The Potential Use of Cold-Pressed Coconut Oil By-Product as an Alternative Source in the Production of Plant-Based Drink and Plant-Based Low-Fat Ice Cream: The Rheological, Thermal, and Sensory Properties of Plant-Based Ice Cream
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Preparation of Coconut By-Product Plant-Based Drink
2.3. Preparation of Vegan Ice Cream
2.4. Analysis of COB and Plant Drink Samples
2.4.1. Physicochemical Analysis of COB
2.4.2. Bioactive Properties of COB
2.4.3. Physicochemical Analysis of Plant Drink Samples
2.4.4. Particle Size and Zeta Potential Value of Drink Samples
2.4.5. Color Parameters of Plant Drink Samples
2.4.6. The Colloidal Stability of Plant Drink Samples
2.5. Analysis of Ice Cream Mixes
2.5.1. Rheological Analyses
2.5.2. The Fat Globule Size Distributions and Zeta Potential Values of Ice Cream Mixes
2.6. Analysis of the Ice Cream
2.6.1. Color
2.6.2. Overrun
2.6.3. Thermal Properties of Ice Cream (DSC Analysis)
2.6.4. Sensory Analysis
2.6.5. Statistical Analysis
3. Results and Discussion
3.1. Properties of COB and Plant Drink Samples
3.2. Rheological Properties and Zeta Potential of Ice Cream Mixes
3.2.1. Steady Shear Rheological Properties of Ice Cream Mixes
3.2.2. Dynamic Rheological Properties of Ice Cream Mixes
3.2.3. Thixotropic Behavior of Ice Cream Mixes
3.3. Analysis of the Ice Cream
3.3.1. Color
3.3.2. Overrun
3.3.3. Thermal Properties of the Ice Cream
3.3.4. Sensory
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akbari, M.; Eskandari, M.H.; Davoudi, Z. Application and functions of fat replacers in low-fat ice cream: A review. Trends Food Sci. Technol. 2019, 86, 34–40. [Google Scholar] [CrossRef]
- Shori, A.B.; Aljohani, G.S.; Zahrani, A.J.A.; Al-Sulbi, O.S.; Baba, A.S. Viability of probiotics and antioxidant activity of cashew milk-based yogurt fermented with selected strains of probiotic Lactobacillus spp. LWT 2022, 153, 112482. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Y.; Zhang, Y.; Zhao, S. Purification, characterization and synthesis of antioxidant peptides from enzymatic hydrolysates of coconut (Cocos nucifera L.) cake protein isolates. RSC Adv. 2016, 6, 54346–54356. [Google Scholar] [CrossRef]
- Tekin-Cakmak, Z.H.; Karasu, S.; Kayacan-Cakmakoglu, S.; Akman, P.K. Investigation of potential use of by-products from cold-press industry as natural fat replacers and functional ingredients in a low-fat salad dressing. J. Food Process. Preserv. 2021, 45, e15388. [Google Scholar] [CrossRef]
- Sundrasegaran, S.; Mah, S.H. Extraction Methods of Virgin Coconut Oil and Palm-pressed Mesocarp Oil and their Phytonutrients. eFood 2020, 1, 381–391. [Google Scholar] [CrossRef]
- Karaman, S.; Toker, Ö.S.; Yüksel, F.; Çam, M.; Kayacier, A.; Dogan, M. Physicochemical, bioactive, and sensory properties of persimmon-based ice cream: Technique for order preference by similarity to ideal solution to determine optimum concentration. J. Dairy Sci. 2014, 97, 97–110. [Google Scholar] [CrossRef]
- Atik, I.; Cakmak, Z.H.T.; Avcı, E.; Karasu, S. The Effect of Cold Press Chia Seed Oil By-Products on the Rheological, Microstructural, Thermal, and Sensory Properties of Low-Fat Ice Cream. Foods 2021, 10, 2302. [Google Scholar] [CrossRef]
- Beegum, P.; Nair, J.P.; Manikantan, M.R.; Pandiselvam, R.; Shill, S.; Neenu, S.; Hebbar, K.B. Effect of coconut milk, tender coconut and coconut sugar on the physico-chemical and sensory attributes in ice cream. J. Food Sci. Technol. 2022, 59, 2605–2616. [Google Scholar] [CrossRef]
- Tulashie, S.K.; Amenakpor, J.; Atisey, S.; Odai, R.; Akpari, E.E.A. Production of coconut milk: A sustainable alternative plant-based milk. Case Stud. Chem. Environ. Eng. 2022, 6, 100206. [Google Scholar] [CrossRef]
- Yao, Y.Y.; He, W.; Cai, X.; Bekhit, A.E.D.A.; Xu, B. Sensory, physicochemical and rheological properties of plant-based milk alternatives made from soybean, peanut, adlay, adzuki bean, oat and buckwheat. Int. J. Food Sci. Technol. 2022, 57, 4868–4878. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144. [Google Scholar]
- Singh, R.P.; Chidambara Murthy, K.N.; Jayaprakasha, G.K. Studies on the Antioxidant Activity of Pomegranate (Punica granatum) Peel and Seed Extracts Using in Vitro Models. J. Agric. Food Chem. 2002, 50, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Gul, O.; Atalar, I.; Mortas, M.; Saricaoglu, F.T.; Yazıcı, F. Application of TOPSIS methodology to determine optimum hazelnut cake concentration and high pressure homogenization condition for hazelnut milk production based on physicochemical, structural and sensory properties. Food Meas. 2018, 12, 2404–2415. [Google Scholar] [CrossRef]
- Tekin, Z.H.; Avci, E.; Karasu, S.; Toker, O.S. Rapid determination of emulsion stability by rheology-based thermal loop test. LWT 2020, 122, 109037. [Google Scholar] [CrossRef]
- Hwang, J.-Y.; Shyu, Y.-S.; Hsu, C.-K. Grape wine lees improves the rheological and adds antioxidant properties to ice cream. LWT—Food Sci. Technol. 2009, 42, 312–318. [Google Scholar] [CrossRef]
- Sharma, M.; Singh, A.K.; Yadav, D.N. Rheological properties of reduced fat ice cream mix containing octenyl succinylated pearl millet starch. J. Food Sci. Technol. 2017, 54, 1638–1645. [Google Scholar] [CrossRef] [PubMed]
- Dogan, M.; Kayacier, A.; Toker, S.; Yilmaz, M.T.; Karaman, S. Steady, Dynamic, Creep, and Recovery Analysis of Ice Cream Mixes Added with Different Concentrations of Xanthan Gum. Food Bioprocess Technol. 2013, 6, 1420–1433. [Google Scholar] [CrossRef]
- Kurt, A.; Atalar, I. Effects of quince seed on the rheological, structural and sensory characteristics of ice cream. Food Hydrocoll. 2018, 82, 186–195. [Google Scholar] [CrossRef]
- Bekiroglu, H.; Goktas, H.; Karaibrahim, D.; Bozkurt, F.; Sagdic, O. Determination of rheological, melting and sensorial properties and volatile compounds of vegan ice cream produced with fresh and dried walnut milk. Int. J. Gastron. Food Sci. 2022, 28, 100521. [Google Scholar] [CrossRef]
- Karaca, O.B.; Güven, M.; Yasar, K.; Kaya, S.; Kahyaoglu, T. The functional, rheological and sensory characteristics of ice creams with various fat replacers. Int. J. Dairy Technol. 2009, 62, 93–99. [Google Scholar] [CrossRef]
- Javidi, F.; Razavi, S.M.; Behrouzian, F.; Alghooneh, A. The influence of basil seed gum, guar gum and their blend on the rheological, physical and sensory properties of low fat ice cream. Food Hydrocoll. 2016, 52, 625–633. [Google Scholar] [CrossRef]
- Kuş, S.; Altan, A.; Kaya, A. Rheological behavior and time-dependent characterization of ice cream mix with different salep content. J. Texture Stud. 2005, 36, 273–288. [Google Scholar] [CrossRef]
- Liu, C.; Teng, Z.; Lu, Q.-Y.; Zhao, R.-Y.; Yang, X.-Q.; Tang, C.-H.; Liao, J.-M. Aggregation kinetics and ζ-potential of soy protein during fractionation. Food Res. Int. 2011, 44, 1392–1400. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, J.; Li, J.; Wei, C.; Ye, X.; Shi, J.; Chen, S. Pectin from citrus canning wastewater as potential fat replacer in ice cream. Molecules 2018, 23, 925. [Google Scholar] [CrossRef] [PubMed]
- Kurt, A.; Kahyaoglu, T. Rheological properties and structural characterization of salep improved by ethanol treatment. Carbohydr. Polym. 2015, 133, 654–661. [Google Scholar] [CrossRef]
- Santos, P.H.d.S.; Lannes, S.C.d.S. Application of organogel-like structured system as an alternative for reducing saturated fatty acid and replacing fat in milk ice cream. J. Food Process. Preserv. 2022, 46, e16932. [Google Scholar] [CrossRef]
- Atalar, I.; Kurt, A.; Gul, O.; Yazici, F. Improved physicochemical, rheological and bioactive properties of ice cream: Enrichment with high pressure homogenized hazelnut milk. Int. J. Gastron. Food Sci. 2021, 24, 100358. [Google Scholar] [CrossRef]
- Kaltsa, O.; Yanniotis, S.; Polissiou, M.; Mandala, I. Stability, physical properties and acceptance of salad dressings containing saffron (Crocus sativus) or pomegranate juice powder as affected by high shear (HS) and ultrasonication (US) process. LWT 2018, 97, 404–413. [Google Scholar] [CrossRef]
- Razmkhah, S.; Razavi, S.M.A.; Mohammadifar, M.A. Purification of cress seed (Lepidium sativum) gum: A comprehensive rheological study. Food Hydrocoll. 2016, 61, 358–368. [Google Scholar] [CrossRef]
- Wang, L.; Liu, H.-M.; Zhu, C.-Y.; Xie, A.-J.; Ma, B.-J.; Zhang, P.-Z. Chinese quince seed gum: Flow behaviour, thixotropy and viscoelasticity. Carbohydr. Polym. 2019, 209, 230–238. [Google Scholar] [CrossRef]
- Ürkek, B. Effect of using chia seed powder on physicochemical, rheological, thermal, and texture properties of ice cream. J. Food Process. Preserv. 2021, 45, e15418. [Google Scholar] [CrossRef]
- Aykan, V.; Sezgin, E.; Guzel-Seydim, Z.B. Use of fat replacers in the production of reduced-calorie vanilla ice cream. Eur. J. Lipid Sci. Technol. 2008, 110, 516–520. [Google Scholar] [CrossRef]
- Cruz, A.G.; Antunes, A.E.C.; Sousa, A.L.O.P.; Faria, J.A.F.; Saad, S.M.I. Ice-cream as a probiotic food carrier. Food Res. Int. 2009, 42, 1233–1239. [Google Scholar] [CrossRef]
- Chang, Y.; Hartel, R.W. Development of air cells in a batch ice cream freezer. J. Food Eng. 2002, 55, 71–78. [Google Scholar] [CrossRef]
- Pintor-Jardines, A.; Arjona-Román, J.L.; Totosaus-Sánchez, A.; Severiano-Pérez, P.; González-González, L.R.; Escalona-Buendia, H.B. The influence of agave fructans on thermal properties of low-fat, and low-fat and sugar ice cream. LWT 2018, 93, 679–685. [Google Scholar] [CrossRef]
- Alvarez, V.B.; Wolters, C.; Vodovotz, Y.; Ji, T. Physical properties of ice cream containing milk protein concentrates. J. Dairy Sci. 2005, 88, 862–871. [Google Scholar] [CrossRef] [PubMed]
Physicochemical and Bioactive Properties of Coconut Oil By-Products (COB) | ||
Physicochemical Properties | Dry Matter % | 92.10 ± 0.04 |
Ash % | 2.94 ± 0.00 | |
Oil % | 11.89 ± 0.01 | |
Protein % | 17.20 ± 0.80 | |
Carbohydrate % | 60.07 ± 1.44 | |
pH | 5.84 ± 0.02 | |
BI | 1.77 ± 0.01 | |
aw | 0.417 ± 0.20 | |
TPC (mg/100 g) | 104.49 ± 1.06 | |
Bioactive Properties | CUPRAC (mgTE/100 g) | 106.58 ± 10.38 |
DPPH (mg TE/100 g) | 3.01 ± 0.00 | |
Physicochemical properties of plant drink | ||
COB drink | CC drink | |
Oil | 2.08 ± 0.01 | 1.90 ± 0.01 |
Protein | 2.43 ± 0.02 | 1.05 ± 0.1 |
pH | 5.91 ± 0.01 | 7.23 ± 0.01 |
Size (nm) | 403.15 ± 0.04 | 1137.5 ± 0.44 |
PDI | 0.65 ± 0.19 | 0.6 ± 0.08 |
Zeta Potential (mV) | −16.95 ± 0.21 | −12.35 ± 0.21 |
L* | 65.70 ± 0.58 | 72.00 ± 0.13 |
a* | −1.27 ± 0.39 | −0.91 ± 0.04 |
b* | 5.68 ± 0.58 | 3.67 ± 0.43 |
7th Day Stability (%) | 98 ± 0.00 | 99 ± 0.00 |
Samples | Oil (%) | COB (%) | K (Pasn) | n | R2 | Zeta Potential (mV) | Particle Size, d32 (µm) |
---|---|---|---|---|---|---|---|
COB-C3 | 12.5 | - | 10.23 ± 0.13 cd | 0.19 ± 0.00 a | >0.95 | −34.55 ± 0.03 a | 1502.26 ± 2.52 c |
C1 | 2.5 | - | 9.05 ±0.04 d | 0.14 ± 0.00 c | >0.95 | −40.07 ± 0.55 bc | 2539.33 ± 0.20 bc |
C2 | 7.5 | - | 9.67 ± 0.08 d | 0.15 ± 0.00 bc | >0.95 | −41.47 ± 0.58 c | 3582.00 ± 1.90 ab |
C3 | 12.5 | - | 11.14 ± 0.31 bc | 0.15 ± 0.00 bc | >0.95 | −39.73 ± 0.98 bc | 4.629.67 ± 0.26 a |
COB-1 | 2.5 | 1 | 9.29 ± 0.00 d | 0.16 ± 0.00 b | >0.95 | −38.80 ± 0.52 b | 1694.7 ± 0.62 c |
COB-2 | 2.5 | 2 | 12.22 ± 0.14 b | 0.15 ± 0.00 bc | >0.95 | −38.77 ± 0.81 bc | 2271.3 ± 0.62 c |
COB-3 | 2.5 | 3 | 17.69 ± 0.46 a | 0.14 ± 0.00 bc | >0.95 | −39.27 ± 1.72 bc | 1855.7 ± 0.46 c |
Samples | K′ | n′ | R2 | K″ | n″ | R2 |
---|---|---|---|---|---|---|
COB-C3 | 10.28 ± 0.12 c | 0.33 ± 0.00 ab | 0.97 ± 0.00 | 3.20 ± 0.05 cd | 0.31 ± 0.00 a | >0.95 |
C1 | 5.76 ± 0.09 e | 0.38 ± 0.01 a | 0.97 ± 0.00 | 2.48 ± 0.02 d | 0.26 ± 0.00 b | >0.95 |
C2 | 7.85 ± 0.28 d | 0.33 ± 0.01 ab | 0.98 ± 0.00 | 3.24 ± 0.11 cd | 0.23 ± 0.01 bc | >0.95 |
C3 | 9.47 ± 0.56 c | 0.32 ± 0.01 b | 0.98 ± 0.00 | 3.89 ± 0.13 c | 0.23 ± 0.01 bc | >0.95 |
COB1 | 9.14 ± 0.26 cd | 0.30 ± 0.00 b | 0.98 ± 0.00 | 3.56 ± 0.13 c | 0.19 ± 0.01 cd | >0.95 |
COB2 | 16.82 ± 0.30 b | 0.24 ± 0.00 c | 0.98 ± 0.00 | 5.42 ± 0.01 b | 0.18 ± 0.00 d | >0.95 |
COB3 | 26.59 ± 0.33 a | 0.22 ± 0.00 c | 0.99 ± 0.00 | 7.70 ± 0.39 a | 0.17 ± 0.02 d | >0.95 |
Samples | G0 | Ge | Ge/G0 | K × 1000 | R2 |
---|---|---|---|---|---|
COB-C3 | 14.44 ± 0.27 c | 20.91 ± 0.02 bc | 1.44 a | 3.51 a | >0.99 |
C1 | 9.85 ± 0.71 e | 12.50 ± 0.01 d | 1.26 c | 3.16 e | >0.99 |
C2 | 11.24 ± 0.25 de | 14.80 ± 0.72 cd | 1.31 c | 3.31 d | >0.99 |
C3 | 13.82 ± 1.28 cd | 19.49 ± 0.46 bc | 1.41 a | 3.41 b | >0.99 |
COB1 | 12.49 ± 0.71 cde | 15.64 ± 0.72 cd | 1.26 c | 3.12 e | >0.99 |
COB2 | 18.88 ± 0.16 b | 25.28 ± 0.71 b | 1.33 bc | 3.30 d | >0.99 |
COB3 | 25.01 ± 0.69 a | 33.87 ± 0.61 a | 1.35 b | 3.35 c | >0.99 |
L* | a* | b* | |
---|---|---|---|
COB-C3 | 78.02 ± 0.08 a | 0.29 ± 0.04 b | 9.11 ± 0.07 bc |
C1 | 78.65 ± 0.12 a | 0.05 ± 0.00 d | 8.73 ± 0.11 c |
C2 | 71.02 ± 0.14 bc | 0.12 ± 0.01 c | 7.56 ± 0.30 de |
C3 | 69.08 ± 0.54 d | 0.32 ± 0.02 b | 7.48 ± 0.11 e |
COB1 | 71.45 ± 0.16 b | 0.47 ± 0.02 a | 8.22 ± 0.13 cd |
COB2 | 70.35 ± 0.17 c | 0.15 ± 0.04 c | 9.52 ± 0.11 b |
COB3 | 71.79 ± 0.14 b | 0.07 ± 0.01 d | 11.04 ± 0.33 a |
T0 (°C) | Tend (°C) | Tf (°C) | ΔT (°C) | ΔHf (J/g) | Overrun (%) | |
---|---|---|---|---|---|---|
COB-C3 | −8.41 ± 0.01 b | 5.26 ± 0.02 a | −4.46 ± 0.01 c | 13.67 ± 0.02 c | 144.7 ± 0.52 e | 26.88 ± 0.03 b |
C1 | −10.65 ± 0.01 c | 5.09 ± 0.01 ab | −3.47 ± 0.01 ab | 15.74 ± 0.01 b | 172.70 ± 0.42 a | 23.75 ± 0.02 f |
C2 | −13.60 ± 0.22 d | 4.45 ± 0.09 d | −4.60 ± 0.03 c | 18.06 ± 0.32 a | 157.05 ± 0.21 c | 23.97 ± 0.01 e |
C3 | −8.38 ± 0.05 b | 4.51 ± 0.06 cd | −3.71 ± 0.16 b | 12.88 ± 0.01 d | 151.20 ± 0.28 d | 25.21 ± 0.04 c |
COB1 | −6.11 ± 0.01 a | 4.70 ± 0.00 c | −3.31 ± 0.01 a | 10.80 ± 0.01 e | 163.15 ± 0.21 b | 22.02 ± 0.02 g |
COB2 | −8.60 ± 0.01 b | 5.01 ± 0.01 b | −3.45 ± 0.01 a | 13.62 ± 0.01 c | 155.55 ± 0.78 c | 24.18 ± 0.04 d |
COB3 | −8.63 ± 0.21 b | 5.02 ± 0.01 b | −4.50 ± 0.00 c | 13.65 ± 0.22 c | 145.25 ± 0.21 e | 28.33 ± 0.01 a |
Samples | Color and Appearance | Icy Structure and Consistency | Foreign Taste and Smell | Cream Taste | Melting Resistance | General Acceptance |
---|---|---|---|---|---|---|
COB-C3 | 8.28 ± 0.26 a | 8.64 ± 0.47 a | 8.07 ± 0.53 a | 8.92 ± 0.53 a | 8.05 ± 1.15 a | 8.42 ± 0.97 a |
C1 | 8.42 ± 0.45 a | 8.02 ± 0.64 ab | 8.04 ± 0.18 a | 7.00 ± 0.48 a | 7.22 ± 0.55 a | 7.78 ± 0.39 a |
C2 | 8.64 ± 0.37 a | 7.35 ± 1.05 b | 8.55 ± 0.45 a | 7.65 ± 0.78 a | 7.53 ± 0.45 a | 8.02 ± 0.34 a |
C3 | 8.5 ± 0.57 a | 8.55 ± 0.35 a | 8.42 ± 0.78 a | 9.05 ± 0.53 a | 8.15 ± 0.37 a | 8.85 ± 0.89 a |
COB1 | 7.71 ± 0.89 a | 7.50 ± 0.77 ab | 7.64 ± 0.74 a | 6.35 ± 0.89 a | 7.15 ± 0.89 a | 8.35 ± 0.55 a |
COB2 | 8.00 ± 0.57 a | 8.07 ± 0.61 ab | 8.08 ± 0.99 a | 6.55 ± 1.15 a | 8.05 ± 0.89 a | 8.12 ± 0.44 a |
COB3 | 8.71 ± 0.56 a | 8.21 ± 0.39 ab | 8.64 ± 1.46 a | 6.92 ± 1.21 a | 8.50 ± 1.11 a | 8.57 ± 0.78 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasapoglu, M.Z.; Sagdic, O.; Avci, E.; Tekin-Cakmak, Z.H.; Karasu, S.; Turker, R.S. The Potential Use of Cold-Pressed Coconut Oil By-Product as an Alternative Source in the Production of Plant-Based Drink and Plant-Based Low-Fat Ice Cream: The Rheological, Thermal, and Sensory Properties of Plant-Based Ice Cream. Foods 2023, 12, 650. https://doi.org/10.3390/foods12030650
Kasapoglu MZ, Sagdic O, Avci E, Tekin-Cakmak ZH, Karasu S, Turker RS. The Potential Use of Cold-Pressed Coconut Oil By-Product as an Alternative Source in the Production of Plant-Based Drink and Plant-Based Low-Fat Ice Cream: The Rheological, Thermal, and Sensory Properties of Plant-Based Ice Cream. Foods. 2023; 12(3):650. https://doi.org/10.3390/foods12030650
Chicago/Turabian StyleKasapoglu, Muhammed Zahid, Osman Sagdic, Esra Avci, Zeynep Hazal Tekin-Cakmak, Salih Karasu, and Rabia Sena Turker. 2023. "The Potential Use of Cold-Pressed Coconut Oil By-Product as an Alternative Source in the Production of Plant-Based Drink and Plant-Based Low-Fat Ice Cream: The Rheological, Thermal, and Sensory Properties of Plant-Based Ice Cream" Foods 12, no. 3: 650. https://doi.org/10.3390/foods12030650
APA StyleKasapoglu, M. Z., Sagdic, O., Avci, E., Tekin-Cakmak, Z. H., Karasu, S., & Turker, R. S. (2023). The Potential Use of Cold-Pressed Coconut Oil By-Product as an Alternative Source in the Production of Plant-Based Drink and Plant-Based Low-Fat Ice Cream: The Rheological, Thermal, and Sensory Properties of Plant-Based Ice Cream. Foods, 12(3), 650. https://doi.org/10.3390/foods12030650