The Effect of the Species and Harvesting Location on Dried Salted Cod Fatty Acid Signatures and Nutritional Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Characterization and Preparation
2.2. Total Lipids and Fatty Acid Analysis
2.3. Total Cholesterol (TCHR) and Vitamin E Analysis
2.4. Lipid Quality Ratios and Indices
2.5. Statistical Analysis
3. Results and Discussion
3.1. Composition of the Lipid Fraction
3.1.1. Total Lipids and Total Cholesterol Contents
3.1.2. Fatty Acid Profile
3.1.3. Vitamin E Content
3.2. Discriminatory Ability of Intramuscular Fatty Acid Pattern
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2020. Sustainability in Action. Available online: https://doi.org/10.4060/ca9229en (accessed on 28 November 2021).
- EUMOFA. The EU Fish Market 2021 Edition is Now Online. Available online: https://ec.europa.eu/oceans-and-fisheries/news/eu-fish-market-2021-edition-now-online-2021-11-22_pt (accessed on 27 November 2021).
- Lauritzsen, K. Quality of Salted Cod (Gadus morhua L.) as Influenced by Raw Material and Salt Composition; University of Tromsø: Tromsø, Norway, 2004. [Google Scholar]
- Maschner, H.D.G.; Betts, M.W.; Reedy-Maschner, K.L.; Trites, A.W. A 4500-year time series of Pacific cod (Gadus macrocephalus) size and abundance: Archaeology, oceanic regime shifts, and sustainable fisheries. Fish. Bull. 1975, 106, 386–394. [Google Scholar]
- Starkey, D.J. Beyond the Catch: Fisheries of the North Atlantic, the North Sea and the Baltic, 900–1850; Sicking, L., Abreu-Ferreira, D., Eds.; Brill Academic Press: Leiden, The Netherlands, 2009; p. 422. ISBN 9789004169739. [Google Scholar]
- Perdikaris, S. From chiefly provisioning to commercial fishery: Long-term economic change in Arctic Norway. World Archaeol. 1999, 30, 388–402. [Google Scholar] [CrossRef]
- Marques, F. História do Bacalhau e Outras Histórias; DRAP Centro: Viseu, Portugal, 1997. [Google Scholar]
- Oliveira, H.; Pedro, S.; Nunes, M.L.; Costa, R.; Vaz-Pires, P. Processing of Salted Cod (Gadus spp.): A Review. Compr. Rev. Food Sci. Food Saf. 2012, 11, 546–564. [Google Scholar] [CrossRef]
- Jónsdóttir, R.; Sveinsdóttir, K.; Magnússon, H.; Arason, S.; Lauritzsen, K.; Thorarinsdottir, K.A. Flavor and quality characteristics of salted and desalted cod (Gadus morhua) produced by different salting methods. J. Agric. Food Chem. 2011, 59, 3893–3904. [Google Scholar] [CrossRef]
- Toldra, F. Proteolysis and lipolysis in flavour development of dry-cured meat products. Meat Sci. 1998, 49, S101–S110. [Google Scholar] [CrossRef]
- Costa Silva, M.; Silva, L.; Guedes-De-Pinho, P.; Costa, R. Volatile compounds in salted dried codfishes from different species. Acta Aliment. 2012, 41, 375–388. [Google Scholar] [CrossRef]
- Delahunty, C.M.; Piggott, J.R. Current methods to evaluate contribution and interactions of components to flavour of solid foods using hard cheese as an example. Int. J. Food Sci. Technol. 2007, 30, 555–570. [Google Scholar] [CrossRef]
- Hutchings, J.A. Collapse and recovery of marine fishes. Nature 2000, 406, 882–885. [Google Scholar] [CrossRef]
- IUCN The IUCN Red List of Threatened Species. IUCN Global Species Programme Red List Unit. 2000. Available online: http://www.iucnredlist.org/details/8784/0 (accessed on 27 November 2021).
- FAO. FAO Fisheries & Aquaculture—FishStatJ—Software for Fishery and Aquaculture Statistical Time Series. Available online: https://www.fao.org/fishery/statistics/software/fishstatj/en (accessed on 27 November 2021).
- Coulson, M.W.; Marshall, H.D.; Pepin, P.; Carr, S.M. Mitochondrial genomics of gadine fishes: Implications for taxonomy and biogeographic origins from whole-genome data sets. Genome 2006, 49, 1115–1130. [Google Scholar] [CrossRef]
- Grant, W.S.; Ståhl, G. Evolution of Atlantic and Pacific cod: Loss of genetic variation and gene expression in Pacific cod. Evolution 1988, 42, 138–146. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Bandarra, N.M.; Batista, I.; Nunes, M.L.; Empis, J.M.; Christie, W.W. Seasonal Changes in Lipid Composition of Sardine (Sardina pilchardus). J. Food Sci. 1997, 62, 40–42. [Google Scholar] [CrossRef]
- Prates, J.A.M.; Quaresma, M.A.G.; Bessa, R.J.B.; Fontes, C.M.G.A.; Alfaia, C.M.P.M. Simultaneous HPLC quantification of total cholesterol, tocopherols and β-carotene in Barrosã-PDO veal. Food Chem. 2006, 94, 469–477. [Google Scholar] [CrossRef]
- Arakawa, K.; Sagai, M. Species differences in lipid peroxide levels in lung tissue and investigation of their determining factors. Lipids 1986, 21, 769–775. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Effect of genotype, feeding system and slaughter weight on the quality of light lambs: II. Fatty acid composition of meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Department for Environment, Food and Rural Affairs. Nutritional aspects of cardiovascular disease. Report of the Cardiovascular Review Group Committee on Medical Aspects of Food Policy. Rep. Health Soc. Subj. 1994, 46, 1–186. [Google Scholar] [PubMed]
- Azorit, C.; Tellado, S.; Oya, A.; Moro, J. Seasonal and specific diet variations in sympatric red and fallow deer of southern Spain: A preliminary approach to feeding behaviour. Anim. Prod. Sci. 2012, 52, 720–727. [Google Scholar] [CrossRef]
- Copeman, L.A.; Parrish, C.C. Lipids classes, fatty acids, and sterols in seafood from Gilbert Bay, southern Labrador. J. Agric. Food Chem. 2004, 52, 4872–4881. [Google Scholar] [CrossRef]
- Ingolfsdottir, S.; Stefänsson, G.; Kristbergsson, K. Seasonal Variations in Physicochemical and Textural Properties of North Atlantic Cod (Gadus morh.ua) Mince. J. Aquat. Food Prod. Technol. 1998, 7, 39–61. [Google Scholar] [CrossRef]
- Oehlenschläger, J. Cholesterol Content in Seafood, Data from the Last Decade: A Review. In Seafood Research from Fish to Dish; Luten, J.B., Jacobsen, C., Bekaert, K., Sæbø, A., Oehlenschläger, J., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2006; pp. 41–58. [Google Scholar]
- Zeng, D.; Mai, K.; Ai, Q.; Milley, J.E.; Lall, S.P. Lipid and fatty acid compositions of cod (Gadus morhua), haddock (Melanogrammus aeglefinus) and halibut (Hippoglossus hippoglossus). J. Ocean Univ. China 2010, 9, 381–388. [Google Scholar] [CrossRef]
- Joensen, H.; Grahl-Nielsen, O. Distinction among North Atlantic cod Gadus morhua stocks by tissue fatty acid profiles. J. Fish Biol. 2014, 84, 1904–1925. [Google Scholar] [CrossRef]
- WHO. Diet, Nutrition and the Prevention of Chronic Diseases; WHO: Geneve, Switzerland, 2003. [Google Scholar]
- Addison, R.F.; Ackman, R.G.; Hingley, J. Distribution of Fatty Acids in Cod Flesh Lipids. J. Fish. Res. Board Canada 1968, 25, 2083–2090. [Google Scholar] [CrossRef]
- Oliveira, A.C.M.; Bechtel, P.J. Lipid analysis of fillets from giant grenadier (Albatrossia pectoralis), arrow-tooth flounder (Atheresthes stomias), pacific cod (Gadus macrocephalus) and walleye pollock (Theragra chalcogramma). J. Muscle Foods 2006, 17, 20–33. [Google Scholar] [CrossRef]
- Byelashov, O.A.; Sinclair, A.J.; Kaur, G. Dietary sources, current intakes, and nutritional role of omega-3 docosapentaenoic acid. Lipid Technol. 2015, 27, 79–82. [Google Scholar] [CrossRef]
- Huynh, M.D.; Kitts, D.D. Evaluating nutritional quality of pacific fish species from fatty acid signatures. Food Chem. 2009, 114, 912–918. [Google Scholar]
- Ponnampalam, E.N.; Butler, K.L.; Jacob, R.H.; Pethick, D.W.; Ball, A.J.; Hocking Edwards, J.E.; Geesink, G.; Hopkins, D.L. Health beneficial long chain omega-3 fatty acid levels in Australian lamb managed under extensive finishing systems. Meat Sci. 2014, 96, 1104–1110. [Google Scholar] [CrossRef]
- Watters, C.A.; Edmonds, C.M.; Rosner, L.S.; Sloss, K.P.; Leung, P. A cost analysis of EPA and DHA in fish, supplements and foods. J. Nutr. Food Sci. 2012, 2, 159. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on Dietary Reference Values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA J. 2010, 8, 1461. [Google Scholar] [CrossRef]
- Häubner, N.; Sylvander, P.; Vuori, K.; Snoeijs, P. Abiotic stress modifies the synthesis of alpha-tocopherol and beta-carotene in phytoplankton species. J. Phycol. 2014, 50, 753–759. [Google Scholar] [CrossRef]
- Hrebień-Filisińska, A. Application of natural antioxidants in the oxidative stabilization of fish oils: A mini-review. J. Food Process. Preserv. 2021, 45, e15342. [Google Scholar] [CrossRef]
- Sampels, S. Oxidation and Antioxidants in Fish and Meat from Farm to Fork. Food Ind. 2013, 1, 115–144. [Google Scholar] [CrossRef] [Green Version]
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Sheard, P.R.; Enser, M. Effects of fatty acids on meat quality: A review. Meat Sci. 2004, 66, 21–32. [Google Scholar] [CrossRef]
- Yang, C.S.; Luo, P.; Zeng, Z.; Wang, H.; Malafa, M.; Suh, N. Vitamin E and cancer prevention: Studies with different forms of tocopherols and tocotrienols. Mol. Carcinog. 2020, 59, 365–389. [Google Scholar] [CrossRef]
Atlantic Cod | Pacific Cod | Statistics | ||||
---|---|---|---|---|---|---|
Norway | Iceland | Alaska | SEM | A vs. P | N vs. I | |
TL (g/100 g) | 1.1 | 1.8 | 1.3 | 0.559 | 0.889 | 0.498 |
TCHR (mg/100 g) | 70.44 | 68.45 | 70.02 | 2.996 | 0.875 | 0.843 |
α-tocopherol (µg/g) | 4.90 | 4.97 | 8.04 | 0.677 | 0.001 | 0.996 |
Partial sums (mg/g of edible portion) | ||||||
SFA | 1.573 | 2.076 | 1.806 | 0.176 | 0.934 | 0.050 |
MUFA | 0.885 | 1.212 | 1.023 | 0.080 | 0.796 | 0.006 |
PUFA | 3.263 | 3.266 | 3.405 | 0.308 | 0.712 | 0.996 |
n6 | 0.201 | 0.215 | 0.218 | 0.021 | 0.686 | 0.654 |
n3 | 3.025 | 3.010 | 3.151 | 0.286 | 0.705 | 0.971 |
Fatty acid ratios and lipid quality indices | ||||||
P/S 1 | 0.047 | 0.043 | 0.051 | 0.003 | 0.113 | 0.353 |
n3/n6 2 | 15.09 | 14.67 | 14.84 | 1.029 | 0.819 | 0.863 |
h/H 3 | 2.812 | 2.196 | 2.666 | 0.065 | 0.049 | <0.001 |
AI 4 | 0.387 | 0.465 | 0.383 | 0.011 | 0.002 | <0.001 |
TI 5 | 0.015 | 0.019 | 0.017 | 0.001 | 0.989 | 0.003 |
PI 6 | 3.791 | 3.313 | 3.745 | 0.049 | 0.003 | <0.001 |
Fatty Acids | Atlantic Cod | Pacific Cod | Contrasts | ||
---|---|---|---|---|---|
Norway | Iceland | Alaska | A vs. P | N vs. I | |
C14:0 | 1.82 ± 0.34 | 1.87 ± 0.44 | 1.23 ± 0.20 | <0.001 | 0.686 |
C15:0 | 0.31 ± 0.03 | 0.34 ± 0.04 | 0.28 ± 0.03 | <0.001 | 0.024 |
anteiso-C16:0 | 0.14 ± 0.08 | 0.18 ± 0.11 | 0.13 ± 0.01 | 0.398 | 0.325 |
C16:0 | 20.5 ± 1.44 | 24.0 ± 0.86 | 21.9 ± 0.22 | 0.487 | <0.001 |
C17:0 | 0.21 ± 0.15 | 0.23 ± 0.15 | 0.20 ± 0.01 | 0.579 | 0.586 |
C18:0 | 4.72 ± 0.45 | 5.07 ± 0.62 | 5.337 ± 0.04 | 0.006 | 0.059 |
C16:1 cis-9 | 1.24 ± 0.75 | 1.86 ± 0.62 | 1.36 ± 0.18 | 0.069 | <0.001 |
C16:1 cis-7 | 0.68 ± 0.50 | 0.63 ± 0.38 | 0.40 ± 0.03 | 0.017 | 0.721 |
C17:1 cis-9 | 0.06 ± 0.03 | 0.09 ± 0.05 | 0.13 ± 0.08 | 0.041 | 0.004 |
C18:1 cis-13 | 0.40 ± 0.04 | 0.51 ± 0.43 | 0.36 ± 0.23 | 0.261 | 0.258 |
C18:1 cis-11 | 3.44 ± 0.40 | 3.63 ± 0.55 | 3.26 ± 0.51 | 0.066 | 0.276 |
C18:1 cis-9 | 7.03 ± 0.59 | 9.26 ± 0.88 | 8.26 ± 0.69 | 0.588 | <0.001 |
C20:1 cis-13 | 1.35 ± 0.52 | 1.95 ± 1.26 | 0.15 ± 0.08 | 0.012 | 0.200 |
C20:1 cis-11 | 1.69 ± 0.33 | 2.43 ± 1.12 | 2.34 ± 0.24 | 0.212 | 0.006 |
C22:1 cis-11 | 0.35 ± 0.21 | 0.53 ± 0.38 | 0.45 ± 0.22 | 0.952 | 0.096 |
C16:2 n-4 | 0.65 ± 0.08 | 0.62 ± 0.08 | 0.55 ± 0.05 | <0.001 | 0.329 |
C18:2 n-6 | 1.02 ± 0.12 | 1.20 ± 0.47 | 1.26 ± 0.35 | 0.111 | 0.087 |
C20:4 n-6 | 2.44 ± 0.35 | 2.07 ± 0.43 | 2.20 ± 0.64 | 0.729 | 0.038 |
C16:4 n-3 | 0.15 ± 0.11 | 0.23 ± 0.13 | 0.17 ± 0.05 | 0.489 | 0.069 |
C18:3 n-3 | 0.25 ± 0.04 | 0.26 ± 0.14 | 0.23 ± 0.11 | 0.451 | 0.749 |
C18:4 n-3 | 0.54 ± 0.09 | 0.63 ± 0.08 | 0.53 ± 0.22 | 0.150 | 0.045 |
C20:4 n-3 | 0.42 ± 0.22 | 0.37 ± 0.24 | 0.35 ± 0.19 | 0.293 | 0.300 |
C20:5 n-3 (EPA) | 20.1 ± 1.91 | 15.2 ± 1.57 | 15.1 ± 1.54 | <0.001 | <0.001 |
C22:5 n-3 | 2.03 ± 0.88 | 0.79 ± 0.46 | 1.22 ± 0.63 | 0.291 | <0.001 |
C22:6 n-3 (DHA) | 29.5 ± 2.89 | 28.2 ± 2.34 | 33.4 ± 3.26 | <0.001 | 0.177 |
Variables | Root 1 | Root 2 |
---|---|---|
C14:0 | −1.0922 | 0.8489 |
C15:0 | 0.3042 | −0.1335 |
C16:0 | 0.8185 | 0.5272 |
C18 | −0.2992 | −0.3687 |
C16:1 cis-9 | 0.2795 | −0.1934 |
C18:1 cis-9 | 0.8031 | 0.6734 |
C20:1 cis-11 | 0.1487 | 0.4687 |
C16:2 n-4 | −0.5911 | −0.3427 |
C18:4 n-3 | 0.4235 | −0.3404 |
C20:5 n-3 (EPA) | −0.8695 | −0.0030 |
C22:5 n-3 (DPA) | −0.9837 | 0.6297 |
C22:6 n-3 (DHA) | 0.3468 | −1.2826 |
Statistics | ||
Canonical R | 0.9271 | 0.7626 |
Eigenvalue | 6.1167 | 1.6384 |
Cumulative proportion | 0.7887 | 1.0000 |
Probability | <0.001 | <0.001 |
Variety | Number of Observations and Percentage Classified into Variety | ||
---|---|---|---|
Iceland | Norway | Alaska | |
Classified as Iceland | 15 | 0 | 0 |
Classified as Norway | 0 | 15 | 0 |
Classified as Alaska | 0 | 0 | 15 |
Total | 15 | 15 | 15 |
Correct classification (%) | 100% | 100% | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quaresma, M.; Pereira, G.; Nunes, M.L.; Jardim, A.; Santos, C.; Bandarra, N.; Roseiro, C. The Effect of the Species and Harvesting Location on Dried Salted Cod Fatty Acid Signatures and Nutritional Quality. Foods 2023, 12, 654. https://doi.org/10.3390/foods12030654
Quaresma M, Pereira G, Nunes ML, Jardim A, Santos C, Bandarra N, Roseiro C. The Effect of the Species and Harvesting Location on Dried Salted Cod Fatty Acid Signatures and Nutritional Quality. Foods. 2023; 12(3):654. https://doi.org/10.3390/foods12030654
Chicago/Turabian StyleQuaresma, Mário, Gonçalo Pereira, Maria Leonor Nunes, Angela Jardim, Carlos Santos, Narcisa Bandarra, and Cristina Roseiro. 2023. "The Effect of the Species and Harvesting Location on Dried Salted Cod Fatty Acid Signatures and Nutritional Quality" Foods 12, no. 3: 654. https://doi.org/10.3390/foods12030654
APA StyleQuaresma, M., Pereira, G., Nunes, M. L., Jardim, A., Santos, C., Bandarra, N., & Roseiro, C. (2023). The Effect of the Species and Harvesting Location on Dried Salted Cod Fatty Acid Signatures and Nutritional Quality. Foods, 12(3), 654. https://doi.org/10.3390/foods12030654