The Effect of Co-Fermentation with Lactobacillus plantarum HLJ29L2 and Yeast on Wheat Protein Characteristics in Sourdough and Crackers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Formula and Preparation of Fermented Crackers
2.3. Protein Digestibility of Fermented Crackers
2.4. Free Amino Acid Analysis of Fermented Crackers
2.5. Analysis of Protein in Sourdoughs Extracts during Fermentation
2.6. Determination of Protease Activity in Sourdoughs
2.7. Determination of pH and Organic Acids in Sourdoughs
2.8. Growth of LP HLJ29L2 and Yeast during Sourdough Fermentation
2.9. Statistical Analysis
3. Results and Discussion
3.1. Protein Digestibility of Fermented Crackers
3.2. Analysis of Free Amino Acids in Fermented Crackers
3.3. Determination of SDS-Insoluble and SDS-Soluble Proteins in Sourdoughs
3.4. Determination of Protease Activity of Fermented Sourdoughs
3.5. pH and TTA Measurement in Sourdoughs
3.6. Growth of LP HLJ29L2 and Yeast during Sourdough Fermentation
3.7. Organic Acid Measurements in Sourdoughs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Ingredients | Sourdough (g) | Cracker Dough (g) |
---|---|---|
Wheat flour | 650 | 350 |
Whole wheat flour | - | 12 |
Milk powder | 15 | - |
Fresh yeast | 6.2 | - |
LP LYO20 | 107 cfu/g flour | - |
Water | 340 | - |
Shortening | - | 100 |
Leavening agent | - | 9.5 |
Salt | - | 12 |
References
- Xing, X.; Suo, B.; Yang, Y.; Li, Z.; Nie, W.; Ai, Z. Application of Lactobacillus as Adjunct Cultures in Wheat Dough Fermentation. J. Food Sci. 2019, 84, 842–847. [Google Scholar] [CrossRef]
- Li, Z.; Li, H.; Deng, C.; Liu, C. Effect of Mixed Strain Starter Culture on Rheological Properties of Wheat Dough and Quality of Steamed Bread. J. Texture Stud. 2014, 45, 180–186. [Google Scholar] [CrossRef]
- Liu, C.; Chang, Y.; Li, Z.; Liu, H. Effect of ratio of yeast to Jiaozi on quality of Chinese steamed bread. Procedia Environ. Sci. 2012, 12, 1203–1207. [Google Scholar] [CrossRef] [Green Version]
- Koxawa, M.; Maeda, T.; Morita, A.; Araki, T.; Yamada, M.; Takeya, K.; Sagara, Y. The Effects of Mixing and Fermentation Times on Chemical and Physical Properties of White Pan Bread. Food Sci. Technol. Res. 2017, 23, 181–191. [Google Scholar] [CrossRef] [Green Version]
- Hammes, W.; Gänzle, M. Sourdough breads and related products. In Microbiology of Fermented Foods; Wood, B.J.B., Ed.; Blackie Academic & Professional: Detroit, MI, USA, 1998; pp. 199–216. [Google Scholar] [CrossRef]
- Paramithiotis, S.; Gioulatos, S.; Tsakalidou, E.; Kalantzopoulos, G. Interactions between Saccharomyces cerevisiae and lactic acid bacteria in sourdough. Process Biochem. 2006, 41, 2429–2433. [Google Scholar] [CrossRef]
- Yazar, G.; Tavman, S. Functional and Technological Aspects of Sourdough Fermentation with Lactobacillus sanfranciscensis. Food Eng. Rev. 2012, 4, 171–190. [Google Scholar] [CrossRef]
- Thiele, C.; Grassl, S.; Ganzle, M. Gluten hydrolysis and depolymerization during Sourdough fermentation. J. Agric. Food Chem. 2004, 52, 1307–1314. [Google Scholar] [CrossRef]
- Gobbetti, M.; Simonetti, M.S.; Rossi, J.; Cossignani, L.; Corsetti, A.; Damiani, P. Free D- and L-amino acid evolution during sourdough fermentation and baking. J. Food Sci. 1994, 59, 881–884. [Google Scholar] [CrossRef]
- Teleky, B.; Martău, A.; Ranga, F.; Chetan, F.; Vodnar, C. Exploitation of Lactic Acid Bacteria and Baker’s Yeast as Single or Multiple Starter Cultures of Wheat Flour Dough Enriched With Soy Flour. Biomolecules 2020, 10, 778. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; Huang, X.; Tian, X.; Wang, C.; Aheto, J.H.; Ernest, B.; Yi, R. Dynamic characteristics of dough during the fermentation process of Chinese steamed bread. Food Chem. 2020, 312, 126050. [Google Scholar] [CrossRef]
- Spicher, G.; Nierle, W. Proteolytic activity of sourdough bacteria. Appl. Microbiol. Biotechnol. 1988, 28, 487–492. [Google Scholar] [CrossRef]
- Ketnawa, S.; Ogawa, Y. In vitro protein digestibility and biochemical characteristics of soaked, boiled and fermented soybeans. Sci. Rep. 2021, 11, 14257. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Wu, S.; Li, W.; Koksel, F.; Du, Y.; Sun, L.; Fang, Y.; Hu, Q.; Pei, F. The effects of cooperative fermentation by yeast and lactic acid bacteria on the dough rheology, retention and stabilization of gas cells in a whole wheat flour dough system—A review. Food Hydrocoll. 2023, 135, 108212. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carriere, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food—An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Yang, C.; Zhu, S.; Zhong, F.; Huang, D.; Li, Y. Understanding the mechanisms of whey protein isolate mitigating the digestibility of corn starch by in vitro simulated digestion. Food Hydrocoll. 2022, 124, 107211. [Google Scholar] [CrossRef]
- André, B.; Lotti, E.; Marie, A.; Paula, A.; Ricardo, A.; Isidra, R. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Yu, M.; Liu, B.; Zhong, F.; Wan, Q.; Zhu, S.; Huang, D.; Li, Y. Interactions between caffeic acid and corn starch with varying amylose content and their effects on starch digestion. Food Hydrocoll. 2021, 114, 106544. [Google Scholar] [CrossRef]
- Zhao, R.; Bean, S.R.; Ioerger, B.P.; Wang, D.; Boyle, D. Impact of mashing on sorghum proteins and its relationship to ethanol fermentation. J. Agric. Food Chem. 2008, 56, 946–953. [Google Scholar] [CrossRef]
- Han, C.; Ma, M.; Li, M.; Sun, Q. Further interpretation of the underlying causes of the strengthening effect of alkali on gluten and noodle quality: Studies on gluten, gliadin, and glutenin. Food Hydrocoll. 2020, 103, 105661. [Google Scholar] [CrossRef]
- Thiele, C.; Ganzle, M.G.; Vogel, R.F. Contribution of sourdough lactobacilli, yeast, and cereal enzymes to the generation of amino acids in dough relevant for bread flavor. Cereal Chem. 2002, 79, 45–51. [Google Scholar] [CrossRef]
- Li, Z.; Li, H.; Deng, C.; Bian, K.; Liu, C. Effect of Lactobacillus plantarum DM616 on dough fermentation and chinese steamed bread quality. J. Food Process. Preserv. 2015, 39, 30–37. [Google Scholar] [CrossRef]
- Anyango, J.O.; de Kock, H.L.; Taylor, J.R.N. Impact of cowpea addition on the Protein Digestibility Corrected Amino Acid Score and other protein quality parameters of traditional African foods made from non-tannin and tannin sorghum. Food Chem. 2011, 124, 775–780. [Google Scholar] [CrossRef]
- Loponen, J.; Mikola, M.; Katina, K.; Sontag-Strohm, T.; Salovaara, H. Degradation of HMW glutenins during wheat sourdough fermentations. Cereal Chem. 2004, 81, 87–93. [Google Scholar] [CrossRef]
- Van der Zalm, E.E.J.; Grabowska, K.J.; Strubel, M.; van der Goot, A.J.; Hamer, R.J.; Boom, R.M. Gluten Protein Composition in Several Fractions Obtained by Shear Induced Separation of Wheat Flour. J. Agric. Food Chem. 2010, 58, 10487–10492. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Xu, D.; Zhang, H.; Guo, L.; Hong, T.; Zhang, W.; Jin, Y.; Xu, X. Effect of pigskin gelatin on baking, structural and thermal properties of frozen dough: Comprehensive studies on alteration of gluten network. Food Hydrocoll. 2020, 102, 105591. [Google Scholar] [CrossRef]
- Thiele, C.; Ganzle, M.G.; Vogel, R.F. Fluorescence labeling of wheat proteins for determination of gluten hydrolysis and depolymerization during dough processing and sourdough fermentation. J. Agric. Food Chem. 2003, 51, 2745–2752. [Google Scholar] [CrossRef]
- Tang, C.-H. Functional properties and in vitro digestibility of buckwheat protein products: Influence of processing. J. Food Eng. 2007, 82, 568–576. [Google Scholar] [CrossRef]
- Capuani, A.; Behr, J.; Vogel, R.F. Influence of lactic acid bacteria on redox status and on proteolytic activity of buckwheat (Fagopyrum esculentum Moench) sourdoughs. Int. J. Food Microbiol. 2013, 165, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Carbonetto, B.; Nidelet, T.; Guezenec, S.; Perez, M.; Segond, D.; Sicard, D. Interactions between Kazachstania humilis Yeast Species and Lactic Acid Bacteria in Sourdough. Microorganisms 2020, 8, 240. [Google Scholar] [CrossRef]
- Gaenzle, M.G.; Vermeulen, N.; Vogel, R.F. Carbohydrate, peptide and lipid metabolism of lactic acid bacteria in sourdough. Food Microbiol. 2007, 24, 128–138. [Google Scholar] [CrossRef]
- Ponomarova, O.; Gabrielli, N.; Sevin, D.C.; Mulleder, M.; Zimgibl, K.; Bulyha, K.; Andrejev, S.; Kafkia, E.; Typas, A.; Sauer, U.; et al. Yeast Creates a Niche for Symbiotic Lactic Acid Bacteria through Nitrogen Overflow. Cell Syst. 2017, 5, 345–357.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petel, C.; Onno, B.; Prost, C. Sourdough volatile compounds and their contribution to bread: A review. Trends Food Sci. Technol. 2017, 59, 105–123. [Google Scholar] [CrossRef]
Sourdoughs | GMP (g/100 g) | Depolymerization Degree (%) | |
---|---|---|---|
0 (Hour) | 19 (Hour) | ||
N-L-Y | 0.59 ± 0.02 a | 0.55 ± 0.06 a | 6.77 |
Yeast | 0.63 ± 0.01 b | 0.58 ± 0.02 b | 7.94 |
DN-1 | 0.60 ± 0.03 b | 0.51 ± 0.04 a | 15.00 |
Free Amino Acids (mg/g) | N-L-Y | Yeast | DN-1 |
---|---|---|---|
Asp | 10.42 ± 0.04 a | 16.75 ± 0.29 c | 11.25 ± 0.37 b |
Glu | 16.95 ± 0.10 a | 42.52 ± 0.65 c | 33.21 ± 0.43 b |
Ser | 1.17 ± 0.05 a | 1.78 ± 0.13 a | 2.19 ± 0.23 b |
His | 3.99 ± 0.13 a | 4.90 ± 0.14 b | 7.37 ± 0.31 c |
Gly | 8.03 ± 0.06 b | 4.16 ± 0.23 a | 9.41 ± 0.61 c |
Thr | 5.25 ± 0.03 a | 6.05 ± 0.20 a | 8.41 ± 0.08 b |
Arg | 10.39 ± 0.17 b | 7.90 ± 0.01 a | 20.79 ± 0.60 c |
Ala | 17.65 ± 0.01 a | 16.90 ± 0.50 a | 20.37 ± 0.30 b |
Tyr | 9.13 ± 0.02 b | 7.18 ± 0.12 a | 8.40 ± 0.27 b |
Cys | 8.22 ± 0.11 b | 0.27 ± 0.09 a | 1.04 ± 0.08 a |
Val | 1.24 ± 0.07 a | 10.41 ± 0.40 b | 13.23 ± 0.18 c |
Met | 10.31 ± 0.03 c | 2.31 ± 0.18 a | 3.66 ± 0.33 b |
Phe | 2.16 ± 0.01 a | 4.75 ± 0.03 b | 8.12 ± 0.20 c |
Ile | 7.11 ± 0.01 c | 3.40 ± 0.09 a | 4.97 ± 0.54 b |
Leu | 5.34 ± 0.11 b | 4.53 ± 0.36 a | 11.53 ± 0.70 c |
Lys | 10.73 ± 0.16 c | 4.68 ± 0.30 a | 8.39 ± 0.95 b |
Pro | 13.48 ± 0.09 a | 15.09 ± 0.71 b | 22.48 ± 1.39 c |
Gaba | 5.68 ± 0.01 a | 8.81 ± 0.11 b | 13.68 ± 0.46 c |
Total amino acids | 147.26 ± 0.10 a | 162.40 ± 0.09 b | 208.51 ± 0.26 c |
Essential amino acids | 51.28 ± 0.08 b | 43.31 ± 0.07 a | 66.71 ± 0.14 c |
E/T (%) | 32.61 | 26.67 | 31.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, L.; Li, Y.; Huang, X.; Du, C.; Huang, D.; Tao, X. The Effect of Co-Fermentation with Lactobacillus plantarum HLJ29L2 and Yeast on Wheat Protein Characteristics in Sourdough and Crackers. Foods 2023, 12, 555. https://doi.org/10.3390/foods12030555
Hu L, Li Y, Huang X, Du C, Huang D, Tao X. The Effect of Co-Fermentation with Lactobacillus plantarum HLJ29L2 and Yeast on Wheat Protein Characteristics in Sourdough and Crackers. Foods. 2023; 12(3):555. https://doi.org/10.3390/foods12030555
Chicago/Turabian StyleHu, Liping, Yue Li, Xiang Huang, Chaodong Du, Dejian Huang, and Xiumei Tao. 2023. "The Effect of Co-Fermentation with Lactobacillus plantarum HLJ29L2 and Yeast on Wheat Protein Characteristics in Sourdough and Crackers" Foods 12, no. 3: 555. https://doi.org/10.3390/foods12030555
APA StyleHu, L., Li, Y., Huang, X., Du, C., Huang, D., & Tao, X. (2023). The Effect of Co-Fermentation with Lactobacillus plantarum HLJ29L2 and Yeast on Wheat Protein Characteristics in Sourdough and Crackers. Foods, 12(3), 555. https://doi.org/10.3390/foods12030555