Area Gene Regulates the Synthesis of β-Glucan with Antioxidant Activity in the Aureobasidium pullulans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Stain, Plasmid and Culture Medium
2.2. Effects of Fermentation Time and ZnSO4 Additive Amount on β-Glucan Yield
2.3. Infrared Spectroscopic Analysis
2.4. Effects of Different Nitrogen Sources on Biomass and β-Glucan Yield
2.5. Area Acquisition and Bioinformatics Analysis
2.6. Construction of Area Overexpression Vector and Silencing Vector
2.7. Transformation and Verification of Mutant Strain
2.8. Effects of Area on Biomass and β-Glucan Yield
2.9. Morphological Observation
2.10. Transcription Analysis of Genes Associated with β-Glucan Synthesis
2.11. Exploration Antioxidant Activity In Vitro of β-Glucan
2.11.1. DPPH· Clearance
- A0: 100 μL absolute ethanol + 100 μL DPPH· ethanol solution;
- A1: 100 μL solution to be tested + 100 μL DPPH· ethanol solution;
- A2: 100 μL solution to be tested + 100 μL absolute ethanol.
2.11.2. ABTS· Clearance
- A0: 100 μL distilled water + 100 μL ABTS· working solution;
- A1: 100 μL solution to be tested + μL ABTS· working solution;
- A2: 100 μL solution to be tested + 100 μL distilled water.
2.11.3. OH· Clearance
- A0: 1 mL distilled water + 1 mL FeSO4+1 mL H2O2 + 1 mL salicylic acid;
- A1: 1 mL solution to be tested + 1 mL FeSO4+1 mL H2O2 + 1 mL salicylic acid;
- A2: 1 mL distilled water + 1 mL FeSO4+1 mL distilled water + 1 mL salicylic acid.
2.12. Statistical Analysis
3. Results
3.1. Effects of Fermentation Time on β-Glucan Yield
3.2. FT-IR of β-Glucan
3.3. Effects of Different Nitrogen Sources on β-Glucan Yield
3.4. Silencing Schematics and Validation
3.5. Overexpression Schematics and Validation
3.6. β-Glucan Production in Area Mutant Strain
3.7. Expression Quantity of Genes Associated with β-Glucan Synthesis
3.8. Micromorphology of Mutant Strains under Different Nitrogen Sources
3.9. Antioxidant Activity In Vitro of β-Glucan
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liao, N.; Chen, S.; Ye, X.; Zhong, J.; Ye, X.; Yin, X.; Tian, J.; Liu, D. Structural Characterization of a Novel Glucan from Achatina fulica and Its Antioxidant Activity. J. Agric. Food Chem. 2014, 62, 2344–2352. [Google Scholar] [CrossRef] [PubMed]
- Yiannikouris, A.; Francois, J.; Poughon, L.; Dussap, C.; Bertin, G.; Jeminet, G.; Jouany, J.P. Alkali extraction of beta-D-glucans from Saccharomyces cerevisiae cell wall and study of their adsorptive properties toward zearalenone. J. Agric. Food Chem. 2004, 52, 3666–3673. [Google Scholar] [CrossRef] [PubMed]
- Tsiapali, E.; Whaley, S.; Kalbfleisch, J.; Ensley, H.E.; Browder, I.; Williams, D.L. Glucans exhibit weak antioxidant activity, but stimulate macrophage free radical activity. Free. Radic. Biol. Med. 2001, 30, 393–402. [Google Scholar] [CrossRef]
- Li, Y.; Luo, Y.; Meng, F.; Li, J.; Chen, W.; Liu, D.; Zou, L.; Zhou, L. Preparation and characterization of feruloylated oat beta-glucan with antioxidant activity and colon-targeted delivery. Carbohyd. Polym. 2022, 279, 119002. [Google Scholar] [CrossRef]
- Ahmad, M.; Gani, A.; Shah, A.; Gani, A.; Masoodi, F. Germination and microwave processing of barley (Hordeum vulgare L) changes the structural and physicochemical properties of beta-D-glucan & enhances its antioxidant potential. Carbohyd. Polym. 2016, 153, 696–702. [Google Scholar]
- Gravelat, F.; Beauvais, A.; Liu, H.; Lee, M.; Snarr, B.; Chen, D.; Xu, W.; Kravtsov, I.; Hoareau, C.; Vanier, G.; et al. Aspergillus Galactosaminogalactan Mediates Adherence to Host Constituents and Conceals Hyphal beta-Glucan from the Immune System. PLoS Pathog. 2013, 9, e1003575. [Google Scholar] [CrossRef]
- Cao, Y.; Sun, Y.; Zou, S.; Li, M.; Xu, X. Orally Administered Baker’s Yeast beta-Glucan Promotes Glucose and Lipid Homeostasis in the Livers of Obesity and Diabetes Model Mice. J. Agric. Food Chem. 2017, 65, 9665–9674. [Google Scholar] [CrossRef]
- Vetvicka, V.; Vetvickova, J. Anti-infectious and Anti-tumor Activities of beta-glucans. Anticancer Res. 2020, 40, 3139–3145. [Google Scholar] [CrossRef]
- Korolenko, T.A.; Bgatova, N.P.; Ovsyukova, M.V.; Shintyapina, A.; Vetvicka, V. Hypolipidemic Effects of β-Glucans, Mannans, and Fucoidans: Mechanism of Action and Their Prospects for Clinical Application. Molecules 2020, 25, 1819. [Google Scholar] [CrossRef]
- Lin, C.; Zhang, K.; Zhao, S.; Wang, W.; Ru, X.; Song, J.; Cong, H.; Yang, Q. Screening and identification of a strain of Aureobasidium pullulans and its application in potato starch industrial waste. Environ. Res. 2022, 214, 113947. [Google Scholar] [CrossRef]
- Wei, X.; Liu, G.-L.; Jia, S.-L.; Chi, Z.; Hu, Z.; Chi, Z.-M. Pullulan biosynthesis and its regulation in Aureobasidium spp. Carbohydr. Polym. 2020, 251, 117076. [Google Scholar] [CrossRef] [PubMed]
- Sekar, A.; Kim, M.; Jeong, H.; Kim, K. Strain Selection and Optimization of Mixed Culture Conditions for Lactobacillus pentosus K1-23 with Antibacterial Activity and Aureobasidium pullulans NRRL 58012 Producing Immune-Enhancing beta-Glucan. J. Microbiol. Biotechnol. 2018, 28, 697–706. [Google Scholar] [CrossRef]
- Li, Y.; Chi, Z.; Wang, G.; Wang, Z.; Liu, G.; Lee, C.; Ma, Z.; Chi, Z. Taxonomy of Aureobasidium spp. and biosynthesis and regulation of their extracellular polymers. Crit. Rev. Microbiol. 2015, 41, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Muramatsu, D.; Iwai, A.; Aoki, S.; Uchiyama, H.; Kawata, K.; Nakayama, Y.; Nikawa, Y.; Kusano, K.; Okabe, M.; Miyazaki, T. β-Glucan Derived from Aureobasidium pullulans Is Effective for the Prevention of Influenza in Mice. PLoS ONE 2012, 7, e41399. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhu, C.; Zhang, G.; Wang, C.; Wei, G. Enhanced beta-glucan and pullulan production by Aureobasidium pullulans with zinc sulfate supplementation. Appl. Microbiol. Biot. 2020, 104, 1751–1760. [Google Scholar] [CrossRef]
- Moriya, N.; Moriya, Y.; Nomura, H.; Kusano, K.; Asada, Y.; Uchiyama, H.; Park, E.; Okabe, M. Improved beta-glucan Yield Using an Aureobasidium pullulans M-2 Mutant Strain in a 200-L Pilot Scale Fermentor Targeting Industrial Mass Production. Biotechnol. Bioproc. E 2013, 18, 1083–1089. [Google Scholar] [CrossRef]
- Arst, H.N. Nitrogen Metabolite Repression in Aspergillus-Nidulans—An Historical-Perspective. Can. J. Bot. 1995, 73, S148–S152. [Google Scholar] [CrossRef]
- Todd, R.B.; Zhou, M.; Ohm, R.A.; Leeggangers, H.A.C.F.; Visser, L.; De Vries, R.P. Prevalence of transcription factors in ascomycete and basidiomycete fungi. BMC Genom. 2014, 15, 214. [Google Scholar] [CrossRef]
- Tudzynski, B. Nitrogen regulation of fungal secondary metabolism in fungi. Front. Microbiol. 2014, 5, 656. [Google Scholar] [CrossRef]
- Kim, H.; Woloshuk, C. Role of AREA, a regulator of nitrogen metabolism, during colonization of maize kernels and fumonisin biosynthesis in Fusarium verticillioides. Fungal Genet. Biol. 2008, 45, 947–953. [Google Scholar] [CrossRef]
- Michielse, C.; Pfannmuller, A.; Macios, M.; Rengers, P.; Dzikowska, A.; Tudzynski, B. The interplay between the GATA transcription factors AreA, the global nitrogen regulator and AreB in Fusarium fujikuroi. Mol. Microbiol. 2014, 91, 472–493. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.; Wang, Q.; Chi, Z.; Liu, G.; Hu, Z.; Chi, Z. The GATA type transcriptional factors regulate pullulan biosynthesis in Aureobasidium melanogenum P16. Int. J. Biol. Macromol. 2021, 192, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Virkki, L.; Johansson, L.; Ylinen, M.; Maunu, S.; Ekholm, P. Structural characterization of water-insoluble nonstarchy polysaccharides of oats and barley. Carbohyd. Polym. 2005, 59, 357–366. [Google Scholar] [CrossRef]
- Dong, J.L.; Yang, M.; Zhu, Y.Y.; Shen, R.L.; Zhang, K.Y. Comparative study of thermal processing on the physicochemical properties and prebiotic effects of the oat beta-glucan by in vitro human fecal microbiota fermentation. Food Res. Int. 2020, 138, 109818. [Google Scholar] [CrossRef]
- Guo, R.; Xu, Z.; Wu, S.; Li, X.; Li, J.; Hu, H.; Wu, Y.; Ai, L. Molecular properties and structural characterization of an alkaline extractable arabinoxylan from hull-less barley bran. Carbohydr. Polym. 2019, 218, 250–260. [Google Scholar] [CrossRef]
- Zhang, W.; Du, G.; Zhou, J.; Chen, J. Regulation of Sensing, Transportation, and Catabolism of Nitrogen Sources in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 2018, 82, e00040-17. [Google Scholar] [CrossRef]
- Todd, R. 11 Regulation of Fungal Nitrogen Metabolism; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 281–303. [Google Scholar]
- Fu, X.; Zan, X.; Sun, L.; Tan, M.; Cui, F.; Liang, Y.; Meng, L.; Sun, W. Functional Characterization and Structural Basis of the beta-1,3-Glucan Synthase CMGLS from Mushroom Cordyceps militaris. J. Agric. Food Chem. 2022, 70, 8725–8737. [Google Scholar] [CrossRef]
- Song, H.; Moon, K. In vitro antioxidant activity profiles of beta-glucans isolated from yeast Saccharomyces cereviside and mutant Saccharomyces cereviside IS2. Food Sci. Biotechnol. 2006, 15, 437–440. [Google Scholar]
- He, L.; Guo, J.; Wang, Y.; Wang, L.; Xu, D.; Yan, E.; Zhang, X.; Yin, J. Effects of Dietary Yeast β-Glucan Supplementation on Meat Quality, Antioxidant Capacity and Gut Microbiota of Finishing Pigs. Antioxidants 2022, 11, 1340. [Google Scholar] [CrossRef]
- Tao, L.; Yu, J.-H. AbaA and WetA govern distinct stages of Aspergillus fumigatus development. Microbiology 2011, 157, 313–326. [Google Scholar] [CrossRef]
- Bolton, M.D.; Thomma, B.P. The complexity of nitrogen metabolism and nitrogen-regulated gene expression in plant pathogenic fungi. Physiol. Mol. Plant Pathol. 2008, 72, 104–110. [Google Scholar] [CrossRef]
- Mihlan, M.; Homann, V.; Liu, T.-W.D.; Tudzynski, B. AREA directly mediates nitrogen regulation of gibberellin biosynthesis in Gibberella fujikuroi, but its activity is not affected by NMR. Mol. Microbiol. 2003, 47, 975–991. [Google Scholar] [CrossRef] [PubMed]
- Kang, B.K.; Yang, H.J.; Choi, N.S.; Ahn, K.H.; Park, C.S.; Yoon, B.D.; Kim, M.S. Production of pure beta-glucan by Aureobasidium pullulans after pullulan synthetase gene disruption. Biotechnol. Lett. 2010, 32, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhang, J.; Zhang, L.; Diao, M.; Ling, P.; Wang, F. Correlation between the synthesis of pullulan and melanin in Aureobasidium pullulans. Int. J. Biol. Macromol. 2021, 177, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Vandakova, M.; Platkova, Z.; Antosova, M.; Bales, V.; Polakovic, M. Optimization of cultivation conditions for production of fructosyltransferase by Aureobasidium pullulans. Chem. Pap. 2004, 58, 15–22. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Zhou, W.; Wang, W.; Zhao, S.; Lin, C.; Ru, X.; Guan, J.; Cong, H.; Yang, Q. Area Gene Regulates the Synthesis of β-Glucan with Antioxidant Activity in the Aureobasidium pullulans. Foods 2023, 12, 660. https://doi.org/10.3390/foods12030660
Zhang K, Zhou W, Wang W, Zhao S, Lin C, Ru X, Guan J, Cong H, Yang Q. Area Gene Regulates the Synthesis of β-Glucan with Antioxidant Activity in the Aureobasidium pullulans. Foods. 2023; 12(3):660. https://doi.org/10.3390/foods12030660
Chicago/Turabian StyleZhang, Kai, Wei Zhou, Wan Wang, Shanshan Zhao, Congyu Lin, Xin Ru, Jiaqi Guan, Hua Cong, and Qian Yang. 2023. "Area Gene Regulates the Synthesis of β-Glucan with Antioxidant Activity in the Aureobasidium pullulans" Foods 12, no. 3: 660. https://doi.org/10.3390/foods12030660
APA StyleZhang, K., Zhou, W., Wang, W., Zhao, S., Lin, C., Ru, X., Guan, J., Cong, H., & Yang, Q. (2023). Area Gene Regulates the Synthesis of β-Glucan with Antioxidant Activity in the Aureobasidium pullulans. Foods, 12(3), 660. https://doi.org/10.3390/foods12030660