Pesticide Residues and Metabolites in Greek Honey and Pollen: Bees and Human Health Risk Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Collection
2.2. Chemicals
2.3. Sample Preparation
2.4. Instrumental Analysis
2.5. Quantification and Quality Assurance
2.6. Human Health Noncarcinogenic Risk Assessment
2.7. Bee Health Risk Assessment
3. Results
3.1. Pesticide and Metabolites Residues
3.2. Human Health Risk Assessment
3.3. Bee health Risk Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adamson, M.W. Regional Cuisines of Medieval Europe: A Book of Essays; Routledge: New York, NY, USA, 2002. [Google Scholar]
- Zhao, H.; Cheng, N.; Wang, Q.; Zhou, W.; Liu, C.; Liu, X.; Chen, S.; Fan, D.; Cao, W. Effects of honey-extracted polyphenols on serum antioxidant capacity and metabolic phenotype in rats. Food Funct. 2019, 10, 2347–2358. [Google Scholar] [CrossRef] [PubMed]
- Cianciosi, D.; Forbes-Hernández, T.Y.; Afrin, S.; Gasparrini, M.; Quiles, J.L.; Gil, E.; Bompadre, S.; Simal-Gandara, J.; Battino, M.; Giampieri, F. The Influence of in Vitro Gastrointestinal Digestion on the Anticancer Activity of Manuka Honey. Antioxid. Basel 2020, 9, 64. [Google Scholar] [CrossRef] [PubMed]
- Afrin, S.; Haneefa, S.M.; Fernandez-Cabezudo, M.J.; Giampieri, F.; Al-Ramadi, B.K.; Battino, M. Therapeutic and preventive properties of honey and its bioactive compounds in cancer: An evidence-based review. Nutr. Res. Rev. 2020, 33, 50–76. [Google Scholar] [CrossRef]
- Šedík, P.; Pocol, C.B.; Horská, E.; Fiore, M. Honey: Food or medicine? A comparative study between Slovakia and Romania. Br. Food J. 2019, 121, 1281–1297. [Google Scholar] [CrossRef]
- EU-Honey. Report from the Commission to the European Parliament and the Council on the Implementation of Apiculture Programmes, Brussels, 17.12.2019 COM(2019) 635 Final. Available online: https://ec.europa.eu/info/sites/default/files/food-farming-fisheries/animals_and_animal_products/documents/report-implementation-measures-apiculuture-sector_2019-12-17_en.pdf (accessed on 10 November 2021).
- Böhme, F.; Bischoff, G.; Zebitz, C.P.W.; Rosenkranz, P.; Wallner, K. From field to food—Will pesticide-contaminated pollen diet lead to a contamination of royal jelly? Apidologie 2018, 49, 112–119. [Google Scholar] [CrossRef]
- Dolezal, A.G.; Carrillo-Tripp, J.; Miller, W.A.; Bonning, B.C.; Toth, A.L. Pollen Contaminated with Field-Relevant Levels of Cyhalothrin Affects Honey Bee Survival, Nutritional Physiology, and Pollen Consumption Behavior. J. Econ. Entomol. 2016, 109, 41–48. [Google Scholar] [CrossRef]
- Leska, A.; Nowak, A.; Nowak, I.; Górczyńska, A. Effects of Insecticides and Microbiological Contaminants on Apis mellifera Health. Molecules 2021, 26, 5080. [Google Scholar] [CrossRef]
- Gbylik-Sikorska, M.; Sniegocki, T.; Posyniak, A. Determination of neonicotinoid insecticides and their metabolites in honey bee and honey by liquid chromatography tandem mass spectrometry. J. Chromatography. B Anal. Technol. Biomed. Life Sci. 2015, 990, 132–140. [Google Scholar] [CrossRef]
- Kasiotis, K.M.; Anagnostopoulos, C.; Anastasiadou, P.; Machera, K. Pesticide residues in honeybees, honey and bee pollen by LC–MS/MS screening: Reported death incidents in honeybees. Sci. Total Environ. 2014, 485–486, 633–642. [Google Scholar] [CrossRef]
- Chienthavorn, O.; Dararuang, K.; Sasook, A.; Ramnut, N. Purge and trap with monolithic sorbent for gas chromatographic analysis of pesticides in honey. Anal. Bioanal. Chem. 2012, 402, 955–964. [Google Scholar] [CrossRef]
- Sixto, A.; Niell, S.; Heinzen, H. Straightforward Determination of Pyrrolizidine Alkaloids in Honey through Simplified Methanol Extraction (QuPPE) and LC-MS/MS Modes. ACS Omega 2019, 4, 22632–22637. [Google Scholar] [CrossRef] [PubMed]
- Malhat, F.; Kasiotis, K.M.; Hassanin, A.; Shokr, S. An MIP-AES study of heavy metals in Egyptian honey: Toxicity assessment and potential health hazards to consumers. J. Elementol. 2019, 24, 473–488. [Google Scholar] [CrossRef]
- Zafeiraki, E.; Kasiotis, K.M.; Nisianakis, P.; Manea-Karga, E.; Machera, K. Occurrence and human health risk assessment of mineral elements and pesticides residues in bee pollen. Food Chem. Toxicol. 2022, 161, 112826. [Google Scholar] [CrossRef]
- Kasiotis, K.M.; Zafeiraki, E.; Kapaxidi, E.; Manea-Karga, E.; Antonatos, S.; Anastasiadou, P.; Milonas, P.; Machera, K. Pesticides residues and metabolites in honeybees: A Greek overview exploring Varroa and Nosema potential synergies. Sci. Total Environ. 2021, 769, 145213. [Google Scholar] [CrossRef]
- Kasiotis, K.M.; Tzouganaki, Z.D.; Machera, K. Chromatographic determination of monoterpenes and other acaricides in honeybees: Prevalence and possible synergies. Sci. Total Environ. 2018, 625, 96–105. [Google Scholar] [CrossRef]
- SANTE/11945/2015; Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticides Residues Analysis in Food and Feed. DG SANTE, European Commission: Brussels, Belgium, 2015.
- SANTE/11813/2017; Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticides Residues Analysis in Food And Feed. European Commission: Brussels, Belgium, 2017.
- US-EPA. Risk Based Concentration Table; United States Environmental Protection Agency: Philadelphia, PA, USA, 2000.
- SANTE/11956/2016; Technical Guidelines for Determining the Magnitude of Pesticide Residues in Honey and Setting Maximum Residue Levels in Honey. European Commission: Brussels, Belgium, 2018.
- Khalifa, S.; Elashal, M.; Yosri, N.; Du, M.; Musharraf, S.; Nahar, L.; Sarker, S.; Guo, Z.; Cao, W.; Zou, X.; et al. Bee Pollen: Current Status and Therapeutic Potential. Nutrients 2021, 13, 1876. [Google Scholar] [CrossRef] [PubMed]
- Kostić, A.; Milinčić, D.D.; Barać, M.B.; Shariati, M.A.; Tešić, L.; Pešić, M.B. The Application of Pollen as a Functional Food and Feed Ingredient—The Present and Perspectives. Biomolecules 2020, 10, 84. [Google Scholar] [CrossRef]
- EFSA-Guidance. EFSA Guidance Document on the Risk Assessment of Plant Protection Products on Bees (Apis mellifera, Bombus spp. and solitary bees). EFSA J. 2013, 11, 3295. [Google Scholar]
- Sanchez-Bayo, F.; Goka, K. Pesticide Residues and Bees—A Risk Assessment. PLoS ONE 2014, 9, e94482. [Google Scholar] [CrossRef]
- PPBD: Pesticide Properties Database; The University of Hertfordshire: Hatfield, UK, 2022; Available online: http://sitem.herts.ac.uk/aeru/ppdb/en (accessed on 5 September 2022).
- EFSA. Reasoned opinion on the setting of maximum residue levels for amitraz, coumaphos, flumequine, oxytetracycline, permethrin and streptomycin in certain products of animal origin. EFSA J. 2016, 14, 39. [Google Scholar]
- Zafeiraki, E.; Sabo, R.; Kasiotis, K.M.; Machera, K.; Sabová, L.; Majchrák, T. Adult Honeybees and Beeswax as Indicators of Trace Elements Pollution in a Vulnerable Environment: Distribution among Different Apicultural Compartments. Molecules 2022, 27, 6629. [Google Scholar] [CrossRef] [PubMed]
- Komosinska-Vassev, K.; Olczyk, P.; Kaźmierczak, J.; Mencner, L.; Olczyk, K. Bee Pollen: Chemical Composition and Therapeutic Application. Evid. Based Complement. Altern. Med. 2015, 2015, 297425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valdovinos-Flores, C.; Gaspar-Ramírez, O.; Heras-Ramírez, M.E.; Lara-Álvarez, C.; Dorantes-Ugalde, J.A.; Saldaña-Loza, L.M. Boron and Coumaphos Residues in Hive Materials Following Treatments for the Control of Aethina tumida Murray. PLoS ONE 2016, 11, e0153551. [Google Scholar] [CrossRef] [PubMed]
- Pohorecka, K.; Kiljanek, T.; Antczak, M.; Skubida, P.; Semkiw, P.; Posyniak, A. Amitraz marker residues in honey from honeybee colonies treated with Apiwarol. J. Vet. Res. 2018, 62, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Chaimanee, V.; Johnson, J.; Pettis, J.S. Determination of amitraz and its metabolites residue in honey and beeswax after Apivar® treatment in honey bee (Apis mellifera) colonies. J. Apic. Res. 2022, 61, 213–218. [Google Scholar] [CrossRef]
- Christodoulou, D.L.; Kanari, P.; Kourouzidou, O.; Constantinou, M.; Hadjiloizou, P.; Kika, K.; Constantinou, P. Pesticide residues analysis in honey using ethyl acetate extraction method: Validation and pilot survey in real samples. Int. J. Environ. Anal. Chem. 2015, 95, 894–910. [Google Scholar] [CrossRef]
- Lozano, A.; Hernando, M.; Uclés, S.; Hakme, E.; Fernández-Alba, A. Identification and measurement of veterinary drug residues in beehive products. Food Chem. 2019, 274, 61–70. [Google Scholar] [CrossRef]
- Kiljanek, T.; Niewiadowska, A.; Małysiak, M.; Posyniak, A. Miniaturized multiresidue method for determination of 267 pesticides, their metabolites and polychlorinated biphenyls in low mass beebread samples by liquid and gas chromatography coupled with tandem mass spectrometry. Talanta 2021, 235, 122721. [Google Scholar] [CrossRef]
- Xiao, J.; He, Q.; Liu, Q.; Wang, Z.; Yin, F.; Chai, Y.; Yang, Q.; Jiang, X.; Liao, M.; Yu, L.; et al. Analysis of honey bee exposure to multiple pesticide residues in the hive environment. Sci. Total Environ. 2022, 805, 150292. [Google Scholar] [CrossRef]
- Hakme, E.; Lozano, A.; Gómez-Ramos, M.; Hernando, M.; Fernández-Alba, A. Non-target evaluation of contaminants in honey bees and pollen samples by gas chromatography time-of-flight mass spectrometry. Chemosphere 2017, 184, 1310–1319. [Google Scholar] [CrossRef]
- Murcia-Morales, M.; Heinzen, H.; Parrilla-Vázquez, P.; Gómez-Ramos, M.D.M.; Fernández-Alba, A.R. Presence and distribution of pesticides in apicultural products: A critical appraisal. TrAC Trends Anal. Chem. 2022, 146, 116506. [Google Scholar] [CrossRef]
- Koebnick, C.; Garcia, A.L.; Dagnelie, P.C.; Strassner, C.; Lindemans, J.; Katz, N.; Leitzmann, C.; Hoffmann, I. Long-Term Consumption of a Raw Food Diet Is Associated with Favorable Serum LDL Cholesterol and Triglycerides But Also with Elevated Plasma Homocysteine and Low Serum HDL Cholesterol in Humans. J. Nutr. 2005, 135, 2372–2378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mărgăoan, R.; Stranț, M.; Varadi, A.; Topal, E.; Yücel, B.; Cornea-Cipcigan, M.; Campos, M.G.; Vodnar, D.C. Bee Collected Pollen and Bee Bread: Bioactive Constituents and Health Benefits. Antioxidants 2019, 8, 568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Active Substance | Determination | Concentration Range (ng/g) | MRL (ng/g) | Authorization at Sampling Period |
---|---|---|---|---|
Coumaphos | 9 | 4.3–88.7 a | 100 | Yes (approved as veterinary medicinal product) |
Acetamiprid | 5 | 3.1–20.5 | 50 | Yes |
Imidacloprid | 4 | 25.1–784.7 a | 50 | Yes |
Coumaphos oxon | 2 | 2.8–12.8 a | 100 | Coumaphos metabolite |
Cypermethrin | 2 | 5.1–8.2 | 50 | Yes |
DMF * | 2 | 4.9–11.2 | 200 * | Yes, amitraz metabolite (amitraz approved as veterinary medicinal product) |
DMPF * | 1 | 6.9 | 200 * | Yes, amitraz metabolite |
λ-Cyhalothrin | 2 | 4–7.2 | 50 | Yes |
Cyprodinil | 1 | 31 | 50 | Yes |
Penconazole | 1 | 15.9 | 50 | Yes |
Pirimiphos-methyl | 1 | 53.7 a | 50 | Yes |
Malathion | 1 | 26.5 | 50 | Yes |
Cadusafos | 1 | 1.8 | 10 | No |
Ethoprofos | 1 | 1.3 | NA | No |
Tricyclazole | 1 | 1.4 | 50 | No |
Cyfluthrin | 1 | 3.7 | 50 | No ** |
Etofenprox | 1 | 35 | 50 | Yes |
Tau-fluvalinate | 1 | 10.3 | 50 | Yes |
Imidacloprid olefin | 1 | 34.5 | Imidacloprid metabolite |
Active Substance | Determination in Pollen Beebread | Concentration Range (ng/g) | MRL (ng/g) | Frequency of Detection (%) |
---|---|---|---|---|
Clothianidin a | 7 | 8.9–136.4 * | 50 | 8.5 |
Carbendazim a | 7 | 3.4–18 | 1000 | 8.5 |
Coumaphos | 6 | 14.5–511.3 * | 100 | 7.3 |
Chlorpyrifos ethyl a | 6 | 5.8–35.9 | 50 | 7.3 |
Tau-fluvalinate | 5 | <LOQ-180 | NA | 6.1 |
DMF ** | 4 | 4.9–14 | 200 | 4.9 |
Dimethoate a | 4 | 7.9–210 * | 10 | 4.9 |
Cypermethrin | 3 | 5.9–7.9 | 50 | 3.7 |
Cyfluthrin | 3 | 3.7–11.8 | 50 | 3.7 |
Coumaphos oxon | 2 | 2.2–10.7 | 100 | 2.4 |
Methomyl b | 2 | 85.6–154.6 * | 10 | 2.4 |
Boscalid a | 2 | 5.3–10.4 | 50 | 2.4 |
Propiconazole | 2 | 31.6–31.9 | 50 | 2.4 |
Hexaconazole b | 2 | 1.3–17.9 | NA | 2.4 |
Terbuthylazine a | 2 | 45–53.2 | 50 | 2.4 |
Tebuconazole a | 2 | 7.1–150 * | 50 | 2.4 |
Imidacloprid a | 2 | 4.5–11.8 | 50 | 2.4 |
Omethoate c | 2 | 13–30 * | 10 | 2.4 |
Acetamiprid | 2 | 0.9–1.8 | 50 | 2.4 |
Trifloxystrobin a | 2 | 1,6–18 | 50 | 2.4 |
Azoxystrobin a | 2 | 2.1–3.1 | 50 | 2.4 |
Pyraclostrobin a | 2 | 6.6–13 | 50 | 2.4 |
Permethrin b | 2 | 11–30 | NA | 2.4 |
λ-Cyhalothrin a | 1 | 7.2 | 50 | 1.2 |
Thiacloprid a | 1 | 172 | 200 | 1.2 |
DMPF ** | 1 | 6.9 | 200 | 1.2 |
Chlorpyrifos oxon d | 1 | 9.7 | 50 | 1.2 |
Dimethomorph a | 1 | 15.2 | 50 | 1.2 |
Pendimethalin a | 1 | 10.9 | 50 | 1.2 |
Pirimiphos-methyl | 1 | 170 * | 50 | 1.2 |
Fenpropathrin b | 1 | <LOQ | NA | 1.2 |
Acrinathrin a | 1 | 9.9 | 50 | 1.2 |
Honey | Pollen | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Average Daily Intake (μg/kg/day) | ADI (μg/kg/day) | HQ | Average Daily Intake (μg/kg/day) | ADI (μg/kg/day) | HQ | ||||||
Active Substance | Adults | Children | Adults | Children | Active Substance | Adults | Children | Adults | Children | ||
Acetamiprid | 8.43 × 10−4 | 0.004 | 25 | 3.37 × 10−5 | 1.57 × 10−4 | Boscalid | 0.005 | 0.010 | 40 | 1.03 × 10−4 | 5.01 × 10−4 |
Cadusafos | 1.29 × 10−4 | 6.00 × 10−4 | 0.4 | 3.21 × 10−4 | 0.001 | Carbendazim | 0.006 | 0.012 | 20 | 0.0003 | 0.0012 |
Coumaphos * | 3.78 × 10−3 | 0.018 | 0.25 | 0.015 | 0.070 | Chlorpyrifos * | 0.017 | 0.034 | 1 | 0.017 | 0.068 |
Cyfluthrin | 2.64 × 10−4 | 0.001 | 10 | 2.64 × 10−5 | 1.23 × 10−4 | Clothianidin | 0.048 | 0.097 | 97 | 4.28 × 10−4 | 0.001 |
λ-Cyhalothrin | 5.14 × 10−4 | 0.002 | 2.5 | 2.06 × 10−4 | 9.60 × 10−4 | Coumaphos * | 0.176 | 0.352 | 0.25 | 0.603 | 1.408 |
Cypermethrin | 4.93 × 10−4 | 0.002 | 5 | 9.86 × 10−5 | 4.60 × 10−4 | Cyfluthrin | 0.005 | 0.010 | 10 | 4.43 × 10−4 | 0.001 |
Cyprodinil | 0.002 | 0.010 | 30 | 7.38 × 10−5 | 3.44 × 10−4 | λ-Cyhalothrin | 0.005 | 0.010 | 2.5 | 0.002 | 0.004 |
DMF | 5.75 × 10−4 | 0.003 | 3 | 1.92 × 10−4 | 8.94 × 10−4 | Cypermethrin | 0.005 | 0.009 | 5 | 7.89 × 10−4 | 0.002 |
DMPF | 4.93 × 10−4 | 0.002 | 3 | 1.64 × 10−4 | 7.67 × 10−4 | Dimethomorph | 0.010 | 0.020 | 50 | 1.74 × 10−5 | 4.05 × 10−4 |
Ethoprofos | 9.29 × 10−5 | 4.00 × 10−4 | 0.4 | 2.32 × 10−4 | 0.001 | DMF | 0.006 | 0.013 | 3 | 0.002 | 0.004 |
Tau-fluvalinate | 7.36 × 10−4 | 0.003 | 5 | 1.47 × 10−4 | 6.87 × 10−4 | DMPF | 0.005 | 0.009 | 3 | 0.001 | 0.003 |
Imidacloprid | 0.029 | 0.135 | 60 | 4.82 × 10−4 | 2.25 × 10−3 | Hexaconazole | 0.006 | 0.013 | 5 | 0.001 | 0.003 |
Malathion | 0.002 | 0.009 | 30 | 6.31 × 10−5 | 2.94 × 10−4 | Methomyl | 0.080 | 0.160 | 2.5 | 0.032 | 0.064 |
Penconazole | 0.001 | 0.005 | 30 | 3.79 × 10−5 | 1.77 × 10−4 | Propiconazole | 0.021 | 0.042 | 40 | 4.54 × 10−4 | 0.001 |
Pirimiphos-methyl | 0.004 | 0.018 | 4 | 9.59 × 10−4 | 0.004 | Tebuconazole | 0.005 | 0.009 | 30 | 1.35 × 10−4 | 3.16 × 10−4 |
Tricyclazole | 1.00 × 10−4 | 4.67 × 10−4 | 30 | 3.33 × 10−6 | 1.56 × 10−5 | Terbuthylazine | 0.033 | 0.065 | 4 | 0.008 | 0.016 |
Etofenprox | 5.57 × 10−4 | 0.003 | 30 | 1.86 × 10−5 | 8.67 × 10−5 | Thiacloprid | 0.115 | 0.229 | 10 | 0.010 | 0.023 |
Imidacloprid | 0.015 | 0.030 | 60 | 2.11 × 10−4 | 4.92 × 10−4 | ||||||
Pendimethalin | 0.007 | 0.015 | 125 | 4.98 × 10−5 | 1.16 × 10−4 | ||||||
Dimethoate | 0.012 | 0.024 | 1 | 0.012 | 0.024 |
Oral | Contact | |||||
---|---|---|---|---|---|---|
LD50 (Oral, μg per Bee) | LD50 (Contact, μg per Bee) | RISK (Mean) | RISK (Maximum) | RISK (Mean) | RISK (Maximum) | |
Clothianidin | 0.004 | 0.044 | 0.019 | 0.035 | 0.002 | 0.003 |
Carbendazim | 100 | 50 | 1.09 × 10−7 | 1.84 × 10−7 | 2.19 × 10−7 | 3.69 × 10−7 |
Coumaphos | na | 100 | - | - | 2.31 × 10−6 | 4.49 × 10−6 |
Chlorpyrifos ethyl | 0.15 | 0.068 | 1.22 × 10−4 | 2.10 × 10−4 | 2.69 × 10−4 | 4.64 × 10−4 |
Tau-fluvalinate | 12.6 | 12 | 5.26 × 10−6 | 1.04 × 10−5 | 5.51 × 10−6 | 1.10 × 10−5 |
Amitraz (sum of DMF + DMPF) | na | 50 | - | - | 1.51 × 10−7 | 2.45 × 10−7 |
Dimethoate | 0.1 | 0.1 | 6.38 × 10−4 | 1.23 × 10−4 | 6.38 × 10−4 | 6.38 × 10−4 |
Cypermethrin | 0.172 | 0.023 | 1.76 × 10−5 | 2.02 × 10−5 | 1.32 × 10−4 | 1.51 × 10−4 |
Cyfluthrin | 0.05 | 0.001 | 6.80 × 10−5 | 1.04 × 10−4 | 0.003 | 0.005 |
Methomyl | 0.28 | 0.16 | 1.26 × 10−4 | 1.62 × 10−4 | 2.20 × 10−4 | 2.83 × 10−4 |
Boscalid | 160 | 200 | 1.44 × 10−8 | 1.90 × 10−8 | 1.15 × 10−8 | 1.52 × 10−8 |
Propiconazole | 100 | 100 | 9.29 × 10−8 | 9.34 × 10−8 | 9.29 × 10−8 | 9.34 × 10−8 |
Hexaconazole | 100 | na | 2.81 × 10−8 | 5.24 × 10−8 | - | - |
Terbuthylazine | 22.6 | 32 | 6.36 × 10−7 | 6.89 × 10−7 | 4.49 × 10−7 | 4.87 × 10−7 |
Tebuconazole | 83.05 | 200 | 2.77 × 10−7 | 5.29 × 10−7 | 1.15 × 10−7 | 2.19 × 10−7 |
Imidacloprid | 0.0037 | 0.081 | 6.45 × 10−4 | 9.33 × 10−4 | 2.95 × 10−5 | 4.26 × 10−5 |
Acetamiprid | 14.53 | 8.09 | 2.72 × 10−8 | 3.63 × 10−8 | 4.88 × 10−8 | 6.51 × 10−8 |
Trifloxystrobin | 200 | 200 | 1.43 × 10−8 | 2.63 × 10−8 | 1.43 × 10−8 | 2.63 × 10−8 |
Azoxystrobin | 25 | 200 | 3.04 × 10−8 | 3.63 × 10−8 | 3.80 × 10−9 | 4.54 × 10−9 |
Pyraclostrobin | 110 | 100 | 2.61 × 10−8 | 3.46 × 10−8 | 2.87 × 10−8 | 3.80 × 10−8 |
Permethrin | 0.13 | 0.024 | 4.61 × 10−5 | 6.75 × 10−5 | 2.50 × 10−4 | 3.66 × 10−4 |
λ-Cyhalothrin | 0.91 | 0.038 | 1.16 × 10−6 | 1.16 × 10−6 | 2.77 × 10−5 | 2.77 × 10−5 |
Thiacloprid | 17.32 | 38.82 | 1.45 × 10−6 | 1.45 × 10−6 | 6.48 × 10−7 | 6.48 × 10−7 |
Dimethomorph | 32.4 | 102 | 6.86 × 10−8 | 6.86 × 10−8 | 2.18 × 10−8 | 2.18 × 10−8 |
Pendimethalin | na | 100 | - | - | 1.95 × 10−8 | 1.59 × 10−8 |
Pirimiphos-methyl | 0.22 | na | 1.13 × 10−4 | 1.13 × 10−4 | - | - |
Fenpropathrin | na | 0.05 | - | - | 2.93 × 10−6 | 2.93 × 10−6 |
Acrinathrin | 0.077 | 0.084 | 1.88 × 10−5 | 1.88 × 10−5 | 1.72 × 10−5 | 1.72 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasiotis, K.M.; Zafeiraki, E.; Manea-Karga, E.; Anastasiadou, P.; Machera, K. Pesticide Residues and Metabolites in Greek Honey and Pollen: Bees and Human Health Risk Assessment. Foods 2023, 12, 706. https://doi.org/10.3390/foods12040706
Kasiotis KM, Zafeiraki E, Manea-Karga E, Anastasiadou P, Machera K. Pesticide Residues and Metabolites in Greek Honey and Pollen: Bees and Human Health Risk Assessment. Foods. 2023; 12(4):706. https://doi.org/10.3390/foods12040706
Chicago/Turabian StyleKasiotis, Konstantinos M., Effrosyni Zafeiraki, Electra Manea-Karga, Pelagia Anastasiadou, and Kyriaki Machera. 2023. "Pesticide Residues and Metabolites in Greek Honey and Pollen: Bees and Human Health Risk Assessment" Foods 12, no. 4: 706. https://doi.org/10.3390/foods12040706
APA StyleKasiotis, K. M., Zafeiraki, E., Manea-Karga, E., Anastasiadou, P., & Machera, K. (2023). Pesticide Residues and Metabolites in Greek Honey and Pollen: Bees and Human Health Risk Assessment. Foods, 12(4), 706. https://doi.org/10.3390/foods12040706