Advances in the Role and Mechanisms of Essential Oils and Plant Extracts as Natural Preservatives to Extend the Postharvest Shelf Life of Edible Mushrooms
Abstract
:1. Introduction
2. Factors Influencing Postharvest Spoilage of Edible Mushrooms
2.1. Internal Factors
2.1.1. Moisture Activity
2.1.2. Respiration Rate
2.1.3. Microbial Infestations
2.2. External Factors
2.2.1. Temperature and Relative Humidity
2.2.2. Mechanical Damage
3. Mechanism of Action and Application of EOs and Plant Extracts for the Preservation of Edible Mushrooms
3.1. Application of EOs in Edible Mushroom Preservation
3.1.1. Lemon Essential Oil (LEO)
3.1.2. Oregano Essential Oil (OEO)
3.1.3. Cinnamon Essential Oil (CEO)
3.1.4. Cumin Essential Oil (CUEO)
3.1.5. Thyme Essential Oil (TEO)
3.1.6. Turmeric Essential Oil (TUEO)
3.1.7. Satureja khuzistanica Essential Oil (SKO)
3.2. Antibacterial Mechanisms of EOs as Preservatives
3.3. Application of Plant Extracts in the Preservation of Edible Mushrooms
3.3.1. Application and Mechanism of Action of Plant Polysaccharides in the Preservation of Edible Mushrooms
3.3.2. Application and Mechanism of Action of Melatonin in the Preservation of Edible Mushrooms
3.3.3. Application and Mechanism of Action of Exogenous Energy Substances in the Preservation of Edible Mushrooms
3.3.4. Application of Other Plant Extracts in the Preservation of Edible Mushrooms
4. Perspectives and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, L.B.; Zhang, Z.Y.; Xin, G.; Sun, B.X.; Bao, X.J.; Wei, Y.Y.; Zhao, X.M.; Xu, H.R. Advances in umami taste and aroma of edible mushrooms. Trends Food Sci. Technol. 2020, 96, 176–187. [Google Scholar] [CrossRef]
- Guo, Y.X.; Chen, X.F.; Gong, P. Classification, structure and mechanism of antiviral polysaccharides derived from edible and medicinal fungus. Int. J. Biol. Macromol. 2021, 183, 1753–1773. [Google Scholar] [CrossRef] [PubMed]
- Maity, P.; Sen, I.K.; Chakraborty, I.; Mondal, S.; Bar, H.; Bhanja, S.K.; Mandal, S.; Maity, G.N. Biologically active polysaccharide from edible mushrooms: A review. Int. J. Biol. Macromol. 2021, 172, 408–417. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.N.; Zhang, M.; Fang, Z.X. Efficient physical extraction of active constituents from edible fungi and their potential bioactivities: A review. Trends Food Sci. Technol. 2020, 105, 468–482. [Google Scholar] [CrossRef]
- Li, C.T.; Xu, S. Edible mushroom industry in China: Current state and perspectives. Appl. Microbiol. Biotechnol. 2022, 106, 3949–3955. [Google Scholar] [CrossRef]
- Zhu, R.Y.; Wen, Y.X.; Wu, W.H.; Zhang, L.Z.; Farid, M.S.; Shan, S.; Wen, J.H.; Farag, M.A.; Zhang, Y.Y.; Zhao, C. The flavors of edible mushrooms: A comprehensive review of volatile organic compounds and their analytical methods. Crit. Rev. Food Sci. Nutr. 2022. [Google Scholar] [CrossRef]
- Zhang, Y.; Venkitasamy, C.; Pan, Z.L.; Wang, W. Recent developments on umami ingredients of edible mushrooms—A review. Trends Food Sci. Technol. 2013, 33, 78–92. [Google Scholar] [CrossRef]
- Marcal, S.; Sousa, A.S.; Taofiq, O.; Antunes, F.; Morais, A.; Freitas, A.C.; Barros, L.; Ferreira, I.; Pintado, M. Impact of postharvest preservation methods on nutritional value and bioactive properties of mushrooms. Trends Food Sci. Technol. 2021, 110, 418–431. [Google Scholar] [CrossRef]
- Lin, X.H.; Sun, D.W. Research advances in browning of button mushroom (Agaricus bisporus): Affecting factors and controlling methods. Trends Food Sci. Technol. 2019, 90, 63–75. [Google Scholar] [CrossRef]
- Abdelshafy, A.M.; Luo, Z.S.; Belwal, T.; Ban, Z.J.; Li, L. A Comprehensive review on preservation of shiitake mushroom (Lentinus Edodes): Techniques, research advances and influence on quality traits. Food Rev. Int. 2021. [Google Scholar] [CrossRef]
- Shi, D.F.; Yin, C.M.; Fan, X.Z.; Yao, F.; Qiao, Y.; Xue, S.J.; Lu, Q.; Feng, C.P.; Meng, J.L.; Gao, H. Effects of ultrasound and gamma irradiation on quality maintenance of fresh Lentinula edodes during cold storage. Food Chem. 2022, 373, 131478. [Google Scholar] [CrossRef]
- Salamat, R.; Ghassemzadeh, H.R.; Ranjbar, F.; Jalali, A.; Mahajan, P.; Herppich, W.B.; Mellmann, J. The effect of additional packaging barrier, air moment and cooling rate on quality parameters of button mushroom (Agaricus bisporus). Food Packag. Shelf Life 2020, 23, 100448. [Google Scholar] [CrossRef]
- Park, D.H.; Park, J.J.; Olawuyi, I.F.; Lee, W.Y. Quality of White mushroom (Agaricus bisporus) under argon- and nitrogen-based controlled atmosphere storage. Sci. Hortic. 2020, 265, 109229. [Google Scholar] [CrossRef]
- Ozturk, B.; Havsut, E.; Yildiz, K. Delaying the postharvest quality modifications of Cantharellus cibarius mushroom by applying citric acid and modified atmosphere packaging. LWT-Food Sci. Technol. 2021, 138, 110639. [Google Scholar] [CrossRef]
- Zan, X.Y.; Jia, W.; Zhuang, H.N.; Cui, F.J.; Li, N.; Zhang, J.S.; Sun, W.J.; Zhao, X. Energy Status and mitochondrial metabolism of Volvariella volvacea with controlled ultrasound treatment and relative humidity. Postharvest Biol. Technol. 2020, 167, 111250. [Google Scholar] [CrossRef]
- Lagnika, C.; Zhang, M.; Mothibe, K.J. Effects of ultrasound and high pressure argon on physico-chemical properties of white mushrooms (Agaricus bisporus) during postharvest storage. Postharvest Biol. Technol. 2013, 82, 87–94. [Google Scholar] [CrossRef]
- Yan, M.; Yuan, B.; Xie, Y.; Cheng, S.J.; Huang, H.D.; Zhang, W.; Chen, J.Q.; Cao, C.J. Improvement of postharvest quality, enzymes activity and polyphenoloxidase structure of postharvest Agaricus bisporus in response to high voltage electric field. Postharvest Biol. Technol. 2020, 166, 111230. [Google Scholar] [CrossRef]
- Zhang, J.; Yagoub, A.A.; Sun, Y.H.; Mujumdar, A.S.; Ma, H.L.; Wahia, H.; Zhou, C.S. Intensive pulsed light pretreatment combined with controlled temperature and humidity for convection drying to reduce browning and improve quality of dried shiitake mushrooms. J. Sci. Food Agric. 2021, 101, 5608–5617. [Google Scholar] [CrossRef]
- Wen, X.K.; Brunton, N.P.; Lyng, J.G.; Harrison, S.M.; Carpes, S.T.; Papoutsis, K. Volatile and non-volatile compounds of shiitake mushrooms treated with pulsed light after twenty-four hour storage at different conditions. Food Biosci. 2020, 36, 100619. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, X.J.; Xu, B.G.; Yagoub, A.A.; Mustapha, A.T.; Zhou, C.S. Effect of intensive pulsed light on the activity, structure, physico-chemical properties and surface topography of polyphenol oxidase from mushroom. Innov. Food Sci. Emerg. Technol. 2021, 72, 102741. [Google Scholar] [CrossRef]
- Pace, B.; Cefola, M. Innovative Preservation Technology for the Fresh Fruit and Vegetables. Foods 2021, 10, 719. [Google Scholar] [CrossRef] [PubMed]
- Nxumalo, K.A.; Aremu, A.O.; Fawole, O.A. Potentials of medicinal plant extracts as an alternative to synthetic chemicals in postharvest protection and preservation of horticultural crops: A Review. Sustainability 2021, 13, 5897. [Google Scholar] [CrossRef]
- de Souza, E.L.; Lundgren, G.A.; de Oliveira, K.A.R.; Berger, L.R.R.; Magnani, M. An analysis of the published literature on the effects of edible coatings formed by polysaccharides and essential oils on postharvest microbial control and overall quality of fruit. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1947–1967. [Google Scholar] [CrossRef] [PubMed]
- Sakinah, M.J.N.; Misran, A.; Mahmud, T.M.M.; Abdullah, S. A review: Production and postharvest management of Volvariella volvacea. Int. Food Res. J. 2019, 26, 367–376. [Google Scholar]
- Castellanos-Reyes, K.; Villalobos-Carvajal, R.; Beldarrain-Iznaga, T. Fresh mushroom preservation techniques. Foods 2021, 10, 2126. [Google Scholar] [CrossRef]
- Samarasiri, M.; Chen, W.N. Variations of nonvolatile taste components of mushrooms with different operating conditions and parameters from farm to fork. Crit. Rev. Food Sci. Nutr. 2022, 1–20. [Google Scholar] [CrossRef]
- Liu, H.; Liu, H.G.; Li, J.Q.; Wang, Y.Z. Review of recent modern analytical technology combined with chemometrics approach researches on mushroom discrimination and evaluation. Crit. Rev. Anal. Chem. 2022, 1–24. [Google Scholar] [CrossRef]
- Guimaraes, J.E.R.; de la Fuente, B.; Perez-Gago, M.B.; Andradas, C.; Carbo, R.; Mattiuz, B.H.; Palou, L. Antifungal activity of GRAS salts against Lasiodiplodia theobromae in vitro and as ingredients of hydroxypropyl methylcellulose-lipid composite edible coatings to control Diplodia stem-end rot and maintain postharvest quality of citrus fruit. Int. J. Food Microbiol. 2019, 301, 9–18. [Google Scholar] [CrossRef]
- Tahir, H.E.; Zou, X.B.; Mahunu, G.K.; Arslan, M.; Abdalhai, M.; Li, Z.H. Recent developments in gum edible coating applications for fruits and vegetables preservation: A review. Carbohydr. Polym. 2019, 224, 115141. [Google Scholar] [CrossRef]
- Xie, Q.W.; Liu, G.S.; Zhang, Y.L.; Yu, J.; Wang, Y.Y.; Ma, X.J. Active edible films with plant extracts: A updated review of their types, preparations, reinforcing properties, and applications in muscle foods packaging and preservation. Crit. Rev. Food Sci. Nutr. 2022, 1–23. [Google Scholar] [CrossRef]
- Perez-Santaescolastica, C.; Munekata, P.E.S.; Feng, X.; Liu, Y.; Campagnol, P.C.B.; Lorenzo, J.M. Active edible coatings and films with Mediterranean herbs to improve food shelf-life. Crit. Rev. Food Sci. Nutr. 2022, 62, 2391–2403. [Google Scholar] [CrossRef]
- Zhang, W.L.; Jiang, H.T.; Rhim, J.W.; Cao, J.K.; Jiang, W.B. Effective strategies of sustained release and retention enhancement of essential oils in active food packaging films/coatings. Food Chem. 2022, 367, 130671. [Google Scholar] [CrossRef]
- Zhang, K.X.; Pu, Y.Y.; Sun, D.W. Recent advances in quality preservation of postharvest mushrooms (Agaricus bisporus): A review. Trends Food Sci. Technol. 2018, 78, 72–82. [Google Scholar] [CrossRef]
- Jaworska, G.; Pogon, K.; Bernas, E.; Skrzypczak, A. Effect of Different Drying Methods and 24-Month Storage on Water Activity, Rehydration Capacity, and Antioxidants in Boletus edulis Mushrooms. Dry. Technol. 2014, 32, 291–300. [Google Scholar] [CrossRef]
- Devi, L.S.; Kalita, S.; Mukherjee, A.; Kumar, S. Carnauba wax-based composite films and coatings: Recent advancement in prolonging postharvest shelf-life of fruits and vegetables. Trends Food Sci. Technol. 2022, 129, 296–305. [Google Scholar] [CrossRef]
- Zhu, D.; Wang, C.P.; Liu, Y.; Ding, Y.; Winters, E.; Li, W.X.; Cheng, F.S. Gibberellic acid maintains postharvest quality of Agaricus bisporus mushroom by enhancing antioxidative system and hydrogen sulfide synthesis. J. Food Biochem. 2021, 45, e13939. [Google Scholar] [CrossRef]
- Basumatary, I.B.; Mukherjee, A.; Katiyar, V.; Kumar, S. Biopolymer-based nanocomposite films and coatings: Recent advances in shelf-life improvement of fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2022, 62, 1912–1935. [Google Scholar] [CrossRef]
- Huang, Q.H.; Qian, X.C.; Jiang, T.J.; Zheng, X.L. Effect of chitosan and guar gum based composite edible coating on quality of mushroom (Lentinus edodes) during postharvest storage. Sci. Hortic. 2019, 253, 382–389. [Google Scholar] [CrossRef]
- Liu, J.; Liu, S.; Zhang, X.; Kan, J.; Jin, C.H. Effect of gallic acid grafted chitosan film packaging on the postharvest quality of white button mushroom (Agaricus bisporus). Postharvest Biol. Technol. 2019, 147, 39–47. [Google Scholar] [CrossRef]
- Li, T.; Zhang, J.; Gao, X.Y.; Chen, J.F.; Zheng, Y.F.; Gao, Y.Q.; Qiu, L.Y. The molecular mechanism for the ethylene regulation of postharvest button mushrooms maturation and senescence. Postharvest Biol. Technol. 2019, 156, 110930. [Google Scholar] [CrossRef]
- Huang, J.L.; Xiao, L.; Yi, Y.J.; Li, B.C.; Sun, R.L.; Deng, H.Q. Preservation mechanism and flavor variation of postharvest button mushroom (Agaricus Bisporus) coated compounds of protocatechuic acid-CaCl2-NaCl-pullulan br. LWT-Food Sci. Technol. 2022, 169, 114020. [Google Scholar] [CrossRef]
- Qu, H.; Zhou, H.B.; Ma, T.; Zheng, Z.H.; Zheng, E.P.; Yang, H.L.; Gao, H.Y. TMT-based quantitative proteomic analysis of postharvest Coprinus comatus fruiting body during storage. Postharvest Biol. Technol. 2022, 185, 111786. [Google Scholar] [CrossRef]
- Azevedo, S.; Cunha, L.M.; Fonseca, S.C. Modelling the influence of time and temperature on the respiration rate of fresh oyster mushrooms. Food Sci. Technol. Int. 2015, 21, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Yun, J.M.; Zhang, Y.; Bi, Y.; Zhao, F.Y.; Niu, Y.X. Effects of ozone fumigation combined with nano-film packaging on the postharvest storage quality and antioxidant capacity of button mushrooms (Agaricus bisporus). Postharvest Biol. Technol. 2021, 176, 111501. [Google Scholar] [CrossRef]
- Li, P.X.; Zhang, X.; Hu, H.L.; Sun, Y.; Wang, Y.N.; Zhao, Y.C. High carbon dioxide and low oxygen storage effects on reactive oxygen species metabolism in Pleurotus eryngii. Postharvest Biol. Technol. 2013, 85, 141–146. [Google Scholar] [CrossRef]
- Fang, D.L.; Yu, K.L.; Deng, Z.L.; Hu, Q.H.; Zhao, L.Y. Storage quality and flavor evaluation of Volvariella volvacea packaged with nanocomposite-based packaging material during commercial storage condition. Food Packag. Shelf Life 2019, 22, 100412. [Google Scholar] [CrossRef]
- Zheng, E.P.; Zheng, Z.H.; Ren, S.Y.; Zhou, H.B.; Yang, H.L. Postharvest quality and reactive oxygen species metabolism improvement of Coprinus comatus mushroom using allyl isothiocyanate fumigation. Food Qual. Saf. 2022, 6, fyac031. [Google Scholar] [CrossRef]
- Feng, L.; Jiang, X.; Kitazawa, H.; Wang, X.Y.; Guo, Y.Y.; Li, L.; Liu, H.P.; Wang, Y.F.; Wang, J. Characterization of bioactive films loaded with melatonin and regulation of postharvest ROS scavenging and ascorbate-glutathione cycle in Agaricus bisporus. Postharvest Biol. Technol. 2022, 194, 112107. [Google Scholar] [CrossRef]
- Li, L.; Kitazawa, H.; Zhang, X.H.; Zhang, L.M.; Sun, Y.; Wang, X.Y.; Liu, Z.L.; Guo, Y.Y.; Yu, S.X. Melatonin retards senescence via regulation of the electron leakage of postharvest white mushroom (Agaricus bisporus). Food Chem. 2021, 340, 127833. [Google Scholar] [CrossRef]
- Zhang, S.L.; Fang, X.J.; Wu, W.J.; Tong, C.; Chen, H.J.; Yang, H.L.; Gao, H.Y. Effects of negative air ions treatment on the quality of fresh shiitake mushroom (Lentinus edodes) during storage. Food Chem. 2022, 371, 131200. [Google Scholar] [CrossRef]
- Yan, M.; Yuan, B.; Cheng, S.J.; Huang, H.D.; Huang, D.C.; Chen, J.Q.; Cao, C.J. Nanocomposite-based packaging affected the taste components of white Hypsizygus marmoreus by regulating energy status. Food Chem. 2020, 311, 125939. [Google Scholar] [CrossRef]
- Li, Y.J.; Ding, S.D.; Xiang, T.Y.; Kitazawa, H.; Sun, H.T.; Guo, Y.X. Effects of light irradiation on the textural properties and energy metabolism of postharvest shiitake mushrooms (Lentinula edodes). J. Food Process. Preserv. 2021, 45, e16066. [Google Scholar] [CrossRef]
- Masson, Y.; Ainsworth, P.; Fuller, D.; Bozkurt, H.; Ibanoglu, S. Growth of Pseudomonas fluorescens and Candida sake in homogenized mushrooms under modified atmosphere. J. Food Eng. 2002, 54, 125–131. [Google Scholar] [CrossRef]
- Wang, X.Q.; He, X.X.; Wu, X.L.; Fan, X.T.; Wang, F.L.; Lin, Q.; Guan, W.Q.; Zhang, N. UV-C treatment inhibits browning, inactivates Pseudomonas tolaasii and reduces associated chemical and enzymatic changes of button mushrooms. J. Sci. Food Agric. 2022, 102, 3259–3265. [Google Scholar] [CrossRef]
- Pourbagher, R.; Abbaspour-Fard, M.H.; Sohbatzadeh, F.; Rohani, A. Inhibition of enzymes and Pseudomonas tolaasii growth on Agaricus bisporus following treatment with surface dielectric barrier discharge plasma. Innov. Food Sci. Emerg. Technol. 2021, 74, 102833. [Google Scholar] [CrossRef]
- Pourbagher, R.; Abbaspour-Fard, M.H.; Sohbatzadeh, F.; Rohani, A. In vivo antibacterial effect of non-thermal atmospheric plasma on pseudomonas tolaasii, a causative agent of Agaricus bisporus blotch disease. Food Control 2021, 130, 108319. [Google Scholar] [CrossRef]
- Schill, S.; Stessl, B.; Meier, N.; Tichy, A.; Wagner, M.; Ludewig, M. Microbiological safety and sensory quality of cultivated mushrooms (Pleurotus eryngii, Pleurotus ostreatus and Lentinula edodes) at retail level and post-retail storage. Foods 2021, 10, 816. [Google Scholar] [CrossRef]
- Kragh, M.L.; Obari, L.; Caindec, A.M.; Jensen, H.A.; Hansen, L.T. Survival of Listeria monocytogenes, Bacillus cereus and Salmonella Typhimurium on sliced mushrooms during drying in a household food dehydrator. Food Control 2022, 134, 108715. [Google Scholar] [CrossRef]
- Tarlak, F.; Ozdemir, M.; Melikoglu, M. The combined effect of exposure time to sodium chlorite (NaClO2) solution and packaging on postharvest quality of white button mushroom (Agaricus bisporus) stored at 4 degrees C. Food Sci. Technol. 2020, 40, 864–870. [Google Scholar] [CrossRef]
- Qiu, W.W.; Huang, Y.; Zhao, C.; Lin, Z.S.; Lin, W.X.; Wang, Z.J. Microflora of fresh white button mushrooms (Agaricus bisporus) during cold storage revealed by high-throughput sequencing and MALDI-TOF mass spectrometry fingerprinting. J. Sci. Food Agric. 2019, 99, 4498–4503. [Google Scholar] [CrossRef]
- Manthou, E.; Tarlak, F.; Lianou, A.; Ozdemir, M.; Zervakis, G.I.; Panagou, E.Z.; Nychas, G.J.E. Prediction of indigenous Pseudomonas spp. growth on oyster mushrooms (Pleurotus ostreatus) as a function of storage temperature. LWT-Food Sci. Technol. 2019, 111, 506–512. [Google Scholar] [CrossRef]
- Settier-Ramirez, L.; Lopez-Carballo, G.; Gavara, R.; Hernandez-Munoz, P. Evaluation of Lactococcus lactis subsp. lactis as protective culture for active packaging of non-fermented foods: Creamy mushroom soup and sliced cooked ham. Food Control 2021, 122, 107802. [Google Scholar] [CrossRef]
- Li, G.J.; Wang, Y.; Zhang, Z.Q.; Chen, Y.; Tian, S.P. Mushroom alcohol controls gray mold caused by Botrytis cinerea in harvested fruit via activating the genes involved in jasmonic acid signaling pathway. Postharvest Biol. Technol. 2022, 186, 111843. [Google Scholar] [CrossRef]
- Yusof, S.N.M.; Raseetha, S.; Sabaratnam, V.; Abdullah, S.; Razali, R.M.; Bahar, A. Impact of storage temperatures on the quality of oven-dried black jelly mushroom, Auricularia nigricans (Agaricomycetes). Int. J. Med. Mushrooms 2022, 24, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Pourbagher, R.; Abbaspour-Fard, M.H.; Khomeiri, M.; Sohbatzadeh, F.; Rohani, A. Effects of gas type and cold plasma treatment time on Lecanicillium fungicola spores reduction and changes in qualitative, chemical, and physiological characteristics of button mushroom during postharvest storage. J. Food Process. Preserv. 2022, 46, e16901. [Google Scholar] [CrossRef]
- Gea, F.J.; Navarro, M.J.; Santos, M.; Dianez, F.; Carrasco, J. Control of fungal diseases in mushroom crops while dealing with fungicide resistance: A Review. Microorganisms 2021, 9, 585. [Google Scholar] [CrossRef]
- Mei, J.; Ma, X.; Xie, J. Review on Natural Preservatives for Extending Fish Shelf Life. Foods 2019, 8, 490. [Google Scholar] [CrossRef]
- Zhang, L.H.; Zhang, M.; Mujumdar, A.S. New technology to overcome defects in production of fermented plant products- a review. Trends Food Sci. Technol. 2021, 116, 829–841. [Google Scholar] [CrossRef]
- Gallo, M.; Ferrara, L.; Calogero, A.; Montesano, D.; Naviglio, D. Relationships between food and diseases: What to know to ensure food safety. Food Res. Int. 2020, 137, 109414. [Google Scholar] [CrossRef]
- Wang, X.M.; Sun, Y.; Liu, Z.L.; Huang, X.; Yi, F.X.; Hou, F.Y.; Zhang, F.J. Preparation and characterization of chitosan/zein film loaded with lemon essential oil: Effects on postharvest quality of mushroom (Agaricus bisporus). Int. J. Biol. Macromol. 2021, 192, 635–643. [Google Scholar] [CrossRef]
- Jaworska, G.; Sidor, A.; Pycia, K.; Jaworska-Tomczyk, K.; Surowka, K. Packaging method and storage temperature affects microbiological quality and content of biogenic amines in Agaricus bisporus fruiting bodies. Food Biosci. 2020, 37, 100736. [Google Scholar] [CrossRef]
- Li, Y.J.; Ding, S.D.; Wang, Y.X. Shelf life predictive model for postharvest shiitake mushrooms. J. Food Eng. 2022, 330, 111099. [Google Scholar] [CrossRef]
- Li, Y.J.; Ding, S.D.; Kitazawa, H.; Wang, Y.X. Storage temperature effect on quality related with cell wall metabolism of shiitake mushrooms (Lentinula edodes) and its modeling. Food Packag. Shelf Life 2022, 32, 100865. [Google Scholar] [CrossRef]
- Singh, P.; Langowski, H.C.; Wani, A.A.; Saengerlaub, S. Recent advances in extending the shelf life of fresh Agaricus mushrooms: A review. J. Sci. Food Agric. 2010, 90, 1393–1402. [Google Scholar] [CrossRef]
- Namiota, M.; Bonikowski, R. The Current State of Knowledge about Essential Oil Fumigation for Quality of Crops during Postharvest. Int. J. Mol. Sci. 2021, 22, 13351. [Google Scholar] [CrossRef]
- He, X.X.; Wang, X.Q.; Liu, Y.T.; Fang, H.J.; Zheng, S.Y.; Liu, H.P.; Guan, W.Q.; Yan, R.X. Biodegradable PBAT/PLA packaging maintained the quality of postharvest shiitake mushroom by modified humidity and atmosphere. Food Packag. Shelf Life 2022, 34, 100949. [Google Scholar] [CrossRef]
- Dokhanieh, A.Y.; Aghdam, M.S. Postharvest browning alleviation of Agaricus bisporus using salicylic acid treatment. Sci. Hortic. 2016, 207, 146–151. [Google Scholar] [CrossRef]
- Kong, R.Q.; Wang, J.; Cheng, M.; Lu, W.Q.; Chen, M.L.; Zhang, R.F.; Wang, X.Y. Development and characterization of corn starch/PVA active films incorporated with carvacrol nanoemulsions. Int. J. Biol. Macromol. 2020, 164, 1631–1639. [Google Scholar] [CrossRef]
- Omar, Z.A.; Abduljabar, R.S.; Sajadi, S.M.; Mahmud, S.A.; Yahya, R.O. Recent progress in eco-synthesis of essential oil-based nanoparticles and their possible mechanisms. Ind. Crops Prod. 2022, 187, 115322. [Google Scholar] [CrossRef]
- Mangalagiri, N.P.; Panditi, S.K.; Jeevigunta, N.L.L. Antimicrobial activity of essential plant oils and their major components. Heliyon 2021, 7, e06835. [Google Scholar] [CrossRef]
- Ni, Z.J.; Wang, X.; Shen, Y.; Thakur, K.; Han, J.Z.; Zhang, J.G.; Hu, F.; Wei, Z.J. Recent updates on the chemistry, bioactivities, mode of action, and industrial applications of plant essential oils. Trends Food Sci. Technol. 2021, 110, 78–89. [Google Scholar] [CrossRef]
- Muratore, F.; Martini, R.E.; Barbosa, S.E. Bioactive paper by eugenol grafting onto cellulose. Effect of reaction variables. Food Packag. Shelf Life 2018, 15, 159–168. [Google Scholar] [CrossRef]
- Lavoine, N.; Givord, C.; Tabary, N.; Desloges, I.; Martel, B.; Bras, J. Elaboration of a new antibacterial bio-nano-material for food-packaging by synergistic action of cyclodextrin and microfibrillated cellulose. Innov. Food Sci. Emerg. Technol. 2014, 26, 330–340. [Google Scholar] [CrossRef]
- Louis, E.; Villalobos-Carvajal, R.; Reyes-Parra, J.; Jara-Quijada, E.; Ruiz, C.; Andrades, P.; Gacitua, J.; Beldarrain-Iznaga, T. Preservation of mushrooms (Agaricus bisporus) by an alginate-based-coating containing a cinnamaldehyde essential oil nanoemulsion. Food Packag. Shelf Life 2021, 28, 100662. [Google Scholar] [CrossRef]
- Shao, P.; Yu, J.; Chen, H.J.; Gao, H.Y. Development of microcapsule bioactive paper loaded with cinnamon essential oil to improve the quality of edible fungi. Food Packag. Shelf Life 2021, 27, 100617. [Google Scholar] [CrossRef]
- Chen, M.L.; Yan, X.R.; Cheng, M.; Zhao, P.X.; Wang, Y.R.; Zhang, R.F.; Wang, X.Y.; Wang, J.; Chen, M.M. Preparation, characterization and application of poly(lactic acid)/corn starch/eucalyptus leaf essential oil microencapsulated active bilayer degradable film. Int. J. Biol. Macromol. 2022, 195, 264–273. [Google Scholar] [CrossRef]
- Niu, B.; Zhan, L.; Shao, P.; Xiang, N.; Sun, P.L.; Chen, H.J.; Gao, H.Y. Electrospinning of zein-ethyl cellulose hybrid nanofibers with improved water resistance for food preservation. Int. J. Biol. Macromol. 2020, 142, 592–599. [Google Scholar] [CrossRef]
- Shao, P.; Liu, Y.; Ritzoulis, C.; Niu, B. Preparation of zein nanofibers with cinnamaldehyde encapsulated in surfactants at critical micelle concentration for active food packaging. Food Packag. Shelf Life 2019, 22, 100385. [Google Scholar] [CrossRef]
- Zhang, L.M.; Liu, Z.L.; Sun, Y.; Wang, X.M.; Li, L. Combined antioxidant and sensory effects of active chitosan/zein film containing a-tocopherol on Agaricus bisporus. Food Packag. Shelf Life 2020, 24, 100470. [Google Scholar] [CrossRef]
- Lu, W.Q.; Chen, M.L.; Cheng, M.; Yan, X.R.; Zhang, R.F.; Kong, R.Q.; Wang, J.; Wang, X.Y. Development of antioxidant and antimicrobial bioactive films based on Oregano essential oil/mesoporous nano-silica/sodium alginate. Food Packag. Shelf Life 2021, 29, 100691. [Google Scholar] [CrossRef]
- Nasiri, M.; Barzegar, M.; Sahari, M.A.; Niakousari, M. Application of Tragacanth gum impregnated with Satureja khuzistanica essential oil as a natural coating for enhancement of postharvest quality and shelf life of button mushroom (Agaricus bisporus). Int. J. Biol. Macromol. 2018, 106, 218–226. [Google Scholar] [CrossRef]
- Karimirad, R.; Behnamian, M.; Dezhsetan, S.; Sonnenberg, A. Chitosan nanoparticles-loaded Citrus aurantium essential oil: A novel delivery system for preserving the postharvest quality of Agaricus bisporus. J. Sci. Food Agric. 2018, 98, 5112–5119. [Google Scholar] [CrossRef]
- Karimirad, R.; Behnamian, M.; Dezhsetan, S. Development and characterization of nano biopolymer containing cumin oil as a new approach to enhance antioxidant properties of button mushroom. Int. J. Biol. Macromol. 2018, 113, 662–668. [Google Scholar] [CrossRef]
- Karimirad, R.; Behnamian, M.; Dezhsetan, S. Application of chitosan nanoparticles containing Cuminum cyminum oil as a delivery system for shelf life extension of Agaricus bisporus. LWT-Food Sci. Technol. 2019, 106, 218–228. [Google Scholar] [CrossRef]
- Karimirad, R.; Behnamian, M.; Dezhsetan, S. Bitter orange oil incorporated into chitosan nanoparticles: Preparation, characterization and their potential application on antioxidant and antimicrobial characteristics of white button mushroom. Food Hydrocoll. 2020, 100, 105387. [Google Scholar] [CrossRef]
- Ju, A.; Song, K.B. Active biodegradable films based on water soluble polysaccharides from white jelly mushroom (Tremella fuciformis) containing roasted peanut skin extract. LWT-Food Sci. Technol. 2020, 126, 109293. [Google Scholar] [CrossRef]
- Lopez-Gomez, A.; Ros-Chumillas, M.; Navarro-Martinez, A.; Baron, M.; Navarro-Segura, L.; Taboada-Rodriguez, A.; Marin-Iniesta, F.; Martinez-Hernandez, G.B. Packaging of fresh sliced mushrooms with essential oils vapours: A new technology for maintaining quality and extending shelf life. Foods 2021, 10, 1196. [Google Scholar] [CrossRef]
- Cheng, M.; Wang, J.; Zhang, R.F.; Kong, R.Q.; Lu, W.Q.; Wang, X.Y. Characterization and application of the microencapsulated carvacrol/Check for sodium alginate films as food packaging materials. Int. J. Biol. Macromol. 2019, 141, 259–267. [Google Scholar] [CrossRef]
- Pan, J.F.; Ai, F.M.; Shao, P.; Chen, H.J.; Gao, H.Y. Development of polyvinyl alcohol/beta-cyclodextrin antimicrobial nanofibers for fresh mushroom packaging. Food Chem. 2019, 300, 125249. [Google Scholar] [CrossRef]
- Chaudhari, A.K.; Das, S.; Singh, B.K.; Dubey, N.K. Green facile synthesis of cajuput (Melaleuca cajuputi Powell.) essential oil loaded chitosan film and evaluation of its effectiveness on shelf-life extension of white button mushroom. Food Chem. 2023, 401, 134114. [Google Scholar] [CrossRef]
- Zhang, R.F.; Cheng, M.; Wang, X.Y.; Wang, J. Bioactive mesoporous nano-silica/potato starch films against molds commonly found in post-harvest white mushrooms. Food Hydrocoll. 2019, 95, 517–525. [Google Scholar] [CrossRef]
- Gui, H.; Zhao, M.; Zhang, S.Q.; Yin, R.Y.; Hu, C.Y.; Fan, M.; Li, L. Active antioxidant packaging from essential oils incorporated polylactic acid/poly(butylene adipate-co-terephthalate)/thermoplastic starch for preserving straw mushroom. Foods 2022, 11, 2252. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Tripathi, A. Effects of Citrus sinensis (L.) Osbeck epicarp essential oil on growth and morphogenesis of Aspergillus niger (L.) Van Tieghem. Microbiol. Res. 2008, 163, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Baydar, H.; Sagdic, O.; Ozkan, G.; Karadogan, T. Antibacterial activity and composition of essential oils from Origanum, Thymbra and Satureja species with commercial importance in Turkey. Food Control 2004, 15, 169–172. [Google Scholar] [CrossRef]
- Cui, H.Y.; Zhang, C.H.; Li, C.Z.; Lin, L. Antibacterial mechanism of oregano essential oil. Ind. Crops Prod. 2019, 139, 111498. [Google Scholar] [CrossRef]
- Govaris, A.; Solomakos, N.; Pexara, A.; Chatzopoulou, P.S. The antimicrobial effect of oregano essential oil, nisin and their combination against Salmonella Enteritidis in minced sheep meat during refrigerated storage. Int. J. Food Microbiol. 2010, 137, 175–180. [Google Scholar] [CrossRef]
- Davidenco, V.; Pelissero, P.J.; Arguello, J.A.; Vega, C.R.C. Ecophysiological determinants of Oregano productivity: Effects of plant’s canopy architecture on radiation capture and use, biomass partitioning and essential oil yield. Sci. Hortic. 2020, 272, 109553. [Google Scholar] [CrossRef]
- Salgueiro, L.R.; Cavaleiro, C.; Pinto, E.; Pina-Vaz, C.; Rodrigues, A.G.; Palmeira, A.; Tavares, C.; Costa-de-Oliveira, S.; Goncalves, M.J.; Martinez-de-Oliveira, J. Chemical composition and antifungal activity of the essential oil of Origanum virens on Candida species. Planta Med. 2003, 69, 871–874. [Google Scholar]
- Darbasi, M.; Askari, G.; Kiani, H.; Khodaiyan, F. Development of chitosan based extended-release antioxidant films by control of fabrication variables. Int. J. Biol. Macromol. 2017, 104, 303–310. [Google Scholar] [CrossRef]
- Lopez, P.; Sanchez, C.; Batlle, R.; Nerin, C. Solid- and vapor-phase antimicrobial activities of six essential oils: Susceptibility of selected foodborne bacterial and fungal strains. J. Agric. Food Chem. 2005, 53, 6939–6946. [Google Scholar] [CrossRef]
- Gao, M.S.; Feng, L.F.; Jiang, T.J. Browning inhibition and quality preservation of button mushroom (Agaricus bisporus) by essential oils fumigation treatment. Food Chem. 2014, 149, 107–113. [Google Scholar] [CrossRef]
- Zhang, R.F.; Cui, Y.J.; Cheng, M.; Guo, Y.L.; Wang, X.Y.; Wang, J. Antifungal activity and mechanism of cinnamon essential oil loaded into mesoporous silica nanoparticles. Ind. Crops Prod. 2021, 171, 113846. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Zhou, Y.L.; Wang, T.T.; Deng, X.M.; Chu, X.; Zhou, T.Z. Cinnamaldehyde inhibits type three secretion system in Salmonella enterica serovar Typhimurium by affecting the expression of key effector proteins. Vet. Microbiol. 2019, 239, 108463. [Google Scholar] [CrossRef]
- Yang, R.P.; Miao, J.Y.; Shen, Y.T.; Cai, N.; Wan, C.P.; Zou, L.Q.; Chen, C.Y.; Chen, J.Y. Antifungal effect of cinnamaldehyde, eugenol and carvacrol nanoemulsion against Penicillium digitatum and application in postharvest preservation of citrus fruit. LWT-Food Sci. Technol. 2021, 141, 110924. [Google Scholar] [CrossRef]
- Silva, A.F.; dos Santos, A.R.; Trevisan, D.A.C.; Ribeiro, A.B.; Campanerut-Sa, P.A.Z.; Kukolj, C.; de Souza, E.M.; Cardoso, R.F.; Svidzinski, T.I.E.; de Abreu, B.A.; et al. Cinnamaldehyde induces changes in the protein profile of Salmonella Typhimurium biofilm. Res. Microbiol. 2018, 169, 33–43. [Google Scholar] [CrossRef]
- Kwon, J.A.; Yu, C.B.; Park, H.D. Bacteriocidal effects and inhibition of cell separation of cinnamic aldehyde on Bacillus cereus. Lett. Appl. Microbiol. 2003, 37, 61–65. [Google Scholar] [CrossRef]
- Nair, M.S.; Tomar, M.; Punia, S.; Kukula-Koch, W.; Kumar, M. Enhancing the functionality of chitosan- and alginate-based active edible coatings/films for the preservation of fruits and vegetables: A review. Int. J. Biol. Macromol. 2020, 164, 304–320. [Google Scholar] [CrossRef]
- Sarkar, C.; Jamaddar, S.; Islam, T.; Mondal, M.; Islam, M.T.; Mubarak, M.S. Therapeutic perspectives of the black cumin component thymoquinone: A review. Food Funct. 2021, 12, 6167–6213. [Google Scholar] [CrossRef]
- Zaky, A.A.; Shim, J.H.; Abd El-Aty, A.M. A Review on extraction, characterization, and applications of bioactive peptides from pressed black cumin seed cake. Front. Nutr. 2021, 8, 743909. [Google Scholar] [CrossRef]
- Ghasemi, M.; Miri, M.A.; Najafi, M.A.; Tavakoli, M.; Hadadi, T. Encapsulation of Cumin essential oil in zein electrospun fibers: Characterization and antibacterial effect. J. Food Meas. Charact. 2022, 16, 1613–1624. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Przychodna, M.; Sopata, S.; Bodalska, A.; Fecka, I. Thymol and thyme essential oil-new insights into selected therapeutic applications. Molecules 2020, 25, 4125. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Guo, R.; Li, W.X.; Song, J.Y.; Cheng, F.S. Improved postharvest preservation effects of pholiota nameko mushroom by sodium alginate-based edible composite coating. Food Bioprocess Technol. 2019, 12, 587–598. [Google Scholar] [CrossRef]
- Guerra, A.M.S.; Hoyos, C.G.; Velasquez-Cock, J.A.; Acosta, L.V.; Rojo, P.G.; Giraldo, A.M.V.; Gallego, R.Z. The nanotech potential of turmeric (Curcuma longa L.) in food technology: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 1842–1854. [Google Scholar] [CrossRef] [PubMed]
- Yue, G.G.L.; Chan, B.C.L.; Hon, P.M.; Kennelly, E.J.; Yeung, S.K.; Cassileth, B.R.; Fung, K.P.; Leung, P.C.; Lau, C.B.S. Immunostimulatory activities of polysaccharide extract isolated from Curcuma longa. Int. J. Biol. Macromol. 2010, 47, 342–347. [Google Scholar] [CrossRef]
- Betts, J.W.; Sharili, A.S.; La Ragione, R.M.; Wareham, D.W. In vitro antibacterial activity of curcumin-polymyxin b combinations against multidrug-resistant bacteria associated with traumatic wound infections. J. Nat. Prod. 2016, 79, 1702–1706. [Google Scholar] [CrossRef]
- Liju, V.B.; Jeena, K.; Kuttan, R. Acute and subchronic toxicity as well as mutagenic evaluation of essential oil from turmeric (Curcuma longa L.). Food Chem. Toxicol. 2013, 53, 52–61. [Google Scholar] [CrossRef]
- Valizadeh, M.; Behnamian, M.; Dezhsetan, S.; Karimirad, R. Controlled release of turmeric oil from chitosan nanoparticles extends shelf life of Agaricus bisporus and preserves its postharvest quality. Food Biosci. 2021, 44, 101401. [Google Scholar] [CrossRef]
- Ghaderi, L.; Aliahmadi, A.; Ebrahimi, S.N.; Rafati, H. Effective Inhibition and eradication of Pseudomonas aeruginosa biofilms by Satureja khuzistanica essential oil nanoemulsion. J. Drug Deliv. Sci. Technol. 2021, 61, 102260. [Google Scholar] [CrossRef]
- Beyranvand, F.; Gharzi, A.; Abbaszadeh, A.; Khorramabadi, R.M.; Gholami, M.; Gharravi, A.M. Encapsulation of Satureja khuzistanica extract in alginate hydrogel accelerate wound healing in adult male rats. Inflamm. Regen. 2019, 39, 2. [Google Scholar] [CrossRef]
- Khojasteh, A.; Meton, I.; Camino, S.; Cusido, R.M.; Eibl, R.; Palazon, J. In vitro study of the anticancer effects of biotechnological extracts of the endangered plant species Satureja Khuzistanica. Int. J. Mol. Sci. 2019, 20, 2400. [Google Scholar] [CrossRef]
- Fatemi, F.; Abdollahi, M.R.; Mirzaie-Asl, A.; Dastan, D.; Papadopoulou, K. Phytochemical, antioxidant, enzyme activity and antifungal properties of Satureja khuzistanica in vitro and in vivo explants stimulated by some chemical elicitors. Pharm. Biol. 2020, 58, 286–296. [Google Scholar] [CrossRef]
- Tabatabaeain, S.F.; Karimi, E.; Hashemi, M. Satureja khuzistanica Essential Oil-Loaded Solid Lipid Nanoparticles Modified With Chitosan-Folate: Evaluation of Encapsulation Efficiency, Cytotoxic and Pro-apoptotic Properties. Front. Chem. 2022, 10, 904973. [Google Scholar] [CrossRef]
- Alvand, Z.M.; Rahimi, M.; Rafati, H. A microfluidic chip for visual investigation of the interaction of nanoemulsion of Satureja Khuzistanica essential oil and a model gram-negative bacteria. Int. J. Pharm. 2021, 607, 121032. [Google Scholar] [CrossRef]
- Basavegowda, N.; Patra, J.K.; Baek, K.H. Essential Oils and Mono/bi/tri-Metallic Nanocomposites as Alternative Sources of Antimicrobial Agents to Combat Multidrug-Resistant Pathogenic Microorganisms: An Overview. Molecules 2020, 25, 1058. [Google Scholar] [CrossRef]
- Niu, Y.X.; Yun, J.M.; Bi, Y.; Wang, T.; Zhang, Y.; Liu, H.; Zhao, F.Y. Predicting the shelf life of postharvest Flammulina velutipes at various temperatures based on mushroom quality and specific spoilage organisms. Postharvest Biol. Technol. 2020, 167, 111235. [Google Scholar] [CrossRef]
- Nastasi, J.R.; Kontogiorgos, V.; Daygon, V.D.; Fitzgerald, M.A. Pectin-based films and coatings with plant extracts as natural preservatives: A systematic review. Trends Food Sci. Technol. 2022, 120, 193–211. [Google Scholar] [CrossRef]
- Ganiari, S.; Choulitoudi, E.; Oreopoulou, V. Edible and active films and coatings as carriers of natural antioxidants for lipid food. Trends Food Sci. Technol. 2017, 68, 70–82. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, X.; Gong, P.; Li, Z.; Wu, Y.; Zhang, J.; Wang, J.; Yao, W.; Yang, W.; Chen, F. Advances in the mechanisms of polysaccharides in alleviating depression and its complications. Phytomedicine 2023, 109, 154566–154574. [Google Scholar] [CrossRef]
- Shekari, A.; Hassani, R.N.; Aghdam, M.S. Exogenous application of GABA retards cap browning in Agaricus bisporus and its possible mechanism. Postharvest Biol. Technol. 2021, 174, 111434. [Google Scholar] [CrossRef]
- Aghdam, M.S.; Luo, Z.S.; Jannatizadeh, A.; Farmani, B. Exogenous adenosine triphosphate application retards cap browning in Agaricus bisporus during low temperature storage. Food Chem. 2019, 293, 285–290. [Google Scholar] [CrossRef]
- Fattahifar, E.; Barzegar, M.; Gavlighi, H.A.; Sahari, M.A. Evaluation of the inhibitory effect of pistachio (Pistacia vera L.) green hull aqueous extract on mushroom tyrosinase activity and its application as a button mushroom postharvest anti-browning agent. Postharvest Biol. Technol. 2018, 145, 157–165. [Google Scholar] [CrossRef]
- Liu, Q.; Cui, X.; Song, Z.B.; Kong, W.W.; Kang, Y.C.; Kong, W.L.; Ng, T.B. Coating shiitake mushrooms (Lentinus edodes) with a polysaccharide from Oudemansiella radicata improves product quality and flavor during postharvest storage. Food Chem. 2021, 352, 129357. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.Y.; Wang, Y.; Qian, J.; Si, W.S.; Tan, Q.; Xu, J.Y.; Zhao, Y.C. Melatonin enhances the cadmium tolerance of mushrooms through antioxidant-related metabolites and enzymes. Food Chem. 2020, 330, 127263. [Google Scholar] [CrossRef] [PubMed]
- Lara, G.; Yakoubi, S.; Villacorta, C.M.; Uemura, K.; Kobayashi, I.; Takahashi, C.; Nakajima, M.; Neves, M.A. Spray technology applications of xanthan gum-based edible coatings for fresh-cut lotus root (Nelumbo nucifera). Food Res. Int. 2020, 137, 109723. [Google Scholar] [CrossRef]
- Vieira, J.M.; Flores-Lopez, M.L.; de Rodriguez, D.J.; Sousa, M.C.; Vicente, A.A.; Martins, J.T. Effect of chitosan-Aloe vera coating on postharvest quality of blueberry (Vaccinium corymbosum) fruit. Postharvest Biol. Technol. 2016, 116, 88–97. [Google Scholar] [CrossRef]
- Liu, Q.; Kong, W.L.; Hu, S.J.; Kang, Y.C.; Zhang, Y.T.; Ng, T.B. Effects of Oudemansiella radicata polysaccharide on postharvest quality of oyster mushroom (Pleurotus ostreatus) and its antifungal activity against Penicillium digitatum. Postharvest Biol. Technol. 2020, 166, 111207. [Google Scholar] [CrossRef]
- Liu, Q.; Zhu, M.J.; Geng, X.R.; Wang, H.X.; Ng, T.B. Characterization of polysaccharides with antioxidant and hepatoprotective activities from the edible mushroom Oudemansiella radicata. Molecules 2017, 22, 234. [Google Scholar] [CrossRef]
- Guo, Y.X.; Chen, X.F.; Gong, P.; Guo, J.; Deng, D.; He, G.L.; Ji, C.L.; Wang, R.T.; Long, H.; Wang, J.T.; et al. Effect of shiitake mushrooms polysaccharide and chitosan coating on softening and browning of shiitake mushrooms (Lentinus edodes) during postharvest storage. Int. J. Biol. Macromol. 2022, 218, 816–827. [Google Scholar] [CrossRef]
- Gong, P.; Wang, X.J.; Liu, M.; Wang, M.R.; Wang, S.Y.; Guo, Y.X.; Chang, X.N.; Yang, W.J.; Chen, X.F.; Chen, F.X. Hypoglycemic effect of a novel polysaccharide from Lentinus edodes on STZ-induced diabetic mice via metabolomics study and Nrf2/HO-1 pathway. Food Funct. 2022, 13, 3036–3049. [Google Scholar] [CrossRef]
- Sun, C.L.; Liu, L.J.; Wang, L.X.; Li, B.H.; Jin, C.W.; Lin, X.Y. Melatonin: A master regulator of plant development and stress responses. J. Integr. Plant Biol. 2021, 63, 126–145. [Google Scholar] [CrossRef]
- Arnao, M.B.; Hernandez-Ruiz, J. Melatonin: A new plant hormone and/or a plant master regulator? Trends Plant Sci. 2019, 24, 38–48. [Google Scholar] [CrossRef]
- Zhao, D.K.; Wang, H.P.; Chen, S.Y.; Yu, D.Q.; Reiter, R.J. Phytomelatonin: An emerging regulator of plant biotic stress resistance. Trends Plant Sci. 2021, 26, 70–82. [Google Scholar] [CrossRef]
- Wu, X.; Ren, J.; Huang, X.Q.; Zheng, X.Z.; Tian, Y.C.; Shi, L.; Dong, P.; Li, Z.G. Melatonin: Biosynthesis, content, and function in horticultural plants and potential application. Sci. Hortic. 2021, 288, 110392. [Google Scholar] [CrossRef]
- Zhang, W.L.; Cao, J.K.; Fan, X.G.; Jiang, W.B. Applications of nitric oxide and melatonin in improving postharvest fruit quality and the separate and crosstalk biochemical mechanisms. Trends Food Sci. Technol. 2020, 99, 531–541. [Google Scholar] [CrossRef]
- Li, M.Q.; Hasan, M.K.; Li, C.X.; Ahammed, G.J.; Xia, X.J.; Shi, K.; Zhou, Y.H.; Reiter, R.J.; Yu, J.Q.; Xu, M.X.; et al. Melatonin mediates selenium-induced tolerance to cadmium stress in tomato plants. J. Pineal Res. 2016, 61, 291–302. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.W.; Zhou, X.; Shi, F.; Fu, W.W.; Ji, S.J. Effect of ATP treatment on enzymes involved in energy and lipid metabolisms accompany peel browning of ‘Nanguo’ pears during shelf life after low temperature storage. Sci. Hortic. 2018, 240, 446–452. [Google Scholar] [CrossRef]
- Tarkowski, L.P.; Signorelli, S.; Hofte, M. gamma-Aminobutyric acid and related amino acids in plant immune responses: Emerging mechanisms of action. Plant Cell Environ. 2020, 43, 1103–1116. [Google Scholar] [CrossRef]
- Yu, Z.M.; Yang, Z.Y. Understanding different regulatory mechanisms of proteinaceous and non-proteinaceous amino acid formation in tea (Camellia sinensis) provides new insights into the safe and effective alteration of tea flavor and function. Crit. Rev. Food Sci. Nutr. 2020, 60, 844–858. [Google Scholar] [CrossRef]
- Yilmaz, C.; Gokmen, V. Neuroactive compounds in foods: Occurrence, mechanism and potential health effects. Food Res. Int. 2020, 128, 108744. [Google Scholar] [CrossRef]
- Shelp, B.J.; Bown, A.W.; Zarei, A. 4-Aminobutyrate (GABA): A metabolite and signal with practical significance. Botany 2017, 95, 1015–1032. [Google Scholar] [CrossRef]
- Aghdam, M.S.; Naderi, R.; Jannatizadeh, A.; Sarcheshmeh, M.A.A.; Babalar, M. Enhancement of postharvest chilling tolerance of anthurium cut flowers by gamma-aminobutyric acid (GABA) treatments. Sci. Hortic. 2016, 198, 52–60. [Google Scholar] [CrossRef]
- Li, J.X.; Zhou, X.; Wei, B.D.; Cheng, S.C.; Zhou, Q.; Ji, S.J. GABA application improves the mitochondrial antioxidant system and reduces peel browning in ‘Nanguo’ pears after removal from cold storage. Food Chem. 2019, 297, 904973. [Google Scholar] [CrossRef] [PubMed]
- Barreca, D.; Lagana, G.; Leuzzi, U.; Smeriglio, A.; Trombetta, D.; Bellocco, E. Evaluation of the nutraceutical, antioxidant and cytoprotective properties of ripe pistachio (Pistacia vera L., variety Bronte) hulls. Food Chem. 2016, 196, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Grace, M.H.; Esposito, D.; Timmers, M.A.; Xiong, J.; Yousef, G.; Komarnytsky, S.; Lila, M.A. Chemical composition, antioxidant and anti-inflammatory properties of pistachio hull extracts. Food Chem. 2016, 210, 85–95. [Google Scholar] [CrossRef]
- Kilic, I.H.; Sarikurkcu, C.; Karagoz, I.D.; Uren, M.C.; Kocak, M.S.; Cilkiz, M.; Tepe, B. A significant by-product of the industrial processing of pistachios: Shell skin—RP-HPLC analysis, and antioxidant and enzyme inhibitory activities of the methanol extracts of Pistacia vera L. shell skins cultivated in Gaziantep, Turkey. RSC Adv. 2016, 6, 1203–1209. [Google Scholar] [CrossRef]
- Rajaei, A.; Barzegar, M.; Hamidi, Z.; Sahari, M.A. Optimization of Extraction Conditions of Phenolic Compounds from Pistachio (Pistachia vera) Green Hull through Response Surface Method. J. Agric. Sci. Technol. 2010, 12, 605–615. [Google Scholar]
- Goli, A.H.; Barzegar, M.; Sahari, M.A. Antioxidant activity and total phenolic compounds of pistachio (Pistachia vera) hull extracts. Food Chem. 2005, 92, 521–525. [Google Scholar] [CrossRef]
Mushroom | Essential Oil Species | Progress | Storage Time | Preservation Effect | Ref. |
---|---|---|---|---|---|
Agaricus bisporus | Oil species: Eucalyptus leaf essential oil Source: Ji’an Guoguang Spice Factory | Group: (1) film without EOM (2) film with 5 mL/100 mL EOM (3) film with 10 mL/100 mL EOM (4) film with 15 mL/100 mL EOM (5) film with 20 mL/100 mL EOM | 12 d | Optimal processing: Film with 15 mL/100 mL EOM Preservation effect: -Ensuring the integrity of the packaged food: Tensile strength (16.1 MPa); elongation at break (165%); -Inhibiting the bacteria: Size of film inhibition circle: Escherichia coli (14 mm); Staphylococcus aureus (23 mm); Trichoderma (47 mm) | [86] |
Agaricus bisporus | Oil species: Cinnamon essential oil (CEO) Source: Shanghai Aladdin Biochemical Technology Co. | Storage temperature: 20 ± 3 °C Group: (1) packed with ZE-11 nanofibers (2) packed with ZE-11CEO nanofibers (3) without packing film (control group) | 6 d | Optimal processing: packed with ZE-11CEO nanofibers Preservation effect: -Maintain the most uniform effect among composite nanofibers: the lowest porosity: 68.47% ± 4.3% -Maintain relatively good firmness: the degradation of the cell wall was slowed down and cell respiration was inhibited due to the antioxidant and bacteriostatic effects of CEO -The quality of mushrooms was regarded as good: the highest L* value on the 6th day: 75.31 ± 0.23; the lowest BI: 43.87 ± 0.36 -Maintain good sensorial property: showed a good appearance on the 6th day | [87] |
Agaricus bisporus | Oil species: Cinnamaldehyde essential oil Source: Aladdin Inc. (Shanghai, China) | Storage temperature: 20 ± 2 °C Group: (1) packed with an LDPE film (2) packed with zein/SDS nanofibers (3) unpackaged | 4 d | Optimal processing: packed with zein/SDS nanofibers Preservation effect: -Maintain good texture characteristics: firmness 195 g at 4 days -Maintain good appearance: L* (76.18 ± 0.20), a* (4.68 ± 0.18), b* (21.39 ± 0.05), ΔE (30.59 ± 0.08), BI (36.37 ± 0.06) at 4 days | [88] |
Agaricus bisporus | Oil species: α-tocopherol with 98% purity and zein Source: Nanjing Dulai Reagent Co. Ltd. | Storage temperature: 4 °C Group: (1) no film packaging (control group) (2) CS film packaging (3) C/Z film packaging (4) C/Z/T film packaging | 12 d | Optimal processing: C/Z/T film packaging Preservation effect: -Maintain the lowest respiration rate: the lowest O2 permeability and CO2 concentration -Delay dehydration: weight loss: 8.35% at the end of 12 d -Maintain higher firmness values -Inhibit the oxidation of phenolic compounds: the BI had 1.62-fold reduction versus control after 12 d of storage; CAT and SOD activity firstly increased and then decreased -Maintain the integrity: reduced MDA content to prevent lipid peroxidation -Maintain the integrity of the cell membrane: highest total phenolic content; the DPPH radical scavenging activity was significantly higher than control except for 6 d | [89] |
Agaricus bisporus | Oil species: Lemon essential oil Source: Guangzhou Dakai Biotechnology Co. Ltd. (Guangzhou, China) | Storage temperature: 4 °C Storage relative humidity: 90% Group: (1) Control; (2) C/Z/L0 (LEO 0% (w/w)) of total solids; C/Z/L-3 (LEO 3%); C/Z/L-6 (LEO 6%); C/Z/L-9 (LEO 9%); C/Z/L-12 (LEO 12%) of total solids | 12 d | Optimal processing: C/Z/L-6 film packaging: LEO at 6% (w/w) of total solids Preservation effect: -Inhibiting the bacteria: size of film inhibition circle: Escherichia coli (12.13 mm); Staphylococcus aureus (26.03 mm) -Delaying the aging and quality deterioration of mushrooms: hardness (573.34 g); springiness (0.73 dimensionless); cohesiveness (0.58 dimensionless); chewiness (215.73 g); total plate count (6.25 log10 CFU g−1) | [70] |
Agaricus bisporus | Oil species: Oregano essential oil Source: obtained from Jiangxi Global Natural Flavor Co., Ltd. (Jiangxi, China) | Group: (1) sodium alginate (SA) films (2) 0.4 wt% OEO-MSNPs (3) 0.6 wt% OEO-MSNPs (4) 0.8 wt% OEO-MSNPs (5) 1.0 wt% OEO-MSNPs | 4 d | Optimal processing: 0.8 wt% concentration of OEO-MSNPs Preservation effect: -Maintaining the film characteristics, ensuring the integrity of the packaged food: thickness (97.66 μm); water vapor permeability (8.50×10−9·g·d−1·m−1·Pa−1); opacity (5.20 dimensionless); tensile strength (9.39 MPa); Young’s modulus (75.82 MPa); elongation at break (27.22%); water contact angle (38.88 dimensionless) | [90] |
Agaricus bisporus | Oil species: Cinnamaldehyde essential oil Source: Alg extracted from brown algae (A2033, Sigma-Aldrich, Chile) CIN purchased from Sigma-Aldrich Chile W252506) | Storage temperature: 4 °C Group: (1) uncoated mushrooms (2) mushrooms coated with Alg (3) Alg + 0.025 CIN (4) Alg + 0.05 % CIN (5) Alg + 0.1 % CIN | 16 d | Optimal processing: Alg + 0.05 Preservation effect: -Maintaining the coating-forming emulsions’ characteristics: alginate (1 g/100 mL); glycerol (0.125 mL/g alginate); tween 80 (0.05 mL/100 mL); CIN (0.05 mL/100 mL) -Delaying the aging and quality deterioration of mushrooms: total polyphenols (17.2%); DPPH inhibition (46.8%); PPO activity (88.4%); weight loss (2.5%) at 16 days | [84] |
Agaricus bisporus | Oil species: Cinnamon essential oil Source: Purchased from Saan Chemical Technology Co., Ltd. | Group: (1) Uncoated paper (2) Starch/microcapsules-coated paper (1:1) (3) Starch/microcapsule-coated paper (1:3) (4) Starch/microcapsule-coated paper (1:5) (5) CEO-coated paper | 4 d | Optimal processing: Starch/microcapsule-coated paper (1:5) Preservation effect: -Maintaining the papers’ characteristics: basis weight (86.9 g/m2); thickness (0.105 mm); compactness (0.83 g/m2); permeability (8.50 μm/Paxs); Cobb60 (29.20 g/m2) -Delaying the aging and quality deterioration of mushrooms: APX activity (6.73 mol/min/g); GR activity (7.32 mol/min/g); weight loss (4.27%) | [85] |
Agaricus bisporus | Oil species: Satureja khuzistanica essential oil (SEO) Tragacanth gum (TG) Source: SEO provided by a local commercial producer of plant essential oils, TG purchased from a local herbalist store | Storage temperature: 4 ± 1 °C Storage relative humidity: 90% Group: (1) control: water (2) TG: Tragacanth gum coating (3) TGSEO1: TG coating containing 100 ppm SEO (4) TGSEO5: TG containing 500 ppm (5) TGSEO10: TG containing 1000 ppm | 16 d | Optimal processing: TGSEO5 Preservation effect: -Delayed the aging and quality deterioration of mushrooms, reduced respiration rate: weight loss: 2.2%; browning index (BI): 18.2; respiration rate: 74.15 mg CO2 kg−1 h−1 -Inhibit the softening of mushrooms: firmness: 8.3% -Maintain high antioxidant activity: total phenolic content (TPC): 85.6%; ascorbic acid content: 69.6% | [91] |
Agaricus bisporus | Oil species: C. aurantium peel oil Source: Extracted from the dried peel of C. aurantium | Storage temperature: 4 °C Storage relative humidity: 95% Group: (1) Control (2) C. aurantium essential oil (CAEO) (3) C. aurantium essential oil-loaded chitosan nanoparticles (CAEO-CSNPs) | 20 d | Optimal processing: CAEO-CSNPs Preservation effect: -Delayed the aging and quality deterioration of mushrooms: weight loss: 2%; L*value: 84.48 -Inhibit the softening of mushrooms: firmness: 13.94 N -Maintain high antioxidant activity: total phenolic content (TPC): 84.13 mg 100 g−1 FW; ascorbic acid content: decreased by 9.53% at 20 days compared to the first day -Inhibit enzyme activity: PPO: 24.38 U g−1 FW -Improve antioxidant capacity: based on DPPH assay, the antioxidant capacity reached 59.43% at 15 days | [92] |
Agaricus bisporus | Oil species: Cumin seed oil (CEO) Source: Extracted from cumin (Cuminum cyminum) seeds | Storage temperature: 4 °C Group: (1) Control (2) CEO (3) CEO-CSNPs | 20 d | Optimal processing: CEO-CSNPs Preservation effect: -Inhibit the activity of the enzyme: CAT and GR increased 2.35 and 3.47 times at 15 days, respectively, compared to their initial levels -Maintain high antioxidant activity: ascorbic acid (AA) content was decreased by 5.83% at 20 days compared to the initial content | [93] |
Agaricus bisporus (cv. Sylvan A15) | Oil species: Cuminum cyminum oil (CEO) Source: Cumin seeds | Storage temperature: 4 °C Group: (1) untreated (2) CEO (3) CEO-CSNPs | 20 d | Optimal processing: CEO-CSNPs Preservation effect: -Inhibit microbial growth: mesophilic bacteria (9.01 ± 0.098) (log10 cfu/g), psychrophilic bacteria (9.26 ± 0.10) (log10 cfu/g), yeasts and molds (9.26 ± 0.100) (log10 cfu/g) at 20 days -Maintain good texture characteristics: firmness 14 N at 20 days -Maintain good appearance: L* (84.72 ± 0.423), ΔE (18.29 ± 0.249), BI (22.56 ± 0.142) at 20 days; overall acceptability is high -SOD, APX activity is high, PPO activity is low: SOD activity 3.9 (U/g FW), APX activity 12 (U/g FW), PPO activity 15 (U/g FW) at 20 days -Strong antioxidant capacity: total phenolic content 0.65 (g kg−1 FW), DPPH radical scavenging capacity 65%, ABTS+ radical scavenging capacity 67% | [94] |
cv. Sylvan A15 | Oil species: Citrus aurantium essential oil (CAEO) Source: C. aurantium peel | Storage temperature: 4 °C Storage relative humidity: 90% Group: (1) chitosan:CAEO = 1:0.25 (2) chitosan:CAEO = 1:0.5 (3) chitosan:CAEO = 1:0.75 (4) chitosan:CAEO = 1:1 (5) chitosan:CAEO = 1:1.25 | 20 d | Optimal processing: ratio of chitosan to CAEO: 1:0.5 Preservation effect: -Maintain smaller hydrodynamic diameter in the aqueous medium: average size: 20–60 nm -Maintain maximum EE and LC values -Inhibit the growth of the studied microorganisms -Maintain higher antioxidant enzyme activity | [95] |
Tremella fuciformis | Oil species: Roasted peanut skin extract Source: Local market (Daejeon, Korea) | Storage temperature: 20 °C Storage relative humidity: 60% Group: (1) the mixture (2) 0.25 g/100 mL PSE were added to the mixture (3) 0.5 g/100 mL PSE were added to the mixture (4) 1.0 g/100 mL PSE were added to the mixture | 50 d | Optimal processing: 1.0 g/100 mL PSE were added to the mixture Preservation effect: -The highest TS: 23.99 Mpa, WVP: 4.99 × 10−9 g/m s Pa -Increase the surface hydrophobicity -TPC: 83.66 ± 0.57 mg GAE/g, the highest ABTS (92.85%) and DPPH (84.92%) -The incorporation of PSE did not affect the biodegradation rate of TFP films. | [96] |
White mushroom | Oil species: Essential oil mix selected was eugenol/bergamot EO/grapefruit EO (60:20:20, volume, v:v:v) Source: Supplied by Lluch Essence S.L. (Barcelona, Spain) | Storage temperature: 4 °C Group: (1) CTRL (2) 100 μL L−1 essential oil (3) 125 μL L−1 essential oil | 14 d | Optimal processing: 100 μL L−1 essential oil Preservation effect: -Delaying the aging and quality deterioration of mushrooms: pH (7.51); L* (Cap) (79.5); L* (Stipe) (75.5) | [97] |
White mushroom | Oil species: Microencapsulated CAR (βCD-CARM)/sodium alginate (SA) films | Storage temperature: 23 ± 2 °C Storage relative humidity: 55 ± 5% Group: The mass ratios of the core-to-wall material are 1:4, 1:6, 1:8, 1:10, 1:12 Added to βCD-CARM 5 g/L, 15 g/L, 25 g/L, βCD (5 g/L), or CAR (5 g/L) as controls βCD-CARM/SA 15 g/L, 30 g/L, 60 g/L | 12 d | Optimal processing: the mass ratios of the core-to-wall material: 1:10, βCD-CARM 15 g/L, βCD-CARM/SA 30 g/L Preservation effect: -Inhibited Trichoderma sp. effectively: highest EE of microcapsules: 89.65%; 15 g/L concentration of βCD-CARM showed effective antifungal activity -Better antifungal activity against Trichoderma sp.: βCD-CARM/SA film 30 g/L inhibition zone diameter: 9.83 nm -Highest thermostability: lowest decomposition rate -Strengthened ductility of the films -Increased SOD, CAT, and APX activities to alleviate oxidative damage | [98] |
Mushroom | Oil species: Cinnamon essential oil (CEO, containing 80% trans-cinnamaldehyde) Source: Saan Chemical Technology Co., Ltd. | Storage temperature: 10 ± 0.5 °C Group: (1) Not packaged (2) PVA (3) CPVA-CEO (4) CPVA-0.5CEO-β-CD (5) CPVA-1.0CEO-β-CD (6) CPVA-1.5CEO-β-CD (7) Plastic wrap | 5 d | Optimal processing: CPVA-1.5CEO-β-CD electrospun nanofibrous film Preservation effect: -Conductivity decreases and viscosity increases: conductivity: 272 mS/cm, viscosity: 455 m Pas -The hydrophilicity of PVA can be lowered: water contact angle value below 90° -Encapsulation of CEO inside the fiber structure permitted the compound to be effectively released -Improved the antimicrobial effect: lowest total colonies; mushrooms were intact and edible | [99] |
Oil species: Cajuput essential oil (CjEO) Source: Hi-media Laboratory (Mumbai, India) | Storage temperature: 4 ± 1 °C Group: (Percent nanoencapsulation efficiency (NE) and loading efficiency (LE) of CjEO-CSNP prepared at different ratios of CS:CjEO) 1:0.0; 1:0.2; 1:0.4; 1:0.6; 1:0.8; 1:1.0 | 5 d | Optimal processing: 1:1.0 (w/v) of CS to EO Preservation effect: -Increasing trend of encapsulation efficiency and loading capacity: the NE and LE values ranged from 45.86 to 92.26% and 0.69 to 8.87% -Reducing oxidative degradation of mushrooms: extract coated with CjEO-CSNP showed significantly (p < 0.05) higher activity (54.06, 53.35, and 50.39%) | [100] | |
Agaricus bisporus | Oil species: Cinnamon essential oil (CEO) Source: Purchased from Guoguang Co., Ltd. (Jilin, China) | Group: (1) The potato starch films (S0) (2) MSNPs/potato starch films (S1) (3) MSNPs-CEO/potato starch films (S2) | 7 d | Optimal processing: MSNPs-CEO/potato starch films (S2) Preservation effect: -Reduced the crystallinity degree of films: S2: 47% (S0: 63%) -Improved the mechanical properties of the films: water vapor transmission rate (644.41 g·d−1·m−2); oxygen transmission rate (4.86 g·d−1·m−2); tensile strength (56.12M·Pa); elongation at break (50.00%); thickness (25.93 μm) | [101] |
Volvariella volvacea | Oil species: CO, PO Source: CO was purchased from Macleans Biochemical Technology Co., Ltd.; PO was purchased from Luyuan Natural Spice Oil Refinery | Storage time: 16 ± 1 °C Group: (1) No film packaging (control) (2) PLA/PBAT/TPS (3) PLA/PBAT/TPS-PO (4) PLA/PBAT/TPS-CO | 4 d | Optimal processing: PLA/PBAT/TPS-PO Preservation effect: -Stronger antioxidant capacity: low PPO activity; the highest TPCs; higher hardness; lower TSS value; free radical DPPH (41%) -Maintaining cell integrity: the smallest T23 (100–1000 ms) peak area -Inhibiting the activity of the enzyme: lower autolysis rates, increased to 42.3% eventually; the RWL showed the strongest inhibitory effect (p < 0.05) -Inhibiting the bacteria: a significant decrease (p < 0.05) in the bacterial counts | [102] |
Agaricus bisporus | Oil species: Cinnamon essential oil (CEO) Source: Guoguang Co., Ltd. (Jilin, China) | Storage temperature: 28 °C Group: (1) Potato starch films (2) MSNP/potato starch films (3) MSNP-CEO/potato starch films | 48 h | Optimal processing: MSNP-CEO/ potato starch films Preservation effect: -Strong antibacterial property: bacteriostatic circle of species is the largest | [101] |
Mushroom | Extraction | Progress | Storage Time | Preservation Effect | Ref. |
---|---|---|---|---|---|
Agaricus bisporus | Name: Exogenous γ-aminobutyric acid (GABA) | Treatment temperature: 20 °C Treatment time: 5 min Storage time: 4 ± 0.5 °C Group: (1) GABA 0 mM (control) (2) GABA 0.01 mM (3) GABA 0.1 mM (4) GABA 1 mM (5) GABA 10 mM | 15 d | Optimal processing: 0.1 mM GABA Preservation effect: -Maintain high quality features: Cap browning 25%, weight loss 2.7% at 15 days. -Maintain texture characteristics: Firmness 11 N at 15 days. -Maintain low membrane lipid peroxidation: Electrolyte leakage 18.4%, MDA content 9.6 μmol kg−1 FW at 15 days. -Strong antioxidant capacity: Phenolic compound content 1.5 mg GAE kg−1 FW, AsA content 24.3 mg kg−1 FW, GABA accumulation 250 μmol kg−1 FW, GAD gene expression 1.6 at 15 days. -PAL activity is high and PPO activity is low: PAL activity 26.0 U kg−1 protein, PPO activity 52.8 U kg−1 protein, at 15 days. | [139] |
Agaricus bisporus | Name: Exogenous adenosine triphosphate (ATP) H2O: 50 mg per mL | Treatment temperature: 25 °C Treatment time: 5 min Storage time: 4 °C Relative humidity: 80–90% Group: (1) Distilled water (control) (2) 250 µM ATP (3) 500 µM ATP (4) 750 µM ATP (5) 1000 µM ATP | 18 d | Optimal processing: 750 µM ATP Preservation effect: -Maintain high quality features: Cap browning 35 at 18 days. -MDA accumulation is low: MDA accumulation 22.5 mmol kg−1 at 18 days. -SKDH enzyme, PAL activity is high, NADPH oxidase enzyme, PPO activity is low: SKDH enzyme activity 14 mkat kg−1 protein, PAL activity 15 mkat kg−1 protein, NADPH oxidase enzyme activity 22 μmol O2− kg−1 protein min−1, PPO activity 4.5 mkat kg−1 protein at 18 days. | [140] |
Agaricus bisporus | Name: Pistachio green hull extract | Treatment temperature: 22 °C Pressure: 0.025 MPa Treatment time: 900 s Storage time: 4 °C Group: (1) PGHE: pistachio green hull extract (0.05 w/v%) (2) MET: sodium metabisulfite (0.2 w/v%) (3) ASC-CIT: mixture of ascorbic acid (0.1 w/v%) and citric acid (0.5 w/v%) (4) Control: distilled water | 10 d | Optimal processing: PGHE Preservation effect: -Maintain high quality features: Protein content (25.5%), dry matter (7.2%), texture (10.7 N), L* (83.6), browning index (17.4) at 10 days. -Antioxidant capacity (AOC) is high: Total phenolic content (5.3 g GAE kg−1), DPPH radical scavenging activity (88.1%) at 10 days. -Inhibit microbial growth: Mesophilic microorganism count 5.73 log CFU g−1 at 10 days. | [141] |
Agaricus bisporus | Name: A600605-0005 melatonin | Storage temperature: 3 ± 1 °C Storage relative humidity: 90–95% Group: (1) Control (2)–(4) Dipped in 0.05, 0.1, and 0.2 mM melatonin | 12d | Optimal processing: 0.1 mM melatonin Preservation effect: -Maintain good quality and damp electron leakage: electron leakage: increased by 1.4-fold. -Delay aging: endogenous melatonin content: 26.37 ng g−1; ATP level: reduced 28.4%; energy charge: reduced 37.5%. | [49] |
Lentinula edodes | Name: Oudemansiella radicata water-soluble polysaccharides (ORWP) | Storage temperature: 4 °C Storage relative humidity: 85–90% Group: (1) Control: washed with water, and given no coating (2)–(5) ORWP5: 5, 10, 15, and 20 g L−1 ORWP coating | 18 d | Optimal processing: ORWP10 Preservation effect: -Delayed the aging and quality deterioration of mushrooms: Weight loss: 3.50%; softening: 34.48%; ΔE: 8.03. -Alleviated oxidative injury: MDA content: 1.47 μmol kg−1. -Maintain high antioxidant activity: Soluble protein: 1.82 g kg −1; carbohydrate content: 13.96 g kg −1; ascorbic acid: 0.022 g kg −1; total phenol content: 1.99 g GAE kg−1; cellulose content: 8.36 g kg −1; lignin content 32.90 g kg −1; free amino acids: 27.03 g kg−1 dry weight; EUC value: 360.37; 5′- nucleotides: 4.38 g kg−1 dry weight. -Inhibit enzyme activity: Protease activity: 2.35U mg−1; SOD activity: 8.39 U mg−1; CAT activity: 13.76 U mg−1; PPO activity: 1.47 U mg−1 protein; POD activity: 4.21 U mg−1 protein; cellulase activity: 12.57 U mg−1 protein; chitinase activity: 10.02 U mg−1 protein; PAL activity: 0.68 U mg−1 protein. | [142] |
Lentinus edodes | Name: Melatonin (MT) | Group: (1) Control (2) Cd-treated group: Cd2 (2 μM CdCl2), Cd5 (5 μM CdCl2), Cd8 (8 μM CdCl2) (3) Melatonin (MT)-treated group: MT50 (50 μM MT solution), MT100 (100 μM MT solution), and MT200 (200 μM MT solution) (4) Cd + MT-treated group (100 μM MT + 5 μM CdCl2) | Optimal processing: Cd + MT-treated group Preservation effect: -Improve the activity of antioxidant enzymes: CAT activity 20,500 U/mg prot, SOD activity 1.75 U/mg prot, POD activity 2.8 U/mg prot, GR activity 0.014 U/mg prot, APX activity 0.18 U/mg prot at 5 days. -Maintain high nutritional characteristics: Proline concentration 170 μg/g FW, total sugar concentration 9 mg/g FW at 5 days. -The level of endogenous ROS was significantly reduced: H2O2 content 175 pg/g FW, O2– content 2.1 pg/g FW at 5 days. | [143] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Chen, X.; Gong, P.; Wang, R.; Han, A.; Deng, Z.; Qi, Z.; Long, H.; Wang, J.; Yao, W.; et al. Advances in the Role and Mechanisms of Essential Oils and Plant Extracts as Natural Preservatives to Extend the Postharvest Shelf Life of Edible Mushrooms. Foods 2023, 12, 801. https://doi.org/10.3390/foods12040801
Guo Y, Chen X, Gong P, Wang R, Han A, Deng Z, Qi Z, Long H, Wang J, Yao W, et al. Advances in the Role and Mechanisms of Essential Oils and Plant Extracts as Natural Preservatives to Extend the Postharvest Shelf Life of Edible Mushrooms. Foods. 2023; 12(4):801. https://doi.org/10.3390/foods12040801
Chicago/Turabian StyleGuo, Yuxi, Xuefeng Chen, Pin Gong, Ruotong Wang, Aoyang Han, Zhenfang Deng, Zhuoya Qi, Hui Long, Jiating Wang, Wenbo Yao, and et al. 2023. "Advances in the Role and Mechanisms of Essential Oils and Plant Extracts as Natural Preservatives to Extend the Postharvest Shelf Life of Edible Mushrooms" Foods 12, no. 4: 801. https://doi.org/10.3390/foods12040801
APA StyleGuo, Y., Chen, X., Gong, P., Wang, R., Han, A., Deng, Z., Qi, Z., Long, H., Wang, J., Yao, W., Yang, W., Wang, J., & Li, N. (2023). Advances in the Role and Mechanisms of Essential Oils and Plant Extracts as Natural Preservatives to Extend the Postharvest Shelf Life of Edible Mushrooms. Foods, 12(4), 801. https://doi.org/10.3390/foods12040801