Comparison of the Rheological Behavior of Fortified Rye–Wheat Dough with Buckwheat, Beetroot and Flax Fiber Powders and Their Effect on the Final Product
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Basic Parameters of Flour and Dough
2.2.2. Pasting Characteristics of Flour Blends
2.2.3. Preparation of Rye–Wheat Dough and Baking Process
2.2.4. Rheological Properties of the Dough Samples
Oscillatory Measurements
Creep and Recovery Tests
2.2.5. Laboratory Baking Parameters
2.2.6. Bread Color
2.2.7. Texture Profile
2.2.8. Sensory Breads Quality
2.2.9. Statistical Analysis
3. Results and Discussion
3.1. Basic Parameters of Flour and Dough
3.2. Pasting Characteristics of Dough Mixes
3.3. Rheological Measurements of Doughs
3.3.1. Oscillatory Measurements
3.3.2. Creep and Recovery Test
3.4. Laboratory Baking Parameters
3.5. Color Parameters
3.6. Texture Analysis
3.7. Sensory Evaluation of Bread
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jarosz, K. Przygotowanie Kęsów Ciasta Do Wypieku i Wypiek Ciast. Kwalifikacja T.3.3. Podręcznik Do Nauki Zawodu Piekarz, Technik Technologii Żywności; WsiP: Warsaw, Poland, 2016. [Google Scholar]
- Stępniewska, S.; Cacak-Pietrzak, G.; Szafrańska, A.; Ostrowska-Ligęza, E.; Dziki, D. Assessment of the Starch-Amylolytic Complex of Rye Flours by Traditional Methods and Modern One. Materials 2021, 14, 7603. [Google Scholar] [CrossRef] [PubMed]
- Hübner, M.; Wilde, P.; Schmiedchen, B.; Dopierala, P.; Gowda, M.; Reif, J.C.; Miedaner, T. Hybrid Rye Performance under Natural Drought Stress in Europe. Theor. Appl. Genet. 2013, 126, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Deleu, L.J.; Lemmens, E.; Redant, L.; Delcour, J.A. The Major Constituents of Rye (Secale cereale L.) Flour and Their Role in the Production of Rye Bread, a Food Product to Which a Multitude of Health Aspects Are Ascribed. Cereal Chem. 2020, 97, 739–754. [Google Scholar] [CrossRef]
- Sluková, M.; Jurkaninová, L.; Švec, I.; Skřivan, P. Rye—the Nutritional and Technological Evaluation in Czech Cereal Technology—A Review: Grain and Flours. Czech J. Food Sci. 2021, 39, 3–8. [Google Scholar] [CrossRef]
- Piekut, M. Spożycie Produktów Zbożowych w Polsce—Poziom, Struktura, Determinanty. Przegląd Zbożowo-Młynarski 2015, 59, 7–9. [Google Scholar]
- Gambuś, H. Funkcja Skrobi w Produktach Piekarskich. ŻNTJ 2000, 3, 20–32. [Google Scholar]
- Fik, M. Czerstwienie Pieczywa i Sposoby Przedłużania Jego Świeżości. ŻNTJ 2004, 2, 5–22. [Google Scholar]
- Marzec, A.; Mieszkowska, A.; Stańczyk, U. Wpływ Czasu Przechowywania w Warunkach Zamrażalniczych Na Teksturę Chleba Słonecznikowego z Odroczonego Wypieku. ŻNTJ 2016, 104, 117–127. [Google Scholar] [CrossRef]
- Rendón-Villalobos, J.R.; Ortíz-Sánchez, A.; Flores-Huicochea, E. Chapter 9—Nutritionally Enhanced Foods Incorporating Chía Seed. In Therapeutic Foods; Handbook of Food Bioengineering; Academic Press: Cambridge, MA, USA, 2018; pp. 257–281. [Google Scholar] [CrossRef]
- Martins, Z.E.; Pinho, O.; Ferreira, I.M.P.L.V.O. Food Industry By-Products Used as Functional Ingredients of Bakery Products. Trends Food Sci. Technol. 2017, 67, 106–128. [Google Scholar] [CrossRef]
- Zarzycki, P.; Kasprzak, M.; Rzedzicki, Z.; Sobota, A.; Sykut-Domańska, E. Rheological Properties of Wheat Flour Slurry as Indicators of Baking Quality of Wheat Flour. ŻNTJ 2014, 6, 50–66. [Google Scholar] [CrossRef]
- Moradi, V.; Mousavi Khaneghah, A.; Fallah, A.; Akbarirad, H. Rheological Properties of Wheat Flour with Different Extraction Rate. Int. Food Res. J. 2016, 23, 1056–1061. [Google Scholar]
- Almeida, E.L.; Chang, Y.K.; Steel, C.J. Effect of Adding Different Dietary Fiber Sources on Farinographic Parameters of Wheat Flour. Cereal Chem. 2010, 87, 566–573. [Google Scholar] [CrossRef]
- Hromádková, Z.; Stavová, A.; Ebringerová, A.; Hirsch, J. Effect of Buckwheat Hull Hemicelluloses Addition on the Bread-Making Quality of Wheat Flour. J. Food Nutr. Res. 2007, 46, 158–166. [Google Scholar]
- Kaszuba, J.; Pycia, K.; Wiśniewski, R.; Jaworska, G.; Kuźniar, P. Wpływ Udziału Nasion Wybranych Roślin Oleistych Na Jakość Chleba Pszenżytniego. 2017, 113, 90–102. ŻNTJ 2017, 113, 90–102. [Google Scholar] [CrossRef]
- Wirkijowska, A.; Zarzycki, P.; Sobota, A.; Nawrocka, A.; Blicharz-Kania, A.; Andrejko, D. The Possibility of Using By-Products from the Flaxseed Industry for Functional Bread Production. LWT 2020, 118, 108860. [Google Scholar] [CrossRef]
- Adamczyk, G.; Ivanišová, E.; Kaszuba, J.; Bobel, I.; Khvostenko, K.; Chmiel, M.; Falendysh, N. Quality Assessment of Wheat Bread Incorporating Chia Seeds. Foods 2021, 10, 2376. [Google Scholar] [CrossRef]
- Adamczyk, G.; Krystyjan, M.; Witczak, M. The Impact of Fiber from Buckwheat Hulls Waste on the Pasting, Rheological and Textural Properties of Normal and Waxy Potato Starch Gels. Polymers 2021, 13, 4148. [Google Scholar] [CrossRef]
- Sharoba, A.M.; Farrag, M.A.; Abd El-Salam, A.M. Utilization of Some Fruits and Vegetables Waste as a Source of Dietary Fiber and Its Effect on the Cake Making and Its Quality Attributes. J. Agroaliment Process. Technol. 2013, 19, 429–444. [Google Scholar]
- McKee, L.H.; Latner, T.A. Underutilised Sources of Dietary Fibre: A Review. Plant Foods Hum. Nutr. 2000, 55, 285–304. [Google Scholar] [CrossRef]
- González-Centeno, M.R.; Rosselló, C.; Simal, S.; Garau, M.C.; López, F.; Femenia, A. Physico-Chemical Properties of Cell Wall Materials Obtained from Ten Grape Varieties and Their Byproducts: Grape Pomaces and Stems. LWT-Food Sci. Technol. 2010, 43, 1580–1586. [Google Scholar] [CrossRef]
- Steadman, K.J.; Burgoon, M.S.; Lewis, B.A.; Edwardson, S.E.; Obendorf, R.L. Buckwheat Seed Milling Fractions: Description, Macronutrient Composition and Dietary Fibre. J. Cereal Sci. 2001, 33, 271–278. [Google Scholar] [CrossRef]
- Watanabe, M.; Ohshita, Y.; Tsushida, T. Antioxidant Compounds from Buckwheat (Fagopyrum esculentum Möench) Hulls. J. Agric. Food Chem. 1997, 45, 1039–1044. [Google Scholar] [CrossRef]
- Holasova, M.; Fiedlerova, V.; Smrcinova, H.; Orsak, M.; Lachman, J.; Vavreinova, S. Buckwheat—The Source of Antioxidant Activity in Functional Foods. Food Res. Int. 2002, 35, 207–211. [Google Scholar] [CrossRef]
- Amnah, M. Nutritional, Sensory and Biological Study of Biscuits Fortified with Red Beet Roots. Life Sci. J. 2013, 10, 1579–1584. [Google Scholar]
- Awasthi, P. Sensory and Nutritional Evaluation of Value-Added Cakes Formulated by Incorporating Beetroot Powder. Int. J. Food Nutr. Sci. 2014, 3, 145–148. [Google Scholar]
- Singh, J.P.; Kaur, A.; Shevkani, K.; Singh, N.; Singh, B. Physicochemical Characterisation of Corn Extrudates Prepared with Varying Levels of Beetroot (Beta vulgaris) at Different Extrusion Temperatures. Int. J. Food Sci. Technol. 2016, 51, 911–919. [Google Scholar] [CrossRef]
- Sinha, P.; Masih, D. Development and Quality Evaluation of Extruded Product of Rice Flour Incorporated with Beetroot (Beta vulgaris) Pomace and Pulse Powder. IJSR 2014, 3, 148–150. [Google Scholar] [CrossRef]
- Kohajdová, Z.; Karovičová, J.; Kuchtová, V.; Lauková, M. Utilisation of Beetroot Powder for Bakery Applications. Chem. Pap. 2018, 72, 1507–1515. [Google Scholar] [CrossRef]
- Korpacheva, S.; Serasutdinova, K.; Lomovsky, I.; Chugunova, O. Technological aspects of obtaining melanin and powder from buckwheat hull and their use in food technology. E3S Web Conf. 2021, 296, 07007. [Google Scholar] [CrossRef]
- Bajwa, U. Soy Enriched Flat Bread (Chapaties): Evaluation of Texture Using Instron Universal Testing Machine. Adv. Food Sci. 1997, 19, 167–171. [Google Scholar]
- Rao, V.S.; Vakil, U.K. Improvement of Baking Quality of Oilseed Enriched Wheat Flour by Addition of Gluten and Soyalecithin. JFST 1980, 17, 259–262. [Google Scholar]
- Ahluwalia, P.; Kaur, A. Studies on Use of Isabgol (Psyllium mucilloid) Husk in Atta for Chapati Making. J. Food Sci. Technol. 2001, 38, 75–78. [Google Scholar]
- ICC Standard No. 115/1; Method for Using the Brabender Farinograph. International Association for Cereal Science and Technology: Vienna, Austria, 1992.
- ICC Standard No. 107/1; Determination of the “Falling Number” According to Hagberg-Perten as a Measure of the Degree of Alpha-Amylase Activity in Grain and Flour. International Association for Cereal Science and Technology: Vienna, Austria, 1995.
- Jakubczyk, T. Analiza Zbóż i Przetworów Zbożowych: Praca Zbiorowa; Jakubczyk, T., Haber, T., Eds.; Skrypty Szkoły Głównej Gospodarstwa Wiejskiego Akademii Rolniczej w Warszawie; Wydaw; SGGW-AR: Warszawa, Poland, 1983. [Google Scholar]
- Pycia, K.; Ivanišová, E. Physicochemical and Antioxidant Properties of Wheat Bread Enriched with Hazelnuts and Walnuts. Foods 2020, 9, 1081. [Google Scholar] [CrossRef] [PubMed]
- Steffe, J.F. Rheological Methods in Food Process Engineering, 2nd ed.; Freeman Press: East Lansing, MI, USA, 1996. [Google Scholar]
- Lazaridou, A.; Duta, D.; Papageorgiou, M.; Belc, N.; Biliaderis, C.G. Effects of Hydrocolloids on Dough Rheology and Bread Quality Parameters in Gluten-Free Formulations. J. Food Eng. 2007, 79, 1033–1047. [Google Scholar] [CrossRef]
- Witczak, M.; Korus, J.; Ziobro, R.; Juszczak, L. Waxy Starch as Dough Component and Anti-Staling Agent in Gluten-Free Bread. LWT 2019, 99, 476–482. [Google Scholar] [CrossRef]
- Puhr, D.P.; D’Appolonia, B.L. Effect of Baking Absorption on Bread Yield, Crumb Moisture, and Crumb Water Activity. Cereal Chem. 1992, 69, 582–586. [Google Scholar]
- Pycia, K.; Jaworska, G.; Telega, J.; Sudoł, I.; Kuźniar, P. Effect of Adding Potato Maltodextrins on Baking Properties of Triticale Flour and Quality of Bread. LWT 2018, 96, 199–204. [Google Scholar] [CrossRef]
- Sobczyk, A.; Pycia, K.; Stankowski, S.; Jaworska, G.; Kuźniar, P. Evaluation of the Rheological Properties of Dough and Quality of Bread Made with the Flour Obtained from Old Cultivars and Modern Breeding Lines of Spelt (Triticum aestivum ssp. spelta). J. Cereal Sci. 2017, 77, 35–41. [Google Scholar] [CrossRef]
- Makinde, F.M.; Akinoso, R. Physical, Nutritional and Sensory Qualities of Bread Samples Made with Wheat and Black Sesame (Sesamum indicum Linn) Flours. Int. Food Res. J. 2014, 21, 1635–1640. [Google Scholar]
- Bączkowicz, M.; Fortuna, T.; Juszczak, L.; Sobolewska-Zielińska, J. Podstawy Analizy i Oceny Jakości Żywności: Skrypt do Ćwiczeń, 3rd ed.; Fortuna, T., Ed.; Wydawnictwo Uniwersytetu Rolniczego: Kraków, Poland, 2018. [Google Scholar]
- Krochmal-Marczak, B.; Tobiasz-Salach, R.; Kaszuba, J. The Effect of Adding Oat Flour on the Nutritional and Sensory Quality of Wheat Bread. BFJ 2020, 122, 2329–2339. [Google Scholar] [CrossRef]
- Diowksz, A.; Sadowska, A. Impact of Sourdough and Transglutaminase on Gluten-Free Buckwheat Bread Quality. Food Biosci. 2021, 43, 101309. [Google Scholar] [CrossRef]
- Gómez, M.; Pardo, J.; Oliete, B.; Caballero, P.A. Effect of the Milling Process on Quality Characteristics of Rye Flour: Effect of Milling Process on Rye Flour. J. Sci. Food Agric. 2009, 89, 470–476. [Google Scholar] [CrossRef]
- Miś, A.; Nawrocka, A.; Dziki, D. Behaviour of Dietary Fibre Supplements During Bread Dough Development Evaluated Using Novel Farinograph Curve Analysis. Food Bioprocess Technol. 2017, 10, 1031–1041. [Google Scholar] [CrossRef] [Green Version]
- Lauková, M.; Kohajdová, Z.; Karovičová, J.; Kuchtová, V.; Minarovičová, L.; Tomášiková, L. Effects of Cellulose Fiber with Different Fiber Length on Rheological Properties of Wheat Dough and Quality of Baked Rolls. Food Sci. Technol. Int. 2017, 23, 490–499. [Google Scholar] [CrossRef]
- Voicu, G.; Constantin, G.; Stefan, E.M.; Ipate, G. Variation of Farinographic Parameters of Doughs Obtained from Wheat and Rye Flour Mixtures during Kneading. U.P.B. Sci. Bull. 2012, 74, 307–320. [Google Scholar]
- Xu, Y.; Hall, C.A., III; Manthey, F.A. Effect of Flaxseed Flour on Rheological Properties of Wheat Flour Dough and on Bread Characteristics. J. Food Res. 2014, 3, 83. [Google Scholar] [CrossRef] [Green Version]
- Koneva, S.I.; Egorova, E.Y.; Kozubaeva, L.A.; Kuzmina, S.S.; Zakharova, A.S. Influence of Flaxseed Flour on Dough Rheology from Wheat-Flaxseed Meal. In International Scientific and Practical Conference “AgroSMART—Smart Solutions for Agriculture” (AgroSMART 2018); Atlantis Press: Tyumen, Russia, 2018. [Google Scholar] [CrossRef]
- Ognean, C.F.; Ognean, M.; Darie, N. The Effect of Some Commercial Fibers on Dough Rheology. UASVMCN-AGR 2011, 68, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Nagib, R.M.; Zidan, N.S. Fortification of Cake with Sweet Potato and Beetroot Flour as Natural Antioxidant during Storage. ASEJ 2019, 40, 754–766. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Ma, S.; Li, L.; Wang, X. Study on the Effect of Wheat Bran Dietary Fiber on the Rheological Properties of Dough. GOST 2019, 2, 1–5. [Google Scholar] [CrossRef]
- Czubaszek, A.; Wojciechowicz-Budzisz, A.; Spychaj, R.; Kawa-Rygielska, J. Baking Properties of Flour and Nutritional Value of Rye Bread with Brewer’s Spent Grain. LWT 2021, 150, 111955. [Google Scholar] [CrossRef]
- Puligundla, P.; Lim, S. A Review of Extraction Techniques and Food Applications of Flaxseed Mucilage. Foods 2022, 11, 1677. [Google Scholar] [CrossRef] [PubMed]
- Ktenioudaki, A.; Butler, F.; Gallagher, E. Rheological Properties and Baking Quality of Wheat Varieties from Various Geographical Regions. J. Cereal Sci. 2010, 51, 402–408. [Google Scholar] [CrossRef]
- Zaidul, I.S.M.; Karim, A.A.; Manan, D.M.A.; Ariffin, A.; Nik Norulaini, N.A.; Mohd Omar, A.K. A Farinograph Study on the Viscoelastic Properties of Sago/Wheat Flour Dough Systems. J. Sci. Food Agric. 2004, 84, 616–622. [Google Scholar] [CrossRef]
- Witczak, M.; Juszczak, L.; Ziobro, R.; Korus, J. Influence of Modified Starches on Properties of Gluten-Free Dough and Bread. Part I: Rheological and Thermal Properties of Gluten-Free Dough. Food Hydrocoll. 2012, 28, 353–360. [Google Scholar] [CrossRef]
- Ahmed, J.; Ramaswamy, H.S.; Kasapis, S.; Boye, J.I. (Eds.) Novel Food Processing: Effects on Rheological and Functional Properties, 1st ed.; Electro-Technologies for Food Processing Series; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Moelants, K.R.N.; Cardinaels, R.; Van Buggenhout, S.; Van Loey, A.M.; Moldenaers, P.; Hendrickx, M.E. A Review on the Relationships between Processing, Food Structure, and Rheological Properties of Plant-Tissue-Based Food Suspensions. Compr. Rev. Food Sci. Food Saf. 2014, 13, 241–260. [Google Scholar] [CrossRef]
- Korus, J.; Witczak, M.; Ziobro, R.; Juszczak, L. The Impact of Resistant Starch on Characteristics of Gluten-Free Dough and Bread. Food Hydrocoll. 2009, 23, 988–995. [Google Scholar] [CrossRef]
- Georgopoulos, T.; Larsson, H.; Eliasson, A.-C. A Comparison of the Rheological Properties of Wheat Flour Dough and Its Gluten Prepared by Ultracentrifugation. Food Hydrocoll. 2004, 18, 143–151. [Google Scholar] [CrossRef]
- Schluentz, E.J.; Steffe, J.F.; Ng, P.K.W. Rheology and Microstructure of Wheat Dough Developed with Controlled Deformation. J. Texture Stud. 2007, 31, 41–54. [Google Scholar] [CrossRef]
- Onyango, C.; Mutungi, C.; Unbehend, G.; Lindhauer, M.G. Rheological and Baking Characteristics of Batter and Bread Prepared from Pregelatinised Cassava Starch and Sorghum and Modified Using Microbial Transglutaminase. J. Food Eng. 2010, 97, 465–470. [Google Scholar] [CrossRef]
- Witczak, M.; Korus, J.; Ziobro, R.; Juszczak, L. The Effects of Maltodextrins on Gluten-Free Dough and Quality of Bread. J. Food Eng. 2010, 96, 258–265. [Google Scholar] [CrossRef]
- Hüttner, E.K.; Bello, F.D.; Arendt, E.K. Rheological Properties and Bread Making Performance of Commercial Wholegrain Oat Flours. J. Cereal Sci. 2010, 52, 65–71. [Google Scholar] [CrossRef]
- Kasprzak, M.; Rzedzicki, Z.; Sykut-Domańska, E. Effect of Oat Wholemeal Added on Quality Profile of Wheat Bread. ŻNTJ 2011, 18, 124–139. [Google Scholar] [CrossRef]
- Miller, R.A.; Maningat, C.C.; Hoseney, R.C. Modified Wheat Starches Increase Bread Yield. Cereal Chem. 2008, 85, 713–715. [Google Scholar] [CrossRef]
- Coelho, M.S.; Salas-Mellado, M.d.l.M. Effects of Substituting Chia (Salvia hispanica L.) Flour or Seeds for Wheat Flour on the Quality of the Bread. LWT-Food Sci. Technol. 2015, 60, 729–736. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Sandoval, E.; Polanía-Gaviria, L.Y.; Lorenzo, G. Effect of Dried Cassava Bagasse on the Baking Properties of Composite Wheat Bread. J. Texture Stud. 2017, 48, 76–84. [Google Scholar] [CrossRef] [Green Version]
- Lal Dar, Y.; Light, J.M. (Eds.) Food Texture Design and Optimization; John Wiley & Sons, Ltd.: Chichester, UK, 2014. [Google Scholar] [CrossRef]
- Witczak, T.; Juszczak, L.; Ziobro, R.; Korus, J. Rheology of Gluten-Free Dough and Physical Characteristics of Bread with Potato Protein. J. Food Process Eng. 2017, 40, e12491. [Google Scholar] [CrossRef]
- Kučerová, J.; Šottníková, V.; Nedomová, Š. Influence of Dietary Fibre Addition on the Rheological and Sensory Properties of Dough and Bakery Products. Czech J. Food Sci. 2013, 31, 340–346. [Google Scholar] [CrossRef]
- Darby, H. 2022 Rye harvest date. The University of Vermont Extension Northwest Crops and Soils Program (NWCS). 2022. Available online: https://www.uvm.edu/extension/nwcrops/research (accessed on 2 January 2023).
Ingredients | Amount [g] | |||
---|---|---|---|---|
Control | Flour with BH | Flour with BR | Flour with FL | |
Rye flour type 720 | 667 | 600 | 600 | 600 |
Wheat flour type 650 | 333 | 300 | 300 | 300 |
Buckwheat fiber (BH) | - | 100 | - | - |
Beetroot fiber (BR) | - | - | 100 | - |
Flax fiber (FL) | - | - | - | 100 |
Samples | Flour Moisture [%] | Protein Content [%] | Ash Content [%] | Falling Number [s] | Water Absorption [%] | Properties of Dough | |||
---|---|---|---|---|---|---|---|---|---|
Development Time [min] | Stability [min] | Degree of Softening [FU] | Farinograph Quality Number | ||||||
Control | 12.68 ± 0.2 b | 10.6 c | 0.89 d | 163 ± 4 a | 58.5 ± 0.0 c | 4.2 ± 0.5 ab | 3.5± 0.4 b | 94 ± 7 d | 64 ± 6 ab |
Dough with BH | 12.31 ± 0.0 a | 9.3 d | 2.76 a | 234 ± 2 c | 55.6 ± 0.0 a | 3.2 ± 0.9 a | 4.0± 0.0 bc | 68 ± 1 c | 71 ± 3 b |
Dough with BR | 12.38 ± 0.1 a | 11.8 b | 1.57 b | 227 ± 2 b | 56.5 ± 0.0 b | 5.0 ± 0.4 b | 4.4± 0.0 c | 60 ± 1 a | 76 ± 0 c |
Dough with FL | 12.31 ± 0.2 a | 13.3 a | 1.36 c | 244 ± 4 d | 60.3 ± 0.1 d | 4.2 ± 0.2 a | 1.4 ± 0.4 a | 64 ± 11 b | 60 ± 6 a |
Samples | T0 [°C] | ηmax [BU] | Tη max [°C] | η95ᵒC [BU] | BD [BU] | SB [BU] | η30°C [BU] |
---|---|---|---|---|---|---|---|
Control | 56.0 ± 0.0 b | 295.0 ± 1.4 b | 71.8 ± 0.6 a | 31.0 ± 1.4 a | 269.0 ± 2.8 b | 53.5 ± 0.7 a | 79.5 ± 2.1 a |
Flour with BH | 58.1 ± 0.2 d | 234.0 ± 12.7 a | 74.5 ± 0.8 b | 47.0 ± 0.0 b | 192.5 ± 13.4 a | 123.5 ± 2.1 c | 165.0 ± 1.4 c |
Flour with BR | 57.1 ± 0.1 bc | 234.0 ± 7.1 a | 72.3 ± 0.2 a | 36.0 ± 4.2 a | 204.0 ± 4.2 a | 65.0 ± 1.4 b | 95.0 ± 4.2 b |
Flour with FL | 55.4 ± 0.0 a | 656.0 ± 3.5 c | 73.1 ± 0.6 ab | 116.5 ± 2.1 c | 550.5 ± 6.4 c | 397.5 ± 4.9 d | 503.5 ± 7.8 d |
Sample | tg δ* | ||||||
---|---|---|---|---|---|---|---|
K′ [Pasn′] | n′ [-] | R2 | K″ [Pasn″] | n″ [-] | R2 | ||
Control | 22,399 ± 702 a | 0.21 ± 0.01 a | 0.997 | 8774 ± 396 a | 0.16 ± 0.01 a | 0.977 | 0.44 ± 0.01 c |
Dough with BH | 23,395 ± 502 ab | 0.21 ± 0.00 a | 0.996 | 8672 ± 370 a | 0.17 ± 0.01 b | 0.988 | 0.41 ± 0.01 a |
Dough with BR | 25,361 ± 1683 b | 0.21 ± 0.01 a | 0.996 | 9697 ± 615 b | 0.16 ± 0.01 a | 0.976 | 0.42 ± 0.00 b |
Dough with FL | 37,471 ± 1378 c | 0.20 ± 0.01 a | 0.996 | 13,590 ± 307 c | 0.16 ± 0.00 a | 0.975 | 0.40 ± 0.01 a |
Sample | J0(×103) [Pa−1] | J1(×103) [Pa−1] | λret [s] | η0(×10−5) [Pa s] |
---|---|---|---|---|
Control | 0.107 ± 0.02 c | 0.248 ± 0.09 b | 129.4 ± 35.2 a | 15.2 ± 4.5 a |
Dough with BH | 0.080 ± 0.01 b | 0.131 ± 0.02 a | 95.0 ± 16.7 a | 12.8 ± 0.2 a |
Dough with BR | 0.082 ± 0.01 b | 0.148 ± 0.03 a | 106.7 ± 21.4 a | 13.4 ± 1.9 a |
Dough with FL | 0.053 ± 0.01 a | 0.107 ± 0.02 a | 124.3 ± 22.3 a | 27.7 ± 5.7 b |
Sample | Dough Yield [%] | Baking Loss [%] | Bread Yield [%] | Loaf Volume [cm3] | Specific Volume [cm3/g] |
---|---|---|---|---|---|
Control | 164.97 ± 0.67 b | 9.51 ± 0.42 c | 139.43 ± 0.48 a | 430 ± 0 d | 2.04 ± 0.00 c |
Bread with BH | 163.58 ± 0.16 a | 8.71 ± 0.18 b | 140.39 ± 0.11 a | 420 ± 7 c | 2.03 ± 0.02 c |
Bread with BR | 164.78 ± 0.31 b | 8.49 ± 0.22 a | 142.18 ± 0.68 b | 405 ± 7 a | 1.87 ± 0.03 a |
Bread with FL | 167.82 ± 0.05 c | 9.41 ± 0.48 c | 144.67 ± 0.90 c | 415 ± 7 b | 1.93 ± 0.04 b |
Crumb | Crust | |||||
---|---|---|---|---|---|---|
Sample | L* | a* | b* | L* | a* | b* |
Control | 60.2 ± 0.8 d | 3.5 ± 0.1 a | 18.6 ± 0.4 d | 51.8 ± 09 d | 17.8 ± 0.5 c | 31.8 ± 0.6 d |
Bread with BH | 35.3 ± 0.7 b | 3.8 ± 0.0 a | 8.3 ± 0.0 a | 38.1 ± 1.8 b | 5.6 ± 0.2 a | 11.2 ± 0.4 a |
Bread with BR | 33.3 ± 0.7 a | 24.1 ± 0.7 c | 17.2 ± 0.3 c | 32.0 ± 0.9 a | 20.5 ± 0.7 d | 12.8 ± 0.4 b |
Bread with FL | 52.9 ± 0.3 c | 4.7 ± 0.1 b | 16.3 ± 0.2 b | 47.7 ± 0.2 c | 12.0 ± 0.1 b | 25.0 ± 0.3 c |
Sample | Hardness [N] | Cohesiveness [-] | Chewiness [N] | Gumminess [N] | Resilience [-] |
---|---|---|---|---|---|
Control | 22.7 ± 1.1 a | 0.4 ± 0.1 a | 4.0 ± 0.9 a | 9.4 ± 1.1 a | 0.16 ± 0.0 a |
Bread with BH | 33.5 ± 4.1 b | 0.4 ± 0.0 a | 5.2 ± 0.8 ab | 12.4 ± 1.5 b | 0.15 ± 0.0 a |
Bread with BR | 35.1 ± 3.7 b | 0.4 ± 0.0 a | 6.0 ± 1.7 b | 14.4 ± 2.1 b | 0.16 ± 0.0 a |
Bread with FL | 32.6 ± 2.4 b | 0.4 ± 0.1 a | 4.4 ± 0.9 ab | 11.7 ± 2.0 ab | 0.15 ± 0.0 a |
Sample | Appearance | Crumb | Crust | Flavor | Total Score | Quality Level |
---|---|---|---|---|---|---|
Control | 5.0 ± 1.0 a | 7.0 ± 0.9 a | 9.0 ± 1.0 a | 6.0 ± 1.1 a | 27.0 ± 1.1 a | II |
Bread with BH | 4.0 ± 1.1 b | 6.0 ± 0.5 b | 6.0 ± 1.0 c | 3.0 ± 1.0 c | 19.0 ± 1.5 c | III |
Bread with BR | 4.0 ± 0.9 b | 6.0 ± 1.1 b | 9.0 ± 0.8 a | 5.0 ± 1.2 b | 24.0 ± 1.8 b | II |
Bread with FL | 4.0 ± 0.4 b | 2.0 ± 1.5 c | 7.0 ± 0.6 b | 5.0 ± 1.0 b | 18.0 ± 1.0 c | III |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamczyk, G.; Posadzka, Z.; Witczak, T.; Witczak, M. Comparison of the Rheological Behavior of Fortified Rye–Wheat Dough with Buckwheat, Beetroot and Flax Fiber Powders and Their Effect on the Final Product. Foods 2023, 12, 559. https://doi.org/10.3390/foods12030559
Adamczyk G, Posadzka Z, Witczak T, Witczak M. Comparison of the Rheological Behavior of Fortified Rye–Wheat Dough with Buckwheat, Beetroot and Flax Fiber Powders and Their Effect on the Final Product. Foods. 2023; 12(3):559. https://doi.org/10.3390/foods12030559
Chicago/Turabian StyleAdamczyk, Greta, Zuzanna Posadzka, Teresa Witczak, and Mariusz Witczak. 2023. "Comparison of the Rheological Behavior of Fortified Rye–Wheat Dough with Buckwheat, Beetroot and Flax Fiber Powders and Their Effect on the Final Product" Foods 12, no. 3: 559. https://doi.org/10.3390/foods12030559
APA StyleAdamczyk, G., Posadzka, Z., Witczak, T., & Witczak, M. (2023). Comparison of the Rheological Behavior of Fortified Rye–Wheat Dough with Buckwheat, Beetroot and Flax Fiber Powders and Their Effect on the Final Product. Foods, 12(3), 559. https://doi.org/10.3390/foods12030559