The Characterization of Dry Fermented Sausages under the “Chorizo Zamorano” Quality Label: The Application of an Alternative Statistical Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Physicochemical Analysis
2.3. Sensory Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. The Physicochemical and Sensory Characteristics of Chorizo Zamorano
3.2. Data Pretreatment
3.3. Results of the Categorical Principal Components Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Comission. Report from the Comission to the European Parliament and the Council on the Case for a Local Farming and Direct Sales Labelling Scheme; European Comission: Brussels, Belgium, 2013. [Google Scholar]
- Danezis, G.P.; Tsagkaris, A.S.; Camin, F.; Brusic, V.; Georgiou, C.A. Food Authentication: Techniques, Trends & Emerging Approaches. TrAC-Trends Anal. Chem. 2016, 85, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Grunert, K.G.; Aachmann, K. Consumer Reactions to the Use of EU Quality Labels on Food Products: A Review of the Literature. Food Control 2016, 59, 178–187. [Google Scholar] [CrossRef]
- Grunert, K.G. Food Quality and Safety: Consumer Perception and Demand. Eur. Rev. Agric. Econ. 2005, 32, 369–391. [Google Scholar] [CrossRef]
- Hernández-Jiménez, M.; Hernández-Ramos, P.; Martínez-Martín, I.; Vivar-Quintana, A.M.; González-Martín, I.; Revilla, I. Comparison of Artificial Neural Networks and Multiple Regression Tools Applied to near Infrared Spectroscopy for Predicting Sensory Properties of Products from Quality Labels. Microchem. J. 2020, 159, 105459. [Google Scholar] [CrossRef]
- Revilla, I.; Quintana, A.M.V. The Effect of Different Paprika Types on the Ripening Process and Quality of Dry Sausages. Int. J. Food Sci. Technol. 2005, 40, 411–417. [Google Scholar] [CrossRef]
- Miguélez, E.; Zumalacárregui, J.M.; Osorio, M.T.; Beteta, O.; Mateo, J. Carcass Characteristics of Suckling Lambs Protected by the PGI “Lechazo de Castilla y León” European Quality Label: Effect of Breed, Sex and Carcass Weight. Meat Sci. 2006, 73, 82–89. [Google Scholar] [CrossRef]
- Santos, E.M.; González-Fernández, C.; Jaime, I.; Rovira, J. Physicochemical and Sensory Characterisation of Morcilla de Burgos, a Traditional Spanish Blood Sausage. Meat Sci. 2003, 65, 893–898. [Google Scholar] [CrossRef]
- Trani, A.; Gambacorta, G.; Loizzo, P.; Cassone, A.; Faccia, M. Short Communication: Chemical and Sensory Characteristics of Canestrato Di Moliterno Cheese Manufactured in Spring. J. Dairy Sci. 2016, 99, 6080–6085. [Google Scholar] [CrossRef]
- Alfaia, C.P.M.; Castro, M.L.F.; Martins, S.I.V.; Portugal, A.P.V.; Alves, S.P.A.; Fontes, C.M.G.A.; Bessa, R.J.B.; Prates, J.A.M. Influence of Slaughter Season and Muscle Type on Fatty Acid Composition, Conjugated Linoleic Acid Isomeric Distribution and Nutritional Quality of Intramuscular Fat in Arouquesa-PDO Veal. Meat Sci. 2007, 76, 787–795. [Google Scholar] [CrossRef]
- Hurtaud, C.; Peyraud, J.L.; Michel, G.; Berthelot, D.; Delaby, L. Winter Feeding Systems and Dairy Cow Breed Have an Impact on Milk Composition and Flavour of Two Protected Designation of Origin French Cheeses. Animal 2009, 3, 1327–1338. [Google Scholar] [CrossRef]
- Camin, F.; Boner, M.; Bontempo, L.; Fauhl-Hassek, C.; Kelly, S.D.; Riedl, J.; Rossmann, A. Stable Isotope Techniques for Verifying the Declared Geographical Origin of Food in Legal Cases. Trends Food Sci. Technol. 2017, 61, 176–187. [Google Scholar] [CrossRef]
- Dias, C.; Mendes, L. Protected Designation of Origin (PDO), Protected Geographical Indication (PGI) and Traditional Speciality Guaranteed (TSG): A Bibiliometric Analysis. Food Res. Int. 2018, 103, 492–508. [Google Scholar] [CrossRef] [PubMed]
- Cagliani, L.R.; Culeddu, N.; Chessa, M.; Consonni, R. NMR Investigations for a Quality Assessment of Italian PDO Saffron (Crocus sativus L.). Food Control 2015, 50, 342–348. [Google Scholar] [CrossRef]
- Marini, F.; Magrì, A.L.; Bucci, R.; Balestrieri, F.; Marini, D. Class-Modeling Techniques in the Authentication of Italian Oils from Sicily with a Protected Denomination of Origin (PDO). Chemom. Intell. Lab. Syst. 2006, 80, 140–149. [Google Scholar] [CrossRef]
- Revilla, I.; Lastras, C.; González-Martín, M.I.; Vivar-Quintana, A.M.; Morales-Corts, R.; Gómez-Sánchez, M.A.; Pérez-Sánchez, R. Predicting the Physicochemical Properties and Geographical ORIGIN of Lentils Using near Infrared Spectroscopy. J. Food Compos. Anal. 2019, 77, 84–90. [Google Scholar] [CrossRef]
- Ríos-Reina, R.; Elcoroaristizabal, S.; Ocaña-González, J.A.; García-González, D.L.; Amigo, J.M.; Callejón, R.M. Characterization and Authentication of Spanish PDO Wine Vinegars Using Multidimensional Fluorescence and Chemometrics. Food Chem. 2017, 230, 108–116. [Google Scholar] [CrossRef] [Green Version]
- Ruggiero, L.; Fontanella, M.C.; Amalfitano, C.; Beone, G.M.; Adamo, P. Provenance Discrimination of Sorrento Lemon with Protected Geographical Indication (PGI) by Multi-Elemental Fingerprinting. Food Chem. 2021, 362, 130168. [Google Scholar] [CrossRef]
- Pérez-Elortondo, F.J.; Symoneaux, R.; Etaio, I.; Coulon-Leroy, C.; Maître, I.; Zannoni, M. Current Status and Perspectives of the Official Sensory Control Methods in Protected Designation of Origin Food Products and Wines. Food Control 2018, 88, 159–168. [Google Scholar] [CrossRef]
- Gifi, A. Nonlinear Multivariate Analysis; University of Leiden, Ed.; John Wiley & Sons, Inc.: Chichester, UK, 1990. [Google Scholar]
- Kemalbay, G.; Korkmazoğlu, Ö.B. Categorical Principal Component Logistic Regression: A Case Study for Housing Loan Approval. Procedia-Soc. Behav. Sci. 2014, 109, 730–736. [Google Scholar] [CrossRef] [Green Version]
- Linting, M.; Van Der Kooij, A. Nonlinear Principal Components Analysis With CATPCA: A Tutorial. J. Pers. Assess. 2011, 94, 12–25. [Google Scholar] [CrossRef]
- de Castilla y León, J. Regulation for the Use of the “Chorizo Zamorano” Quality Mark; Editorial service of Junta de Castilla y León: Valladolid, Spain, 2005. [Google Scholar]
- ISO 1442:1997; ISO Determination of Moisture Content. International Organization for Standardization: Geneva, Switzerland, 1997.
- ISO 1443:1973; ISO Determination of Total Fat Content. International Organization of Standardization: Geneva, Switzerland, 1973.
- AOAC International. AOAC Protein (Crude) Determination of Animal Feed: Copper Catalyst Kjeldahl Method (984.13). In Official Methods of Analysis of the Association of Official Analytical Chemists; AOAC International, Ed.; AOAC International: Gaithersburg, MD, USA, 1990. [Google Scholar]
- Merino, L.; Edberg, U.; Fuchs, G.; Åman, P. Liquid Chromatographic Determination of Residual Nitrite/Nitrate in Foods: NMKL Collaborative Study. J. AOAC Int. 2000, 83, 365–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ISO 2918:1975; ISO Determination of Nitrite Content. International Organization for Standarization: Geneva, Switzerland, 1975.
- Spanish Government Presidency Order of 31 July 1979, Which Establishes the Official Methods of Analysis of Oils and Fats, Meat Products, Cereals and Related Products, Fertilizers, Phytosanitary Products, Dairy Products, Animal Feed, Water and Grape-Related Products 1979, 20221–20247. Published in the Official Bulletin of State (BOE-A-1979-21118). Available online: https://www.boe.es/eli/es/o/1979/07/31/(9) (accessed on 7 September 2022).
- Bonnet, M.; Kopp, J. Dosage Du Collagéne Dans Les Tissus Conjonctifs, La Viande et Les Produits Carnés. Cah. Tech. du INRA 1984, 5, 19–30. [Google Scholar]
- AOAC. Official Methods of Analysis, 17th ed.; Chemists, T.A., Ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Gifi, A. Nonlinear Multivariate Analysis; Department of Data Theory, Ed.; University of Leiden: Leiden, The Netherlands, 1981. [Google Scholar]
- De Leeuw, J.; Van Rijckevorsel, J. HOMALS and PRINCALS. Some Generalizations of Principal Components Analyis. Data Anal. Informatics 1980, 2, 231–243. [Google Scholar]
- Gimeno, O.; Ansorena, D.; Astiasarán, I.; Bello, J. Characterization of Chorizo de Pamplona. Food Chem. 2000, 69, 195–200. [Google Scholar] [CrossRef]
- Mateo, J.; Domínguez, M.C.; Aguirrezábal, M.M.; Zumalacárregui, J.M. Taste Compounds in Chorizo and Their Changes during Ripening. Meat Sci. 1996, 44, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Prado, N.; Sampayo, M.; González, P.; Lombó, F.; Díaz, J. Physicochemical, Sensory and Microbiological Characterization of Asturian Chorizo, a Traditional Fermented Sausage Manufactured in Northern Spain. Meat Sci. 2019, 156, 118–124. [Google Scholar] [CrossRef]
- García-Torres, S.; Contador, R.; Ortiz, A.; Ramírez, R.; López-Parra, M.M.; Tejerina, D. Physico-Chemical and Sensory Characterization of Sliced Iberian Chorizo from Raw Material of Three Commercial Categories and Stability during Refrigerated Storage Packaged under Vacuum and Modified Atmospheres. Food Chem. 2021, 354, 129490. [Google Scholar] [CrossRef]
- Salgado, A.; García Fontán, M.C.; Franco, I.; López, M.; Carballo, J. Effect of the Type of Manufacture (Homemade or Industrial) on the Biochemical Characteristics of Chorizo de Cebolla (a Spanish Traditional Sausage). Food Control 2006, 17, 213–221. [Google Scholar] [CrossRef]
- Gómez, M.; Lorenzo, J.M. Effect of Fat Level on Physicochemical, Volatile Compounds and Sensory Characteristics of Dry-Ripened “Chorizo” from Celta Pig Breed. Meat Sci. 2013, 95, 658–666. [Google Scholar] [CrossRef]
- Hollingworth, H.L. The Central Tendency of Judgment. J. Philos. Psychol. Sci. Methods 1910, 7, 461. [Google Scholar] [CrossRef]
- Aston, S.; Negen, J.; Nardini, M.; Beierholm, U. Central Tendency Biases Must Be Accounted for to Consistently Capture Bayesian Cue Combination in Continuous Response Data. Behav. Res. Methods 2022, 54, 508–521. [Google Scholar] [CrossRef] [PubMed]
- González-Martín, M.I.; Bermejo, C.F.; Hierro, J.M.H.; González, C.I.S. Determination of Hydroxyproline in Cured Pork Sausages and Dry Cured Beef Products by NIRS Technology Employing a Fibre-Optic Probe. Food Control 2009, 20, 752–755. [Google Scholar] [CrossRef]
- Flores, M.; Olivares, A. Flavor. In Handbook of Fermented Meat and Poultry, 2nd ed.; Toldrá, F., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 217–225. ISBN 978-1-118-52269-1. [Google Scholar]
- Corral, S.; Salvador, A.; Flores, M. Salt Reduction in Slow Fermented Sausages Affects the Generation of Aroma Active Compounds. Meat Sci. 2013, 93, 776–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sárraga, C.; Carreras, I.; García Regueiro, J.A. Influence of Meat Quality and NaCl Percentage on Glutathione Peroxidase Activity and Values for Acid-Reactive Substances of Raw and Dry-Cured Longissimus Dorsi. Meat Sci. 2002, 62, 503–507. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Franco, D. Fat Effect on Physico-Chemical, Microbial and Textural Changes through the Manufactured of Dry-Cured Foal Sausage Lipolysis, Proteolysis and Sensory Properties. Meat Sci. 2012, 92, 704–714. [Google Scholar] [CrossRef]
- Ambrosiadis, J.; Soultos, N.; Abrahim, A.; Bloukas, J.G. Physicochemical, Microbiological and Sensory Attributes for the Characterization of Greek Traditional Sausages. Meat Sci. 2004, 66, 279–287. [Google Scholar] [CrossRef]
- Soyer, A.; Ertaş, A.H.; Üzümcüoǧlu, Ü. Effect of Processing Conditions on the Quality of Naturally Fermented Turkish Sausages (Sucuks). Meat Sci. 2005, 69, 135–141. [Google Scholar] [CrossRef]
- Papadima, S.N.; Bloukas, J.G. Effect of Fat Level and Storage Conditions on Quality Characteristics of Traditional Greek Sausages. Meat Sci. 1999, 51, 103–113. [Google Scholar] [CrossRef]
- Buvé, C.; Saeys, W.; Rasmussen, M.A.; Neckebroeck, B.; Hendrickx, M.; Grauwet, T.; Van Loey, A. Application of Multivariate Data Analysis for Food Quality Investigations: An Example-Based Review. Food Res. Int. 2022, 151, 110878. [Google Scholar] [CrossRef]
- Roberts, J.J.; Cozzolino, D. An Overview on the Application of Chemometrics in Food Science and Technology—An Approach to Quantitative Data Analysis. Food Anal. Methods 2016, 9, 3258–3267. [Google Scholar] [CrossRef]
- Hernández-Ramos, P.; Vivar-Quintana, A.M.; Revilla, I.; González-Martín, M.I.; Hernández-Jiménez, M.; Martínez-Martín, I. Prediction of Sensory Parameters of Cured Ham: A Study of the Viability of the Use of NIR Spectroscopy and Artificial Neural Networks. Sensors 2020, 20, 5624. [Google Scholar] [CrossRef] [PubMed]
- Marini, F. Artificial Neural Networks in Foodstuff Analyses: Trends and Perspectives A Review. Anal. Chim. Acta 2009, 635, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.G.; Zhang, X.; Ni, L.J.; Bin Xue, Z.; Gu, X.; Huang, S.X. Rapid Identification of Adulterated Cow Milk by Non-Linear Pattern Recognition Methods Based on near Infrared Spectroscopy. Food Chem. 2014, 145, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Alfaia, C.M.M.; Castro, M.L.F.; Martins, S.I.V.; Portugal, A.P.V.; Alves, S.P.A.; Fontes, C.M.G.A.; Bessa, R.J.B.; Prates, J.A.M. Effect of Slaughter Season on Fatty Acid Composition, Conjugated Linoleic Acid Isomers and Nutritional Value of Intramuscular Fat in Barrosa-PDO Veal. Meat Sci. 2007, 75, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Comi, G.; Urso, R.; Iacumin, L.; Rantsiou, K.; Cattaneo, P.; Cantoni, C.; Cocolin, L. Characterisation of Naturally Fermented Sausages Produced in the North East of Italy. Meat Sci. 2005, 69, 381–392. [Google Scholar] [CrossRef]
- Rason, J.; Laguet, A.; Berge, P.; Dufour, E.; Lebecque, A. Investigation of the Physicochemical and Sensory Homogeneity of Traditional French Dry Sausages. Meat Sci. 2007, 75, 359–370. [Google Scholar] [CrossRef]
Attribute | Definition | Minimum (1) | Maximum (5) |
---|---|---|---|
External evaluation | |||
External odor quality | The presence of the typical odor in a balanced way, characterized by hints of paprika, gut and mold without any of them predominating | Defective or atypical | Typical |
External odor intensity | The intensity of the overall odor of the sample before cutting | Low or very high intensity | Medium intensity |
Evaluation of the cutting area | |||
Ease of casing separation | Degree of easiness displayed when removing the casing of the slice | Difficult | Easy |
Meat mass binding | The level at which the granules of fat and meat are bonded and the presence of the holes inside | Low binding big holes | High binding without holes |
Internal odor quality | The presence of the balanced and typical odor, slightly acid and characterized by hints of paprika and spices (oregano, garlic) | Not balanced or atypical | Balanced and typical |
Internal odor intensity | The intensity of the overall odor of the sample | Low or very high intensity | Medium intensity |
Evaluation during consumption | |||
Hardness | The force necessary to penetrate the meat with the incisors | Tender | Tough |
Chewiness | The number of times the sample must be chewed before it can be swallowed | Many | Few |
Juiciness | The amount of juice given off by the sample when chewed | Dry | Juicy |
Flavor quality | The presence of the balanced and typical flavor in cured meat, slightly acid and characterized by hints of paprika and spices | Not balanced or atypical | Balanced and typical |
Flavor intensity | The intensity of the overall flavor of the sample | Low or very high intensity | Medium intensity |
Parameter | Average | Minimum | Maximum | MSE * |
---|---|---|---|---|
Moisture (g/100 g DM) | 28.28 | 18.83 | 40.20 | 0.50 |
Protein (g/100 g DM) | 38.43 | 30.40 | 49.10 | 0.51 |
Fat (g/100 g DM) | 51.05 | 40.10 | 60.30 | 0.62 |
Chlorides (g NaCl/100 g DM) | 4.80 | 3.00 | 6.80 | 0.09 |
Hydroxyproline (g/100 g DM) | 0.42 | 0.21 | 0.66 | 0.01 |
Carbohydrates (g glucose/100 g DM) | 1.52 | 0.59 | 4.27 | 0.12 |
pH | 5.34 | 4.74 | 6.12 | 0.04 |
Water activity | 0.86 | 0.80 | 0.92 | 0.00 |
External odor quality | 3.92 | 3.10 | 4.80 | 0.05 |
External odor intensity | 4.01 | 3.20 | 4.70 | 0.05 |
Ease of casing separation | 4.27 | 1.70 | 5.00 | 0.07 |
Meat mass binding | 4.22 | 2.80 | 4.90 | 0.06 |
Internal odor quality | 4.20 | 3.30 | 4.80 | 0.05 |
Internal odor intensity | 4.18 | 3.30 | 4.80 | 0.05 |
Hardness | 3.79 | 2.80 | 4.70 | 0.06 |
Chewiness | 3.79 | 3.00 | 4.70 | 0.05 |
Juiciness | 4.01 | 3.10 | 4.70 | 0.05 |
Flavor quality | 3.98 | 2.40 | 4.70 | 0.06 |
Flavor intensity | 4.16 | 3.40 | 4.90 | 0.04 |
Attribute | 1 (Lowest Quality) | 2 | 3 (Highest Quality) |
---|---|---|---|
External evaluation | |||
External odor quality | Defective or atypical | Medium | Typical |
External odor intensity | Extreme or absent intensity | High or poor intensity | Medium intensity |
Evaluation of the cutting area | |||
Ease of casing separation | Difficult | Medium | Easy |
Meat mass binding | Low binding with big holes | Moderate-binding | High binding without holes |
Internal odor quality | Not balanced or atypical | Moderately balanced | Balanced and typical |
Internal odor intensity | Extreme or absent intensity | High or poor intensity | Medium intensity |
Evaluation during consumption | |||
Hardness | Very tender or tough | Tender or tough | Medium |
Chewiness | A lot of | Quite a few | A few |
Juiciness | Dry | Moderately juicy | Juicy |
Flavor quality | Not balanced or atypical | Moderately balanced | Balanced and typical |
Flavor intensity | Extreme or absent intensity | High or poor intensity | Medium intensity |
Criterium | Product Quality |
---|---|
Number of variables with a score of 1 ≥ 9 | Moderate |
Number of variables with a score of 1 > Number of variables with a score of 2 or 3. | Good |
Number of variables with a score of 1 < Number of variables with a score of 2 or 3. | Very good |
Number of variables with a score of 2 or 3 ≥ 9 | Excellent |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plaza, J.; Ávila-Zarza, C.; Vivar-Quintana, A.M.; Revilla, I. The Characterization of Dry Fermented Sausages under the “Chorizo Zamorano” Quality Label: The Application of an Alternative Statistical Approach. Foods 2023, 12, 483. https://doi.org/10.3390/foods12030483
Plaza J, Ávila-Zarza C, Vivar-Quintana AM, Revilla I. The Characterization of Dry Fermented Sausages under the “Chorizo Zamorano” Quality Label: The Application of an Alternative Statistical Approach. Foods. 2023; 12(3):483. https://doi.org/10.3390/foods12030483
Chicago/Turabian StylePlaza, Javier, Carmelo Ávila-Zarza, Ana María Vivar-Quintana, and Isabel Revilla. 2023. "The Characterization of Dry Fermented Sausages under the “Chorizo Zamorano” Quality Label: The Application of an Alternative Statistical Approach" Foods 12, no. 3: 483. https://doi.org/10.3390/foods12030483
APA StylePlaza, J., Ávila-Zarza, C., Vivar-Quintana, A. M., & Revilla, I. (2023). The Characterization of Dry Fermented Sausages under the “Chorizo Zamorano” Quality Label: The Application of an Alternative Statistical Approach. Foods, 12(3), 483. https://doi.org/10.3390/foods12030483