Whole-Genome Analysis of blaNDM-Bearing Proteus mirabilis Isolates and mcr-1-Positive Escherichia coli Isolates Carrying blaNDM from the Same Fresh Vegetables in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification of P. mirabilis and E. coli Harboring Carbapenemases Genes
2.2. Detection of Virulence Genes for P. mirabilis and Diarrheagenic E. coli
2.3. Antimicrobial Susceptibilities
2.4. Multilocus Sequence Typing of E. coli
2.5. Plasmid Conjugation and Replicon Typing
2.6. Whole Genome Sequencing and Phylogenetic Analysis
2.7. Characterization of Plasmids Carrying blaNDM or mcr
2.8. Data Availability
3. Results
3.1. Virulence Genes and Concurrence of blaNDM-Positive P. mirabilis and E. coli from the Same Fresh Vegetables
3.2. Antimicrobial Resistance Patterns of blaNDM-Positive P. mirabilis and generic E. coli Isolates
3.3. MLST Typing and Transfer of blaNDM or mcr-1
3.4. Genomic Characteristics and Phylogenetic Analysis
3.5. Sequences of Plasmids Harboring mcr-1
3.6. Sequence Analysis of Plasmids Harboring blaNDM
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- van Duin, D.; Doi, Y. The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence 2017, 8, 460–469. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Liu, L.; Zhou, H.; Chan, E.W.; Li, J.; Fang, Y.; Li, Y.; Liao, K.; Chen, S. Nationwide Surveillance of Clinical Carbapenem-resistant Enterobacteriaceae (CRE) Strains in China. EBioMedicine 2017, 19, 98–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhai, R.; Fu, B.; Shi, X.; Sun, C.; Liu, Z.; Wang, S.; Shen, Z.; Walsh, T.R.; Cai, C.; Wang, Y.; et al. Contaminated in-house environment contributes to the persistence and transmission of NDM-producing bacteria in a Chinese poultry farm. Environ. Int. 2020, 139, 105715. [Google Scholar] [CrossRef] [PubMed]
- CDC. Antibiotic Resistance Threats in the United States, 2019; Department of Health and Human Services, CDC: Atlanta, GA, USA, 2019. [Google Scholar]
- Delgado-Blas, J.F.; Agui, C.V.; Rodriguez, E.M.; Serna, C.; Montero, N.; Saba, C.K.S.; Gonzalez-Zorn, B. Dissemination Routes of Carbapenem and Pan-Aminoglycoside Resistance Mechanisms in Hospital and Urban Wastewater Canalizations of Ghana. mSystems 2022, 7, e0101921. [Google Scholar] [CrossRef]
- Li, F.; Cheng, P.; Li, X.; Liu, R.; Liu, H.; Zhang, X. Molecular Epidemiology and Colistin-Resistant Mechanism of mcr-Positive and mcr-Negative Escherichia coli Isolated From Animal in Sichuan Province, China. Front. Microbiol. 2022, 13, 818548. [Google Scholar] [CrossRef]
- Wang, C.; Feng, Y.; Liu, L.; Wei, L.; Kang, M.; Zong, Z. Identification of novel mobile colistin resistance gene mcr-10. Emerg. Microbes Infect. 2020, 9, 508–516. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; Xue, C.X.; Chen, Y.; Huang, J.; Wu, W.; Lu, Y.; Huang, Q.; Chen, D.; Zhou, K. Frequent convergence of mcr-9 and carbapenemase genes in Enterobacter cloacae complex driven by epidemic plasmids and host incompatibility. Emerg. Microbes Infect. 2022, 11, 1959–1972. [Google Scholar] [CrossRef]
- Aklilu, E.; Harun, A.; Singh, K.K.B. Molecular characterization of blaNDM, blaOXA-48, mcr-1 and blaTEM-52 positive and concurrently carbapenem and colistin resistant and extended spectrum beta-lactamase producing Escherichia coli in chicken in Malaysia. BMC Vet. Res. 2022, 18, 190. [Google Scholar] [CrossRef]
- Liu, X.; Li, R.; Dong, N.; Ye, L.; Chan, E.W.; Chen, S. Complete Genetic Analysis of Plasmids Carried by Two Nonclonal blaNDM-5- and mcr-1-Bearing Escherichia coli Strains: Insight into Plasmid Transmission among Foodborne Bacteria. Microbiol. Spectr. 2021, 9, e0021721. [Google Scholar] [CrossRef]
- Jung, Y.; Jang, H.; Matthews, K.R. Effect of the food production chain from farm practices to vegetable processing on outbreak incidence. Microb. Biotechnol. 2014, 7, 517–527. [Google Scholar] [CrossRef]
- Liu, B.T.; Song, F.J. Emergence of two Escherichia coli strains co-harboring mcr-1 and blaNDM in fresh vegetables from China. Infect. Drug Resist. 2019, 12, 2627–2635. [Google Scholar] [CrossRef] [Green Version]
- van Hoek, A.H.; Veenman, C.; van Overbeek, W.M.; Lynch, G.; de Roda Husman, A.M.; Blaak, H. Prevalence and characterization of ESBL- and AmpC-producing Enterobacteriaceae on retail vegetables. Int. J. Food Microbiol. 2015, 204, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Chelaghma, W.; Loucif, L.; Bendjama, E.; Cherak, Z.; Bendahou, M.; Rolain, J.M. Occurrence of Extended Spectrum Cephalosporin-, Carbapenem- and Colistin-Resistant Gram-Negative Bacteria in Fresh Vegetables, an Increasing Human Health Concern in Algeria. Antibiotics 2022, 11, 988. [Google Scholar] [CrossRef] [PubMed]
- Jones-Dias, D.; Manageiro, V.; Ferreira, E.; Barreiro, P.; Vieira, L.; Moura, I.B.; Canica, M. Architecture of Class 1, 2, and 3 Integrons from Gram Negative Bacteria Recovered among Fruits and Vegetables. Front. Microbiol. 2016, 7, 1400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zurfuh, K.; Poirel, L.; Nordmann, P.; Nuesch-Inderbinen, M.; Hachler, H.; Stephan, R. Occurrence of the plasmid-borne mcr-1 colistin resistance gene in ESBL-producing Enterobacteriacae in river water and imported vegetable samples in Switzerland. Antimicrob. Agents Chemother. 2016, 60, 2594–2595. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.S.; Song, J.; Kim, J.; Shin, J. Increasing prevalence of multidrug-resistant mcr-1-positive Escherichia coli isolates from fresh vegetables and healthy food animals in South Korea. Int. J. Infect. Dis. 2020, 92, 53–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, J.; Yao, X.; Lv, L.; Doi, Y.; Huang, X.; Huang, S.; Liu, J.H. Emergence of mcr-1 in Raoultella ornithinolytica and Escherichia coli Isolates from Retail Vegetables in China. Antimicrob. Agents Chemother. 2017, 61, e01139-17. [Google Scholar] [CrossRef] [Green Version]
- Soliman, A.M.; Nariya, H.; Tanaka, D.; Yu, L.; Hisatsune, J.; Kayama, S.; Kondo, K.; Sugai, M.; Shimamoto, T.; Shimamoto, T. Vegetable-Derived Carbapenemase-Producing High-Risk Klebsiella pneumoniae ST15 and Acinetobacter baumannii ST2 Clones in Japan: Coexistence of blaNDM-1, blaOXA-66, blaOXA-72, and an AbaR4-Like Resistance Island in the Same Sample. Appl. Environ. Microbiol. 2021, 87, e02166-20. [Google Scholar] [CrossRef]
- Liu, B.T.; Zhang, X.Y.; Wan, S.W.; Hao, J.J.; Jiang, R.D.; Song, F.J. Characteristics of Carbapenem-Resistant Enterobacteriaceae in Ready-to-Eat Vegetables in China. Front. Microbiol. 2018, 9, 1147. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; He, H.; Chen, Q.; Wang, K.; Lin, Y.; Li, P.; Li, J.; Liu, X.; Jia, L.; Song, H.; et al. Nosocomial Outbreak of Carbapenemase-Producing Proteus mirabilis With Two Novel Salmonella Genomic Island 1 Variants Carrying Different blaNDM-1 Gene Copies in China. Front. Microbiol. 2022, 12, 800938. [Google Scholar] [CrossRef]
- Keisam, S.; Tuikhar, N.; Ahmed, G.; Jeyaram, K. Toxigenic and pathogenic potential of enteric bacterial pathogens prevalent in the traditional fermented foods marketed in the Northeast region of India. Int. J. Food Microbiol. 2019, 296, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Nyenje, M.E.; Odjadjare, C.E.; Tanih, N.F.; Green, E.; Ndip, R.N. Foodborne pathogens recovered from ready-to-eat foods from roadside cafeterias and retail outlets in Alice, Eastern Cape Province, South Africa: Public health implications. Int. J. Environ. Res. Public Health 2012, 9, 2608–2619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, Z.; Shi, X.; Bai, F.; He, X.; Zhang, H.; Li, Y.; Wan, Y.; Lin, Y.; Qiu, Y.; Chen, Q.; et al. Characterization of a Novel Diarrheagenic Strain of Proteus mirabilis Associated With Food Poisoning in China. Front. Microbiol. 2019, 10, 2810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mollet, C.; Drancourt, M.; Raoult, D. rpoB sequence analysis as a novel basis for bacterial identification. Mol. Microbiol. 1997, 26, 1005–1011. [Google Scholar] [CrossRef]
- Poirel, L.; Walsh, T.R.; Cuvillier, V.; Nordmann, P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect. Dis. 2011, 70, 119–123. [Google Scholar] [CrossRef]
- Borowiak, M.; Baumann, B.; Fischer, J.; Thomas, K.; Deneke, C.; Hammerl, J.A.; Szabo, I.; Malorny, B. Development of a Novel mcr-6 to mcr-9 Multiplex PCR and Assessment of mcr-1 to mcr-9 Occurrence in Colistin-Resistant Salmonella enterica Isolates From Environment, Feed, Animals and Food (2011–2018) in Germany. Front. Microbiol. 2020, 11, 80. [Google Scholar] [CrossRef] [Green Version]
- Antikainen, J.; Tarkka, E.; Haukka, K.; Siitonen, A.; Vaara, M.; Kirveskari, J. New 16-plex PCR method for rapid detection of diarrheagenic Escherichia coli directly from stool samples. Eur. J. Clin. Microbiol. Infect. Dis. 2009, 28, 899–908. [Google Scholar] [CrossRef]
- Meraz, I.M.; Jiang, Z.D.; Ericsson, C.D.; Bourgeois, A.L.; Steffen, R.; Taylor, D.N.; Hernandez, N.; DuPont, H.L. Enterotoxigenic Escherichia coli and diffusely adherent E. coli as likely causes of a proportion of pathogen-negative travelers’ diarrhea—A PCR-based study. J. Travel Med. 2008, 15, 412–418. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, W.D.; Barboza, M.G.L.; Faustino, G.; Inagaki, W.T.Y.; Sanches, M.S.; Kobayashi, R.K.T.; Vespero, E.C.; Rocha, S.P.D. Virulence, resistance and clonality of Proteus mirabilis isolated from patients with community-acquired urinary tract infection (CA-UTI) in Brazil. Microb. Pathog. 2021, 152, 104642. [Google Scholar] [CrossRef]
- CLSI Document M100-S29; Performance Standards for Antimicrobial Susceptibility Testing. Twenty-Ninth Information Supplement; CLSI: Wayne, PA, USA, 2019.
- EUCAST. Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 9.0; European Committee on Antimicrobial Susceptibility Testing: Växjö, Sweden, 2019; Available online: http://www.eucast.org/clinical_breakpoints (accessed on 1 May 2021).
- Wirth, T.; Falush, D.; Lan, R.; Colles, F.; Mensa, P.; Wieler, L.H.; Karch, H.; Reeves, P.R.; Maiden, M.C.; Ochman, H.; et al. Sex and virulence in Escherichia coli: An evolutionary perspective. Mol. Microbiol. 2006, 60, 1136–1151. [Google Scholar] [CrossRef]
- Chen, L.; Chen, Z.L.; Liu, J.H.; Zeng, Z.L.; Ma, J.Y.; Jiang, H.X. Emergence of RmtB methylase-producing Escherichia coli and Enterobacter cloacae isolates from pigs in China. J. Antimicrob. Chemother. 2007, 59, 880–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carattoli, A.; Bertini, A.; Villa, L.; Falbo, V.; Hopkins, K.L.; Threlfall, E.J. Identification of plasmids by PCR-based replicon typing. J. Microbiol. Methods 2005, 63, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.; Bielak, E.; Fortini, D.; Hansen, L.; Hasman, H.; Debroy, C.; Nolan, L.; Carattoli, A. Expansion of the IncX plasmid family for improved identification and typing of novel plasmids in drug-resistant Enterobacteriaceae. Plasmid 2012, 68, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Chavda, K.D.; Al Laham, N.; Melano, R.G.; Jacobs, M.R.; Bonomo, R.A.; Kreiswirth, B.N. Complete nucleotide sequence of a blaKPC-harboring IncI2 plasmid and its dissemination in New Jersey and New York hospitals. Antimicrob. Agents Chemother. 2013, 57, 5019–5025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, M.; Cosentino, S.; Rasmussen, S.; Friis, C.; Hasman, H.; Marvig, R.; Jelsbak, L.; Sicheritz-Pontén, T.; Ussery, D.; Aarestrup, F.; et al. Multilocus sequence typing of total-genome-sequenced bacteria. J. Clin. Microbiol. 2012, 50, 1355–1361. [Google Scholar] [CrossRef] [Green Version]
- Alikhan, N.; Petty, N.; Ben Zakour, N.; Beatson, S. BLAST Ring Image Generator (BRIG): Simple prokaryote genome comparisons. BMC Genom. 2011, 12, 402. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, M.; Petty, N.; Beatson, S. Easyfig: A genome comparison visualizer. Bioinformatics 2011, 27, 1009–1010. [Google Scholar] [CrossRef] [Green Version]
- Cui, C.Y.; Chen, C.; Liu, B.T.; He, Q.; Wu, X.T.; Sun, R.Y.; Zhang, Y.; Cui, Z.H.; Guo, W.Y.; Jia, Q.L.; et al. Co-occurrence of Plasmid-Mediated Tigecycline and Carbapenem Resistance in Acinetobacter spp. from Waterfowls and Their Neighboring Environment. Antimicrob. Agents Chemother. 2020, 64, e02502-19. [Google Scholar] [CrossRef]
- Bourafa, N.; Chaalal, W.; Bakour, S.; Lalaoui, R.; Boutefnouchet, N.; Diene, S.; Rolain, J. Molecular characterization of carbapenem-resistant Gram-negative bacilli clinical isolates in Algeria. Infect. Drug Resist. 2018, 11, 735–742. [Google Scholar] [CrossRef] [Green Version]
- Kanzari, L.; Ferjani, S.; Saidani, M.; Hamzaoui, Z.; Jendoubi, A.; Harbaoui, S.; Ferjani, A.; Rehaiem, A.; Boutiba Ben Boubaker, I.; Slim, A. First report of extensively-drug-resistant Proteus mirabilis isolate carrying plasmid-mediated blaNDM-1 in a Tunisian intensive care unit. Int. J. Antimicrob. Agents 2018, 52, 906–909. [Google Scholar] [CrossRef]
- Aires-de-Sousa, M.; de la Rosa, J.O.; Goncalves, M.; Costa, A.; Nordmann, P.; Poirel, L. Occurrence of NDM-1-producing Morganella morganii and Proteus mirabilis in a single patient in Portugal: Probable in vivo transfer by conjugation. J. Antimicrob. Chemother. 2020, 75, 903–906. [Google Scholar] [CrossRef] [PubMed]
- Valentin, T.; Feierl, G.; Masoud-Landgraf, L.; Kohek, P.; Luxner, J.; Zarfel, G. Proteus mirabilis harboring carbapenemase NDM-5 and ESBL VEB-6 detected in Austria. Diagn. Microbiol. Infect. Dis. 2018, 91, 284–286. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, N.; Pimenta, R.; de Melo, D.; Nolan, L.; de Souza, M.; Logue, C. mcr-1 Identified in Fecal Escherichia coli and Avian Pathogenic E. coli (APEC) From Brazil. Front. Microbiol. 2021, 12, 659613. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Shen, Y.; Liu, W.; Ye, H.; Liu, D.; Liu, J.; Fu, Y.; Peng, C.; Chen, K.; Deng, X.; et al. Prevalence and risk factors of mcr-1-positive volunteers after colistin banning as animal growth promoter in China: A community-based case-control study. Clin. Microbiol. Infect. 2022, 28, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Huang, Y.; Yang, G.; Lei, T.; Chen, M.; Ye, Q.; Wang, J.; Gu, Q.; Wei, X.; Zhang, J.; et al. High prevalence of multidrug-resistant Escherichia coli and first detection of IncHI2/IncX4-plasmid carrying mcr-1 E. coli in retail ready-to-eat foods in China. Int. J. Food Microbiol. 2021, 355, 109349. [Google Scholar] [CrossRef]
- Liu, B.; Li, X.; Zhang, Q.; Shan, H.; Zou, M.; Song, F. Colistin-Resistant mcr-Positive Enterobacteriaceae in Fresh Vegetables, an Increasing Infectious Threat in China. Int. J. Antimicrob. Agents 2019, 54, 89–94. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, H.; Liu, Y.H.; Feng, Y. Towards Understanding MCR-like Colistin Resistance. Trends Microbiol. 2018, 26, 794–808. [Google Scholar] [CrossRef]
- Kopotsa, K.; Sekyere, J.O.; Mbelle, N.M. Plasmid evolution in carbapenemase-producing Enterobacteriaceae: A review. Ann. N. Y. Acad. Sci. 2019, 1457, 61–91. [Google Scholar] [CrossRef]
- Liu, B.; Guo, Y.; Liu, N.; Wang, J.; Li, F.; Yao, L.; Zhuo, C. In silico Evolution and Comparative Genomic Analysis of IncX3 Plasmids Isolated From China Over Ten Years. Front. Microbiol. 2021, 12, 725391. [Google Scholar] [CrossRef]
- Xie, X.; Zhang, J.; Wang, H.N.; Lei, C.W. Whole genome sequence of a New Delhi metallo-beta-lactamase 1-producing Proteus mirabilis isolate SNYG35 from broiler chicken in China. J. Glob. Antimicrob. Resist. 2021, 24, 266–269. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, Y.; Shen, Z.; Xia, L.; Wang, J.; Zhao, L.; Wang, K.; Wang, W.; Hao, Z.; Liu, Z. Characterization of NDM-1-Producing Carbapenemase in Proteus mirabilis among Broilers in China. Microorganisms 2021, 9, 2443. [Google Scholar] [CrossRef] [PubMed]
- Toleman, M.A.; Bennett, P.M.; Walsh, T.R. ISCR elements: Novel gene-capturing systems of the 21st century? Microbiol. Mol. Biol. Rev. 2006, 70, 296–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Lan, R.; Xiong, Y.; Ye, C.; Yuan, M.; Liu, X.; Chen, X.; Yu, D.; Liu, B.; Lin, W.; et al. Sequential isolation in a patient of Raoultella planticola and Escherichia coli bearing a novel ISCR1 element carrying blaNDM-1. PLoS ONE 2014, 9, e89893. [Google Scholar] [CrossRef] [PubMed]
Sources | Samples | E. coli | P. mirabilis | |||||
---|---|---|---|---|---|---|---|---|
Strains | Resistance Genes | STs | Diarrheagenic Virulence Genes | Strains | Resistance Genes | Virulence Genes | ||
Market | lettuce | M15061H | blaNDM-5 | ST553 | Not found | M15061B | blaNDM-1 | hpmA, mrpA, ptA, ireA, zapA, pmfA, atfA |
tomato | M15071H | mcr-1, blaNDM-5 | ST6050 | Not found | M15071B | blaNDM-1 | hpmA, mrpA, ptA, ireA, zapA, pmfA, atfA | |
cucumber | M15081H | mcr-1, blaNDM-5 | ST6050 | Not found | M15081B | blaNDM-1 | hpmA, mrpA, ptA, ireA, zapA, pmfA, atfA | |
Supermarket | cucumber 1 | M15092H | mcr-1, blaNDM-5 | ST6050 | Not found | M15092B | blaNDM-5 | hpmA, mrpA, ptA, ireA, zapA, pmfA, atfA |
lettuce | M15101H | mcr-1, blaNDM-5 | ST6050 | Not found | M15101B | blaNDM-1 | hpmA, mrpA, ptA, ireA, zapA, pmfA, atfA | |
green pepper | - | - | ||||||
cucumber 2 | - | - | ||||||
tomato | - | - |
Strains | Replicons in Transconjugants | Resistance Genes | MICs (μg/mL) | Other Resistance Profiles | |||||
---|---|---|---|---|---|---|---|---|---|
COL | TIG | MEM | CTX | CAZ | AMP | ||||
M15061H | - | blaNDM-5 | 0.5 | 0.25 | >128 | >256 | >256 | >256 | STR, KAN, TET, NAL, CIP |
M15071H | - | mcr-1, blaNDM-5 | 4 | 0.25 | >128 | >256 | >256 | >256 | STR, KAN, TET, LEV, NAL, CIP |
M15081H | - | mcr-1, blaNDM-5 | 4 | 0.5 | >128 | >256 | >256 | >256 | STR, KAN, TET, LEV, NAL, CIP |
M15092H | - | mcr-1, blaNDM-5 | 4 | 0.125 | >128 | >256 | >256 | >256 | STR, KAN, TET, LEV, NAL, CIP |
M15101H | - | mcr-1, blaNDM-5 | 4 | 0.25 | >128 | >256 | >256 | >256 | STR, KAN, TET, LEV, NAL, CIP |
M15061B | - | blaNDM-1 | NA | NA | >128 | 128 | >256 | >256 | STR, KAN, TET |
M15071B | - | blaNDM-1 | NA | NA | >128 | >256 | >256 | >256 | STR, KAN, TET, NAL, CIP |
M15081B | - | blaNDM-1 | NA | NA | >128 | >256 | >256 | >256 | STR, KAN, TET, LEV, NAL, CIP |
M15092B | - | blaNDM-5 | NA | NA | >128 | >256 | >256 | >256 | STR, KAN, AMK, TET, NAL, CIP |
M15101B | - | blaNDM-1 | NA | NA | >128 | 256 | >256 | >256 | STR, KAN, TET, NAL, CIP |
M15061HT | X3 | blaNDM-5 | <0.125 | 0.125 | >128 | 128 | 256 | >256 | STR |
M15071HT | X3 | blaNDM-5 | <0.125 | 0.25 | >128 | 256 | 128 | >256 | STR |
M15081HT | X3 | blaNDM-5 | <0.125 | 0.125 | >128 | 256 | 256 | >256 | STR |
M15092HT | X3 | blaNDM-5 | <0.125 | 0.125 | >128 | 256 | 256 | >256 | STR |
M15101HT | X3 | blaNDM-5 | <0.125 | 0.25 | >128 | 256 | 256 | >256 | STR |
M15061BT | UT | blaNDM-1 | <0.125 | 0.125 | 128 | 64 | 256 | >256 | STR |
M15071BT | F24:A-:B6 | blaNDM-1 | <0.125 | 0.125 | 128 | 64 | 256 | >256 | STR |
M15081BT | UT | blaNDM-1 | <0.125 | 0.25 | 128 | 128 | 256 | >256 | STR |
M15092BT | X3, F24:A-:B6 | blaNDM-5 | <0.125 | 0.5 | >128 | 128 | 256 | >256 | STR, TET |
M15101BT | UT | blaNDM-1 | <0.125 | 0.125 | >128 | 256 | 256 | >256 | STR |
C600 | - | - | <0.125 | 0.125 | 0.125 | 0.031 | 0.062 | 4 | STR |
Strains | Origins | Strategies of Sequencing | Resistance Genes | Virulence Genes |
---|---|---|---|---|
E. coli | ||||
M15061H | lettuce | MinION + HiSeq | aph(3′)-Ia, aph(6)-Id, aph(3″)-Ib, aadA5, tet(A), sul2, sul1, dfrA17, sitABCD, mph(A), blaNDM-5, blaCTX-M-14, blaTEM-1B, bleMBL, gyrA: (S83L,D87N), parC: S80I | cma, csgA, cvaC, fdeC, fimH, gad, hlyE, hlyF, iroN, iss, lpfA, nlpI, ompT, sitA, terC, traJ, traT, yehA, yehB, yehC, yehD |
M15071H | tomato | HiSeq | aph(3′)-Ia, aph(6)-Id, aac(3)-IV, aph(3″)-Ib, aph(4)-Ia, aac(6′)-Ib-cr, aadA2, tet(M), tet(A), dfrA12, fosA3, catB3, arr-3, mph(A), blaNDM-5, blaCTX-M-3, blaOXA-1, bleMBL, mcr-1, gyrA: (S83L,D87N), parC: S80I | astA, csgA, fimH, gad, hlyE, nlpI, ompT, terC, traJ, traT, yehA, yehB, yehC, yehD |
M15081H | cucumber | HiSeq | aph(3′)-Ia, aph(6)-Id, aac(3)-IV, aph(3″)-Ib, aph(4)-Ia, aac(6′)-Ib-cr, aadA2, tet(M), tet(A), dfrA12, fosA3, catB3, arr-3, mph(A), blaNDM-5, blaCTX-M-3, blaOXA-1, bleMBL, mcr-1, gyrA: (S83L,D87N), parC: S80I | astA, csgA, fimH, gad, hlyE, nlpI, ompT, terC, traJ, traT, yehA, yehB, yehC, yehD |
P. mirabilis | ||||
M15061B | lettuce | MinION + HiSeq | aph(4)-Ia, aac(3)-IV, aadA2, tet(J), sul2, sul1, cat, floR, arr-3, blaNDM-1, bleMBL, lnu(F) | - |
M15101B | lettuce | HiSeq | aph(4)-Ia, aac(3)-IV, aadA2, tet(J), sul2, sul1, cat, floR, arr-3, blaNDM-1, bleMBL, lnu(F) | - |
transconjugants | ||||
M15071BT | - | HiSeq | aph(6)-Id, aph(3′)-Ia, aph(3″)-Ib, aac(3)-IV, aph(4)-Ia, aadA2, aadA5, tet(A), sul2, sul1, dfrA17, sitABCD, floR, arr-3, mph(A), blaNDM-1, blaTEM-1B, bleMBL, lnu(F) | - |
M15081BT | - | HiSeq | aac(3)-IV, aph(4)-Ia, aadA2, sul2, sul1, floR, arr-3, blaNDM-1, bleMBL, lnu(F) | - |
M15092BT | - | HiSeq | aph(6)-Id, aph(3′)-Ia, aph(3″)-Ib, aadA5, tet(A), sul2, sul1, dfrA17, sitABCD, mph(A), blaNDM-5, blaTEM-1B, bleMBL | - |
Strains | Plasmids | Resistance Genes | Plasmids Carrying mcr-1 or blaNDM | |
---|---|---|---|---|
Replicon Type | Size (kb) | |||
M15061H | pNDM5_M15061H | blaNDM-5, bleMBL | X3 | ~46 |
pTEM-1B_M15061H | aph(3′)-Ia, aph(3″)-Ib, aph(6)-Id, aadA5, blaTEM-1B, tet(A), dfrA17, sul1, sul2, mph(A), sitABCD | FII | ~152 | |
pCTX-M-14_M15061H | blaCTX-M-14 | Y | ~152 | |
p1_M15061H | I1-I | ~90 | ||
p2_M15061H | UT | ~5 | ||
p3_M15061H | UT | ~3 | ||
p4_M15061H | UT | ~3 | ||
p5_M15061H | UT | ~2 | ||
M15071H | pmcr_M15071H | mcr-1, blaOXA-1, dfrA12, aac(6′)-Ib-cr, aph(3′)-Ia, aph(4)-Ia, aac(3)-IV, aph(3″)-Ib, aph(6)-Id, aadA2, tet(A), arr-3, catB3 | HI2 | ~177 |
pNDM5_M15071H | blaNDM-5, bleMBL | X3 | ~46 | |
M15081H | pmcr_M15081H | mcr-1, blaOXA-1, dfrA12, aac(6′)-Ib-cr, aph(3′)-Ia, aph(4)-Ia, aac(3)-IV, aph(3″)-Ib, aph(6)-Id, aadA2, tet(A), arr-3, catB3 | HI2 | ~177 |
pNDM5_M15081H | blaNDM-5, bleMBL | X3 | ~46 | |
M15092H | pmcr_M15092H | mcr-1, blaOXA-1, dfrA12, aac(6′)-Ib-cr, aph(3′)-Ia, aph(4)-Ia, aac(3)-IV, aph(3″)-Ib, aph(6)-Id, aadA2, tet(A), arr-3, catB3 | HI2 | ~177 |
pNDM5_M15092H | blaNDM-5, bleMBL | X3 | ~46 | |
M15101H | pmcr_M15101H | mcr-1, blaOXA-1, dfrA12, aac(6′)-Ib-cr, aph(3′)-Ia, aph(4)-Ia, aac(3)-IV, aph(3″)-Ib, aph(6)-Id, aadA2, tet(A), arr-3, catB3 | HI2 | ~177 |
pNDM5_M15101H | blaNDM-5, bleMBL | X3 | ~46 | |
M15061B | pNDM1_M15061B | blaNDM-1, bleMBL, sul1, sul2, aadA2, aac(3)-IV, aph(4)-Ia, arr-3, folR, lnu(F) | UT | ~186 |
M15071B | pNDM1_M15071B | blaNDM-1, bleMBL, sul2, aadA2, aac(3)-IV, aph(4)-Ia, mph(A), arr-3, floR, lnu(F) | UT | ~163 |
M15081B | pNDM1_M15081B | blaNDM-1, bleMBL, sul1, sul2, aadA2, aac(3)-IV, aph(4)-Ia, arr-3, folR, lnu(F) | UT | ~160 |
M15092B | pNDM5_M15092B | blaNDM-5, bleMBL | X3 | ~46 |
M15101B | pNDM1_M15101B | blaNDM-1, bleMBL, sul1, sul2, aadA2, aac(3)-IV, aph(4)-Ia, arr-3, folR, lnu(F) | UT | ~158 |
Primers | DNA Sequence (5′→3′) | Target Genes | Products Size (bp) |
---|---|---|---|
trhE-trhK-F | AACGGTGATCTTGAACAGTC | trhE and trhK | 1000 |
trhE-trhK-R | ACGGTAGGGAGATCAGTTG | ||
trhV-trhC-F | CAACAGGGGAAAGTAATGAG | trhV and trhC | 999 |
trhV-trhC-R | GTTTGAAGTAACGATGCTCAG | ||
traU-traN-F | CAACACTAATCAGCCAATGAC | traU and traN | 992 |
traU-traN-R | GATTAAGATTAGCGGATTCGG | ||
DUF-VWA-F | GATTGAACGAGAGTTTCAGG | DUF and VWA | 980 |
DUF-VWA-R | ACAGGATCAAAATACGGTCC | ||
terZ-terD-F | GAGTTAACCAGTCGACGC | terZ and terD | 997 |
terZ-terD-R | TAAACGCCAGGTATTCAACG | ||
tetR(A)-tet(A)-F | TTCTATCTGCGATTGGACCC | tetR(A) and tet(A) | 872 |
tetR(A)-tet(A)-R | CTAGTATGACGTCTGTCGC | ||
traG-traI-F | AAGCTTATCGACCTCTTTCG | traG and traI | 993 |
traG-traI-R | AATGCAAAGCATACAGCATC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.-A.; Guo, C.-H.; Yang, T.-Y.; Li, F.-Y.; Song, F.-J.; Liu, B.-T. Whole-Genome Analysis of blaNDM-Bearing Proteus mirabilis Isolates and mcr-1-Positive Escherichia coli Isolates Carrying blaNDM from the Same Fresh Vegetables in China. Foods 2023, 12, 492. https://doi.org/10.3390/foods12030492
Li C-A, Guo C-H, Yang T-Y, Li F-Y, Song F-J, Liu B-T. Whole-Genome Analysis of blaNDM-Bearing Proteus mirabilis Isolates and mcr-1-Positive Escherichia coli Isolates Carrying blaNDM from the Same Fresh Vegetables in China. Foods. 2023; 12(3):492. https://doi.org/10.3390/foods12030492
Chicago/Turabian StyleLi, Chang-An, Cai-Hong Guo, Ting-Yu Yang, Fang-Yu Li, Feng-Jing Song, and Bao-Tao Liu. 2023. "Whole-Genome Analysis of blaNDM-Bearing Proteus mirabilis Isolates and mcr-1-Positive Escherichia coli Isolates Carrying blaNDM from the Same Fresh Vegetables in China" Foods 12, no. 3: 492. https://doi.org/10.3390/foods12030492
APA StyleLi, C. -A., Guo, C. -H., Yang, T. -Y., Li, F. -Y., Song, F. -J., & Liu, B. -T. (2023). Whole-Genome Analysis of blaNDM-Bearing Proteus mirabilis Isolates and mcr-1-Positive Escherichia coli Isolates Carrying blaNDM from the Same Fresh Vegetables in China. Foods, 12(3), 492. https://doi.org/10.3390/foods12030492