production and Use in Research and Human and Veterinary Medicine. Altern. Lab. Anim. 2005, 33, 129–154. [Google Scholar] [CrossRef] [PubMed]
- da Silva, G.; da Faria, L.; Lopes, C.; Nunes, D.; Ribeiro, V.; de Sousa, J.E.; Paiva, G.; Gonçalves-Pires, M.; Borges, I.; Santos, M.; et al. Egg yolk immunoglobulin Y as a promising tool to detect immune complexes in neurocysticercosis serum samples. Trans. R. Soc. Trop. Med. Hyg. 2020, 114, 585–592. [Google Scholar] [CrossRef]
- Tong, C.; Geng, F.; He, Z.; Cai, Z.; Ma, M. A simple method for isolating chicken egg yolk immunoglobulin using effective delipidation solution and ammonium sulfate. Poult. Sci. 2015, 94, 104–110. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Zhen, Y.; Li, S.; Xu, Y. Chicken egg yolk antibodies(IgY) as non-antibiotic production enhancers for use in swine production: A review. J. Anim. Sci. Biotechnol. 2016, 7, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Karachaliou, C.-E.; Vassilakopoulou, V.; Livaniou, E. IgY technology: Methods for developing and evaluating avian immunoglobulins for the in vitro detection of biomolecules. World J. Methodol. 2021, 11, 243–262. [Google Scholar] [CrossRef]
- Shi, X.; Sun, H.; Li, H.; Wei, S.; Jin, J.; Zhao, C.; Wang, J.; Li, H. Preparation of IgY Oriented Conjugated Fe3O4 MNPs as Immunomagnetic Nanoprobe for Increasing Enrichment Efficiency of Staphylococcus aureus Based on Adjusting the pH of the Solution System. Front. Public Health 2022, 10, 865828. [Google Scholar] [CrossRef]
- Shimizu, M.; Miwa, Y.; Hashimoto, K.; Goto, A. Encapsulation of Chicken Egg Yolk Immunoglobulin G (IgY) by Liposomes. Biosci. Biotechnol. Biochem. 1993, 57, 1445–1449. [Google Scholar] [CrossRef]
- Vladimir, K.M.; Nikita, A.P.; Varuzhan, A.S.; Alla, A.K. The interaction between polyphenols and food proteins: Prospects for diet therapy of metabolic syndrome and type 2 diabetes mellitus. Probl. Endocrinol. 2018, 64, 252–257. [Google Scholar] [CrossRef]
- Jia, Z.; Zheng, M.; Tao, F.; Chen, W.; Huang, G.; Jiang, J. Effect of covalent modification by (−)-epigallocatechin-3-gallate on physicochemical and functional properties of whey protein isolate. LWT—Food Sci. Technol. 2016, 66, 305–310. [Google Scholar] [CrossRef]
- Zhao, J.; Lv, W.; Wang, J.; Li, J.; Liu, X.; Zhu, J. Effects of tea polyphenols on the post-mortem integrity of large yellow croaker (Pseudosciaena crocea) fillet proteins. Food Chem. 2013, 141, 2666–2674. [Google Scholar] [CrossRef] [PubMed]
- Chaijan, S.; Panpipat, W.; Panya, A.; Cheong, L.-Z.; Chaijan, M. Preservation of chilled Asian sea bass (Lates calcarifer) steak by whey protein isolate coating containing polyphenol extract from ginger, lemongrass, or green tea. Food Control. 2020, 118, 107400. [Google Scholar] [CrossRef]
- Emile, R.; Charifa, D.T.; Carla, M.; Chiara, L.; Thomas, G.; Alessio, B.; Francesco, B.; Maria, S.A.; Andrea, S.; Siham, F.; et al. Functional characterization of a plant-produced infectious bursal disease virus antigen fused to the constant region of avian IgY immunoglobulins. Appl. Microbiol. Biotechnol. 2019, 103, 7491–7504. [Google Scholar] [CrossRef]
- Zhang, S.; Sheng, Y.-N.; Feng, Y.-C.; Diao, J.-J.; Wang, C.-Y.; Zhang, D.-J. Changes in structural and functional properties of globulin–polyphenol complexes in mung beans: Exploration under different interaction ratios and heat treatment conditions. Int. J. Food Sci. Technol. 2021, 57, 1920–1935. [Google Scholar] [CrossRef]
- Nanase, K.; Mari, N.; Mayuko, O.; Hajime, H. A Comparative Study on Egg Yolk IgY Production with Different Adjuvants and their Inhibitory Effects on Staphylococcus aureus. J. Poult. Sci. 2021, 58, 192–199. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Q. Analysis of Potentially Antibacterial Components of Lactic Acid Bacteria against Staphylococcus Aureus. In Proceedings of the 2019 International Conference on Medical Sciences and Biological Engineering (MedSBE 2019), Phnom Penh, Cambodia, 28 October 2019; Francis Academic Press: London, UK, 2019; pp. 239–241. [Google Scholar] [CrossRef]
- Marina, R.; Liu, Z.; Miriam, H.; Julia, P.; Zhang, C.; Ni, L.; Fan, R.; Zhang, Y. Aroma and catechin profile and in vitro antioxidant activity of green tea infusion as affected by submerged fermentation with Wolfiporia cocos (Fu Ling). Food Chem. 2021, 361, 130065.1–130065.9. [Google Scholar] [CrossRef]
- Chen, F.; Huang, G. Extraction and antioxidant activities of cushaw polysaccharide. Int. J. Biol. Macromol. 2018, 120, 1646–1649. [Google Scholar] [CrossRef]
- Liu, L.; Dai, X.; Kang, H.; Xu, Y.; Hao, W. Structural and functional properties of hydrolyzed/glycosylated ovalbumin under spray drying and microwave freeze drying. Food Sci. Hum. Wellness 2020, 9, 80–87. [Google Scholar] [CrossRef]
- Yu, X.; Cai, X.; Luo, L.; Wang, J.; Ma, M.; Wang, M.; Zeng, L. Influence of tea polyphenol and bovine serum albumin on tea cream formation by multiple spectroscopy methods and molecular docking. Food Chem. 2020, 333, 127432.1–127432.9. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Deng, L.; Wang, Y.; Julian, M.C.D.; Luo, S.; Liu, C. Impact of rutin on the foaming properties of soybean protein: Formation and characterization of flavonoid-protein complexes. Food Chem. 2021, 362, 130238. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Chen, Y.; Xue, Z.; Gao, X.; Jia, Y.; Wang, Y.; Lu, Y.; Zhang, J.; Zhang, M.; Chen, H. Insight into the inactivation mechanism of soybean Bowman-Birk trypsin inhibitor (BBTI) induced by epigallocatechin gallate and epigallocatechin: Fluorescence, thermodynamics and docking studies. Food Chem. 2020, 303, 125380.1–125380.11. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Lv, Y.; Liu, Y.; Li, X.; Ren, Z.; Liu, X.; Bian, D. Analysis of Three-dimensional Fluorescence Characteristics of Extracellular Polymeric Substances at Internal Points in MPR at Low Temperature. In Proceedings of the 2021 6th International Conference on Green Materials and Environmental Engineering (GMEE2021) 2021, Changsha, China, 2 February 2021; pp. 188–192. [Google Scholar] [CrossRef]
- Vishwas, D.S.; Laxman, S.W.; Anil, H.G.; Prashant, V.A.; Govind, B.K. Spectroscopic analysis on the binding interaction of biologically active pyrimidine derivative with bovine serum albumin. J. Pharm. Anal. 2016, 6, 56–63. [Google Scholar] [CrossRef] [Green Version]
- Cao, Q.; Huang, Y.; Zhu, Q.-F.; Song, M.; Xiong, S.; Manyande, A.; Du, H. The mechanism of chlorogenic acid inhibits lipid oxidation: An investigation using multi-spectroscopic methods and molecular docking. Food Chem. 2020, 333, 127528.1–127528.34. [Google Scholar] [CrossRef]
- Hajarian, R.N.; Foad, B.; Soheila, M. Synergistic effects of combinatorial chitosan and polyphenol biomolecules on enhanced antibacterial activity of biofunctionalaized silver nanoparticles. Sci. Rep. 2020, 10, 19615.1–19615.13. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, K.; Liu, Q.; Liu, X.; Mou, B.; Lai, O.-M.; Tan, C.-P.; Cheong, L.-Z. Selective antibacterial activities and storage stability of curcumin-loaded nanoliposomes prepared from bovine milk phospholipid and cholesterol. Food Chem. 2022, 367, 130700. [Google Scholar] [CrossRef]
- Yuan, B.; Cao, Y.; Tang, Q.; Yuan, Z.; Zhou, Y.; McClements, D.J.; Cao, C. Enhanced performance and functionality of active edible films by incorporating tea polyphenols into thin calcium alginate hydrogels. Food Hydrocoll. 2019, 97, 105197.1–105197.8. [Google Scholar] [CrossRef]
- Liu, M.; Liu, T.; Shi, Y.; Zhao, Y.; Yan, H.; Sun, B.; Wang, Q.; Wang, Z.; Han, J. Comparative study on the interaction of oxyresveratrol and piceatannol with trypsin and lysozyme: Binding ability, activity and stability. Food Funct. 2019, 10, 8182–8194. [Google Scholar] [CrossRef]
- Luis, V.L.J.; Ramón, P.A.; Roberto, G.D.; Lizardi, M.J.; Ángel, L.V.J.; Ángel, M.M.M.; Dolores, M.R.M. Interaction of Squid (Dosidicus giga) Mantle Protein with a Mixtures of Potato and Corn Starch in an Extruded Snack, as Characterized by FTIR and DSC. Molecules 2021, 26, 2103. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Zhang, X.; Zhang, M.; Zhang, M.; Cheng, W.; Xu, B. Effect of Catechin on Yolk Immunoglobulin Structure and Properties: A Polyphenol–Protein Interaction Approach. Foods 2023, 12, 462. https://doi.org/10.3390/foods12030462
Liu L, Zhang X, Zhang M, Zhang M, Cheng W, Xu B. Effect of Catechin on Yolk Immunoglobulin Structure and Properties: A Polyphenol–Protein Interaction Approach. Foods. 2023; 12(3):462. https://doi.org/10.3390/foods12030462
Chicago/Turabian StyleLiu, Lili, Xiaodan Zhang, Mapinyi Zhang, Mengjun Zhang, Weiwei Cheng, and Baocheng Xu. 2023. "Effect of Catechin on Yolk Immunoglobulin Structure and Properties: A Polyphenol–Protein Interaction Approach" Foods 12, no. 3: 462. https://doi.org/10.3390/foods12030462
APA StyleLiu, L., Zhang, X., Zhang, M., Zhang, M., Cheng, W., & Xu, B. (2023). Effect of Catechin on Yolk Immunoglobulin Structure and Properties: A Polyphenol–Protein Interaction Approach. Foods, 12(3), 462. https://doi.org/10.3390/foods12030462