Emulsion-Based Coatings for Preservation of Meat and Related Products
Abstract
:1. Introduction
2. Classification of ECs
2.1. Based on Composition
2.1.1. Polysaccharide Coatings
2.1.2. Protein Coatings
2.1.3. Lipid Coatings
2.2. Based on Particle Size
3. The Complexity of ECs for Meats: Essential Properties of Consideration
3.1. Ingredient Separation
3.2. Rheology
3.3. Thermal Stability
3.4. Antioxidant and Antimicrobial Properties
4. Effects of EC on Meat Quality
5. Limitations of the Work
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, G.H.; Xu, X.L.; Liu, Y. Preservation technologies for fresh meat—A review. Meat Sci. 2010, 86, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Heinz, G.; Hautzinger, P. Meat Processing Technology for Small to Medium Scale Producers; FAO: Rome, Italy, 2007. [Google Scholar]
- Sainsbury, J.; Schönfeldt, H.C.; Van Heerden, S.M. The nutrient composition of South African mutton. J. Food Compos. Anal. 2011, 24, 720–726. [Google Scholar] [CrossRef] [Green Version]
- Soren, N.M.; Biswas, A.K. Methods for Nutritional Quality Analysis of Meat; Elsevier: Amsterdam, The Netherlands, 2020; pp. 21–36. [Google Scholar]
- Naveena, B.M.; Kiran, M.; Reddy, K.S.; Ramakrishna, C.; Vaithiyanathan, S.; Devatkal, S.K. Effect of ammonium hydroxide on ultrastructure and tenderness of buffalo meat. Meat Sci. 2011, 88, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Tauro, P.; Kapoor, K.K.; Yadav, K.S. An Introduction to Microbiology; New Age International: New Delhi, India, 1986; pp. 1–412. ISBN 085-226-878-5. [Google Scholar]
- Cheng, L.N.; Sun, D.W.; Zhu, Z.W.; Zhang, Z. Emerging techniques for assisting and accelerating food freezing processes: A review of recent research progresses. Crit. Rev. Food Sci. Nutr. 2017, 57, 769–781. [Google Scholar] [CrossRef] [PubMed]
- Chivandi, E.; Dangarembizi, R.; Nyakudya, T.T.; Erlwanger, K.H. Chapter 8—Use of Essential Oils as a Preservative of Meat; Academic Press: San Diego, CA, USA, 2016; pp. 85–91. ISBN 9780124166417. [Google Scholar] [CrossRef]
- Murtaja, Y.; Lapčík, L.; Lapčíková, B.; Gautam, S.; Vašina, M.; Spanhel, L.; Vlček, J. Intelligent high-tech coating of natural biopolymer layers. Adv.Colloid Interface Sci. 2022, 304, 102681. [Google Scholar] [CrossRef]
- Eroglu, E.; Torun, M.; Dincer, C.; Topuz, A. Influence of Pullulan-Based Edible Coating on Some Quality Properties of Strawberry During Cold Storage. Packag. Technol.Sci. 2014, 27, 831–838. [Google Scholar] [CrossRef]
- Gennadios, A.; Hanna, M.A.; Kurth, L.B. Application of edible coatings on meats, poultry and seafoods: A review. Food Sci. Technol. 1997, 30, 337–350. [Google Scholar] [CrossRef]
- Dehghani, S.; Hosseini, S.V.; Regenstein, J.M. Edible films and coatings in seafood preservation: A review. Food Chem. 2018, 240, 505–513. [Google Scholar] [CrossRef]
- Dong, J.; Kou, X.; Liu, L.; Hou, L.; Li, R.; Wang, S. Effect of water, fat, and salt contents on heating uniformity and color of ground beef subjected to radio frequency thawing process. Innov. Food Sci. Emerg. Technol. 2021, 68, 102604. [Google Scholar] [CrossRef]
- Sanchez-Ortega, I.; Garica-Almendarez, B.E.; Santos-Lopez, E.M.; Amaro-Reyes, A.; Barboza-Corona, J.E.; Regalado, C. Antimicrobial Edible Films and Coatings for Meat and Meat Products Preservation. Sci. World J. 2014, 2014, 248935. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Pan, I.; Carrión-Granda, X.; Maté, J.I. Antimicrobial efficiency of edible coatings on the preservation of chicken breast fillets. Food Control 2014, 36, 69–75. [Google Scholar] [CrossRef]
- Catarino, M.D.; Alves-Silva, J.M.; Fernandes, R.P.; Gonçalves, M.J.; Salgueiro, L.R.; Henriques, M.F.; Cardoso, S.M. Development and performance of whey protein active coatings with Origanum virens essential oils in the quality and shelf life improvement of processed meat products. Food Control 2017, 80, 273–280. [Google Scholar] [CrossRef]
- Schmid, M.; Krimmel, B.; Grupa, U.; Noller, K. Effects of thermally induced denaturation on technological-functional properties of whey protein isolate-based films. J. Dairy Sci. 2014, 97, 5315–5327. [Google Scholar] [CrossRef] [Green Version]
- Guckian, S.; Dwyer, C.; O’Sullivan, M.; O’Riordan, E.D.; Monahan, F.J. Properties of and mechanisms of protein interactions in films formed from different proportions of heated and unheated whey protein solutions. Eur. Food Res. Technol. 2006, 223, 91–95. [Google Scholar] [CrossRef]
- Cutter, C.N. Opportunities for bio-based packaging technologies to improve the quality and safety of fresh and further processed muscle foods. Meat Sci. 2006, 74, 131–142. [Google Scholar] [CrossRef]
- Liu, B.; Hu, X. Hollow Micro-and Nanomaterials: Synthesis and Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–38. [Google Scholar]
- Lu, W.; Kelly, A.L.; Miao, S. Emulsion-based encapsulation and delivery systems for polyphenols. Trends Food Sci.Technol. 2016, 47, 1–9. [Google Scholar] [CrossRef]
- Donsì, F.; Sessa, M.; Mediouni, H.; Mgaidi, A.; Ferrari, G. Encapsulation of bioactive compounds in nanoemulsion-based delivery systems. Procedia Food Sci. 2011, 1, 1666–1671. [Google Scholar] [CrossRef] [Green Version]
- McClements, D.J. Food Emulsions: Principles, Practices, and Techniques; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Chanamai, R.; Horn, G.; McClements, D.J. Influence of oil polarity on droplet growth in oil-in-water emulsions stabilized by a weakly adsorbing biopolymer or a nonionic surfactant. J. Colloid Interface Sci. 2002, 247, 167–176. [Google Scholar] [CrossRef]
- Christenson, H.K.; Per, M. Claesson. Direct measurements of the force between hydrophobic surfaces in water. Adv. Colloid Interface Sci. 2001, 91, 391–436. [Google Scholar] [CrossRef]
- Norde, W. Colloids and Interfaces in Life Sciences and Bionanotechnology; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Dickinson, E. Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocoll. 2003, 17, 25–39. [Google Scholar] [CrossRef]
- Hiemenz, P.C.; Rajagopalan, R. Principles of Colloid and Surface Chemistry, Revised and Expanded; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Keykhosravy, K.; Khanzadi, S.; Hashemi, M.; Azizzadeh, M. Chitosan-loaded nanoemulsion containing Zataria Multiflora Boiss and Bunium persicum Boiss essential oils as edible coatings: Its impact on microbial quality of turkey meat and fate of inoculated pathogens. Int. J. Biol. Macromol. 2020, 150, 904–913. [Google Scholar] [CrossRef] [PubMed]
- Noori, S.; Zeynali, F.; Almasi, H. Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food Control 2018, 84, 312–320. [Google Scholar] [CrossRef]
- Xiong, Y.; Li, S.; Warner, R.D.; Fang, Z. Effect of oregano essential oil and resveratrol nanoemulsion loaded pectin edible coating on the preservation of pork loin in modified atmosphere packaging. Food Control 2020, 114, 107226. [Google Scholar] [CrossRef]
- Majdinasab, M.; Niakousari, M.; Shaghaghian, S.; Dehghani, H. Antimicrobial and antioxidant coating based on basil seed gum incorporated with Shirazi thyme and summer savory essential oils emulsions for shelf-life extension of refrigerated chicken fillets. Food Hydrocoll. 2020, 108, 106011. [Google Scholar] [CrossRef]
- Jemil, N.; Ouerfelli, M.; Almajano, M.P.; Elloumi-Mseddi, J.; Nasri, M.; Hmidet, N. The conservative effects of lipopeptides from Bacillus methylotrophicus DCS1 on sunflower oil-in-water emulsion and raw beef patties quality. Food Chem. 2020, 303, 125364. [Google Scholar] [CrossRef]
- Aboutorab, M.; Ahari, H.; Allahyaribeik, S.; Yousefi, S.; Motalebi, A. Nano-emulsion of saffron essential oil by spontaneous emulsification and ultrasonic homogenization extend the shelf life of shrimp (Crocus sativus L.). J. Food Process. Preserv. 2021, 45, e15224. [Google Scholar] [CrossRef]
- Yuan, D.; Hao, X.; Liu, G.; Yue, Y.; Duan, J. A novel composite edible film fabricated by incorporating W/O/W emulsion into a chitosan film to improve the protection of fresh fish meat. Food Chem. 2022, 385, 132647. [Google Scholar] [CrossRef]
- Liu, W.; Mei, J.; Xie, J. Effect of locust bean gum-sodium alginate coatings incorporated with daphnetin emulsions on the quality of Scophthalmus maximus at refrigerated condition. Int. J. Biol. Macromol. 2021, 170, 129–139. [Google Scholar] [CrossRef]
- Kowalska, M.; Babut, M.; Woźniak, M.; Żbikowska, A. Formulation of oil-in-water emulsions containing enzymatically modified rabbit fat with pumpkin seed oil. J. Food Process. Preserv. 2019, 43, e13987. [Google Scholar] [CrossRef]
- Qiu, L.; Zhang, M.; Chitrakar, B.; Adhikari, B.; Yang, C. Effects of nanoemulsion-based chicken bone gelatin-chitosan coatings with cinnamon essential oil and rosemary extract on the storage quality of ready-to-eat chicken patties. Food Packag. Shelf Life 2022, 34, 100933. [Google Scholar] [CrossRef]
- Seekkuarachchi, I.N.; Tanaka, K.; Kumazawa, H. Formation and charaterization of submicrometer oil-in-water (O/W) emulsions, using high-energy emulsification. Ind. Eng. Chem. Res. 2006, 45, 372–390. [Google Scholar] [CrossRef]
- Walstra, P. Principles of emulsion formation. Chem. Eng. Sci. 1993, 48, 333–349. [Google Scholar] [CrossRef]
- Fischer, P.; Erni, P. Emulsion drops in external flow fields—The role of liquid interfaces. Current Opin. Colloid Interface Sci. 2007, 12, 196–205. [Google Scholar] [CrossRef]
- Williams, A.; Janssen, J.; Prins, A. Behaviour of droplets in simple shear flow in the presence of a protein emulsifier. Colloids Surf. Physicochem. Eng. Aspects 1997, 125, 189–200. [Google Scholar] [CrossRef]
- Huang, M.; Wang, H.; Xu, X.; Lu, X.; Song, X.; Zhou, G. Effects of nanoemulsion-based edible coatings with composite mixture of rosemary extract and ε-poly-L-lysine on the shelf life of ready-to-eat carbonado chicken. Food Hydrocoll. 2020, 102, 105576. [Google Scholar] [CrossRef]
- Sun, R.; Song, G.; Zhang, H.; Zhang, H.; Chi, Y.; Ma, Y.; Li, H.; Bai, S.; Zhang, X. Effect of basil essential oil and beeswax incorporation on the physical, structural, and antibacterial properties of chitosan emulsion based coating for eggs preservation. LWT 2021, 150, 112020. [Google Scholar] [CrossRef]
- Syed, I.; Banerjee, P.; Sarkar, P. Oil-in-water emulsions of geraniol and carvacrol improve the antibacterial activity of these compounds on raw goat meat surface during extended storage at 4 C. Food Control 2020, 107, 106757. [Google Scholar] [CrossRef]
- Santana, R.C.; Perrechil, F.A.; Cunha, R.L. High-and low-energy emulsifications for food applications: A focus on process parameters. Food Eng. Rev. 2013, 5, 107–122. [Google Scholar] [CrossRef]
- Saberi, A.H.; Fang, Y.; McClements, D.J. Effect of glycerol on formation, stability, and properties of vitamin-E enriched nanoemulsions produced using spontaneous emulsification. J.Colloid Interface Sci. 2013, 411, 105–113. [Google Scholar] [CrossRef]
- Cai, L.; Wang, Y.; Cao, A. The physiochemical and preservation properties of fish sarcoplasmic protein/chitosan composite films containing ginger essential oil emulsions. J. Food Process. Eng. 2020, 43, e13495. [Google Scholar] [CrossRef]
- Wan, J.; Pei, Y.; Hu, Y.; Ai, T.; Sheng, F.; Li, J.; Li, B. Microencapsulation of eugenol through gelatin-based emulgel for preservation of refrigerated meat. Food Bioprocess Technol. 2020, 13, 1621–1632. [Google Scholar] [CrossRef]
- Zhou, X.; Zong, X.; Zhang, M.; Ge, Q.; Qi, J.; Liang, J.; Xu, X.; Xiong, G. Effect of konjac glucomannan/carrageenan-based edible emulsion coatings with camellia oil on quality and shelf-life of chicken meat. Int. J. Biol. Macromol. 2021, 183, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Kazemeini, H.; Azizian, A.; Adib, H. Inhibition of Listeria monocytogenes growth in turkey fillets by alginate edible coating with Trachyspermum ammi essential oil nano-emulsion. Int. J. Food Microbiol. 2021, 344, 109104. [Google Scholar] [CrossRef] [PubMed]
- Gedikoğlu, A. The effect of Thymus vulgaris and Thymbra spicata essential oils and/or extracts in pectin edible coating on the preservation of sliced bolognas. Meat Sci. 2022, 184, 108697. [Google Scholar] [CrossRef]
- Wang, L.; Liu, T.; Liu, L.; Liu, Y.; Wu, X. Impacts of chitosan nanoemulsions with thymol or thyme essential oil on volatile compounds and microbial diversity of refrigerated pork meat. Meat Sci. 2022, 185, 108706. [Google Scholar] [CrossRef]
- Çoban, M.Z. Effectiveness of chitosan/propolis extract emulsion coating on refrigerated storage quality of crayfish meat (Astacus leptodactylus). CyTA-J. Food 2021, 19, 212–219. [Google Scholar] [CrossRef]
- Shin, D.; Kim, Y.-J.; Yune, J.-H.; Kim, D.H.; Kwon, H.C.; Sohn, H.; Han, S.G.; Han, J.H.; Lim, S.J.; Han, S.G. Effects of Chitosan and Duck Fat-Based Emulsion Coatings on the Quality Characteristics of Chicken Meat during Storage. Foods 2022, 11, 245. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.; Kang, H.; Peng, X. Antimicrobial and antioxidant effects of edible nanoemulsion coating based on chitosan and Schizonepeta tenuifolia essential oil in fresh pork. J. Food Process. Preserv. 2021, 45, e15909. [Google Scholar] [CrossRef]
- Zhao, R.; Zhang, Y.; Chen, H.; Song, R.; Li, Y. Performance of eugenol emulsion/chitosan edible coating and application in fresh meat preservation. J. Food Process. Preserv. 2022, 46, e16407. [Google Scholar] [CrossRef]
- Alirezalu, K.; Moazami-Goodarzi, A.H.; Roufegarinejad, L.; Yaghoubi, M.; Lorenzo, J.M. Combined effects of calcium-alginate coating and Artemisia fragrance essential oil on chicken breast meat quality. Food Sci. Nutr. 2022, 10, 2505–2515. [Google Scholar] [CrossRef]
- Rezaei, F.; Shahbazi, Y. Shelf-life extension and quality attributes of sauced silver carp fillet: A comparison among direct addition, edible coating and biodegradable film. LWT 2018, 87, 122–133. [Google Scholar] [CrossRef]
- Bazargani-Gilani, B.; Aliakbarlu, J.; Tajik, H. Effect of pomegranate juice dipping and chitosan coating enriched with Zataria multiflora Boiss essential oil on the shelf-life of chicken meat during refrigerated storage. Innov. Food Sci. Emerg. Technol. 2015, 29, 280–287. [Google Scholar] [CrossRef]
- Shahbazi, Y.; Shavisi, N. Chitosan coatings containing Mentha spicata essential oil and zinc oxide nanoparticle for shelf life extension of rainbow trout fillets. J. Aquat. Food Prod. Technol. 2018, 27, 986–997. [Google Scholar] [CrossRef]
- Ariaii, P.; Tavakolipour, H.; Rezaei, M.; Rad, A.H.E.; Bahram, S. Effect of methylcellulose coating enriched with Pimpinella affinis oil on the quality of silver carp fillet during refrigerator storage condition. J. Food Process. Preserv. 2015, 39, 1647–1655. [Google Scholar] [CrossRef]
- Heydari, R.; Bavandi, S.; Javadian, S.R. Effect of sodium alginate coating enriched with horsemint (Mentha longifolia) essential oil on the quality of bighead carp fillets during storage at 4 °C. Food Sci. Nutr. 2015, 3, 188–194. [Google Scholar] [CrossRef]
- Hosseini, S.F.; Rezaei, M.; Zandi, M.; Ghavi, F.F. Effect of fish gelatin coating enriched with oregano essential oil on the quality of refrigerated rainbow trout fillet. J. Aquat. Food Prod. Technol. 2016, 25, 835–842. [Google Scholar] [CrossRef]
- Aşik, E.; Candoğan, K. Effects of chitosan coatings incorporated with garlic oil on quality characteristics of shrimp. J. Food Qual. 2014, 37, 237–246. [Google Scholar] [CrossRef]
- Pabast, M.; Shariatifar, N.; Beikzadeh, S.; Jahed, G. Effects of chitosan coatings incorporating with free or nano-encapsulated Satureja plant essential oil on quality characteristics of lamb meat. Food Control 2018, 91, 185–192. [Google Scholar] [CrossRef]
- Raeisi, M.; Tajik, H.; Aliakbarlu, J.; Mirhosseini, S.H.; Hosseini, S.M.H. Effect of carboxymethyl cellulose-based coatings incorporated with Zataria multiflora Boiss. essential oil and grape seed extract on the shelf life of rainbow trout fillets. LWT-Food Sci. Technol. 2015, 64, 898–904. [Google Scholar] [CrossRef]
- Song, Y.; Liu, L.; Shen, H.; You, J.; Luo, Y. Effect of sodium alginate-based edible coating containing different anti-oxidants on quality and shelf life of refrigerated bream (Megalobrama amblycephala). Food Control 2011, 22, 608–615. [Google Scholar] [CrossRef]
- Volpe, M.G.; Siano, F.; Paolucci, M.; Sacco, A.; Sorrentino, A.; Malinconico, M.; Varricchio, E. Active edible coating effectiveness in shelf-life enhancement of trout (Oncorhynchusmykiss) fillets. LWT-Food Sci. Technol. 2015, 60, 615–622. [Google Scholar] [CrossRef]
- Clausse, D. Differential thermal analysis, differential scanning calorimetry, and emulsions. J. Therm. Anal. Calorim. 2010, 101, 1071–1077. [Google Scholar] [CrossRef]
- Derkach, S.R. Rheology of emulsions. Adv.Colloid Interface Sci. 2009, 151, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Karbaschi, M.; Lotfi, M.; Krägel, J.; Javadi, A.; Bastani, D.; Miller, R. Rheology of interfacial layers. Current Opin. Colloid Interface Sci. 2014, 19, 514–519. [Google Scholar] [CrossRef]
- Murray, B.S.; Dickinson, E. Interfacial rheology and the dynamic properties of adsorbed films of food proteins and surfactants. Food Sci. Technol. Int. Tokyo 1996, 2, 131–145. [Google Scholar] [CrossRef] [Green Version]
- Bos, M.A.; Van Vliet, T. Interfacial rheological properties of adsorbed protein layers and surfactants: A review. Adv.Colloid Interface Sci. 2001, 91, 437–471. [Google Scholar] [CrossRef]
- Benjamins, J.; Lucassen-Reynders, E.H. Interfacial Rheology of Adsorbed Protein Layers; Miller, R., Liggieri, L., Eds.; Brill: Leiden, The Netherlands, 2009; pp. 253–302. [Google Scholar]
- Javadi, A.; Mucic, N.; Karbaschi, M.; Won, J.Y.; Lotfi, M.; Dan, A.; Ulaganathan, V.; Gochev, G.; Makievski, A.V.; Kovalchuk, V.I.; et al. Characterization methods for liquid interfacial layers. Eur. Phys. J. Special Topics 2013, 222, 7–29. [Google Scholar] [CrossRef]
- Sagis, L.M.; Scholten, E. Complex interfaces in food: Structure and mechanical properties. Trends Food Sci. Technol. 2014, 37, 59–71. [Google Scholar] [CrossRef]
- Atkins, P.; Atkins, P.W.; de Paula, J. Atkins’ Physical Chemistry; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Kousksou, T.; Jamil, A.; Gibout, S.; Zeraouli, Y. Thermal analysis of phase change emulsion. J. Therm. Anal. Calorim. 2009, 96, 841–852. [Google Scholar] [CrossRef]
- López-de-Dicastillo, C.; Gómez-Estaca, J.; Catalá, R.; Gavara, R.; Hernández-Muñoz, P. Active antioxidant packaging films: Development and effect on lipid stability of brined sardines. Food Chem. 2012, 131, 1376–1384. [Google Scholar] [CrossRef]
- Hsieh, R.J.; Kinsella, J.E. Oxidation of polyunsaturated fatty acids: Mechanisms, products, and inhibition with emphasis on fish. Adv. Food Nutr. Res. 1989, 33, 233–341. [Google Scholar]
- Lorenzo, J.M.; Vargas, F.C.; Strozzi, I.; Pateiro, M.; Furtado, M.M.; Sant’Ana, A.S.; Rocchetti, G.; Barba, F.J.; Dominguez, R.; Lucini, L.; et al. Influence of pitanga leaf extracts on lipid and protein oxidation of pork burger during shelf-life. Food Res. Int. 2018, 114, 47–54. [Google Scholar] [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Estaca, J.; López-de-Dicastillo, C.; Hernández-Muñoz, P.; Catalá, R.; Gavara, R. Advances in antioxidant active food packaging. Trends Food Sci.Technol. 2014, 35, 42–51. [Google Scholar] [CrossRef]
- Jayasena, D.D.; Jo, C. Essential oils as potential antimicrobial agents in meat and meat products: A review. Trends Food Sci. Technol. 2013, 34, 96–108. [Google Scholar] [CrossRef]
- Liu, G.; Xiong, Y.L. Electrophoretic pattern, thermal denaturation, and in vitro digestibility of oxidized myosin. J. Agric. Food Chem. 2000, 48, 624–630. [Google Scholar] [CrossRef]
- Sante-Lhoutellier, V.; Aubry, L.; Gatellier, P. Effect of oxidation on in vitro digestibility of skeletal muscle myofibrillar proteins. J. Agric. Food Chem. 2007, 55, 5343–5348. [Google Scholar] [CrossRef]
- Labuza, T.P. Sorption phenomena in foods. Food Technol. 1968, 22, 15–19. [Google Scholar]
- Damodaran, S.; Parkin, K.L. Química de Alimentos de Fennema; Artmed editora: Guelph, ON, Canada, 2018. [Google Scholar]
- Stadtman, E.R. Protein oxidation and aging. Free Radic. Res. 2006, 40, 1250–1258. [Google Scholar] [CrossRef] [Green Version]
- Lund, M.N.; Luxford, C.; Skibsted, L.H.; Davies, M.J. Oxidation of myosin by haem proteins generates myosin radicals and protein cross-links. Biochem. J. 2008, 410, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Abdou, E.S.; Galhoum, G.F.; Mohamed, E.N. Curcumin loaded nanoemulsions/pectin coatings for refrigerated chicken fillets. Food Hydrocoll. 2018, 83, 445–453. [Google Scholar] [CrossRef]
- Al-Hashimi, A.G.; Ammar, A.B.; Lakshmanan, G.; Cacciola, F.; Lakhssassi, N. Development of a Millet Starch Edible Film Containing Clove Essential Oil. Foods 2020, 9, 184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez-Gonzalez, L.; Chafer, M.; Chiralt, A.; Gonzalez-Martinez, C. Physical properties of edible chitosan films containing bergamot essential oil and their inhibitory action on Penicillium italicum. Carbohydr. Polym. 2010, 82, 277–283. [Google Scholar] [CrossRef]
- Winther, J.R.; Thorpe, C. Quantification of thiols and disulfides. Biochim. Biophys. Acta (BBA) 2014, 1840, 838–846. [Google Scholar] [CrossRef] [Green Version]
- Ojagh, S.M.; Rezaei, M.; Razavi, S.H.; Hosseini, S.M.H. Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chem. 2010, 120, 193–198. [Google Scholar] [CrossRef]
- Serra, A.T.; Matias, A.A.; Nunes, A.V.M.; Leitão, M.C.; Brito, D.; Bronze, R.; Silva, S.; Pires, A.; Crespo, M.T.; San Romão, M.V.; et al. In vitro evaluation of olive-and grape-based natural extracts as potential preservatives for food. Innov. Food Sci. Emerg. Technol. 2008, 9, 311–319. [Google Scholar] [CrossRef]
- Puupponen-Pimiä, R.; Nohynek, L.; Meier, C.; Kähkönen, M.; Heinonen, M.; Hopia, A.; Oksman-Caldentey, K.M. Antimicrobial properties of phenolic compounds from berries. J. Appl. Microbiol. 2001, 90, 494–507. [Google Scholar] [CrossRef]
- Efenberger-Szmechtyk, M.; Nowak, A.; Czyzowska, A. Plant extracts rich in polyphenols: Antibacterial agents and natural preservatives for meat and meat products. Crit. Rev. Food Sci. Nutr. 2021, 61, 149–178. [Google Scholar] [CrossRef]
Meat | Nutritional Composition (per 100 g) | Energy (kJ/100 g) | References | |||
---|---|---|---|---|---|---|
Water | Protein | Fat | Ash | |||
Beef (lean) | 75.0 | 22.3 | 1.8 | 1.2 | 485 | [2] |
Beef carcass | 54.7 | 16.5 | 28.0 | 0.8 | 1351 | |
Pork (lean) | 75.1 | 22.8 | 1.2 | 1.0 | 469 | |
Pork carcass | 41.1 | 11.2 | 47.0 | 0.6 | 1975 | |
Veal (lean) | 76.4 | 21.3 | 0.8 | 1.2 | 410 | |
Chicken | 75.0 | 22.8 | 0.9 | 1.2 | 439 | |
Mutton carcass | 73.9 | 20.2 | 4.86 | 1.18 | 524 | [3] |
Chevon carcass | 75.6 | 20.3 | 3.68 | 4.09 | - | [4] |
Buffalo carcass | 76.3 | 20.4 | 1.37 | 0.98 | 724 | [5] |
Product | Coating Material | Particle Size (nm) | Antimicrobial/Antioxiadnt Compound | Target Microorganisms | Conditions | Reference |
---|---|---|---|---|---|---|
Chicken | Gelatin and chitosan nanoemulsion coating | 1122.4 | Rosemary extract in corn germ oil and ε-poly-L-lysine | Coliforms, E-coli, molds, yeast | 4 °C, 16 days (d) Coated by soaking, covered with cling film and stored | [43] |
Eggs | Chitosan | 1483–983 | Beeswax-basil EO | E-coli, S. aureus | Room temperature, 35 d 2 mL coating sprayed and dried. | [44] |
Turkey breast fillets | Chitosan | 342–5149 | Zataria Multiflora Boiss EO and Bunium persicum Boiss EO | Salmonella enteritidis, Listeria monocytogenes, TVC (total viable count), total Pseudomonas spp., Enterobacteriaceae, LAB (lactic acid bacteria), and yeast and mold count | 4 °C, 18 d Coated with nano-emulsion for 2 min, drained for 1 h, and packed in zip lock bags. | [29] |
Chicken breast fillet | Sodium caseinate | 57.4 | Ginger EO | Listeria monocytogenes and Salmonella typhimurium | 4 °C, 12 d Coating by direct immersion and packed in LDPE | [30] |
Raw goat meat | Gum arabic | 220–260 | geraniol and carvacrol | Bacillus cereus and E-coli | 4 °C, 9 d Coating by direct dipping. | [45] |
Pork loin | Pectin | 48.5–335.9 | Oregano EO and resveratrol | TVC | 4 °C, 20 d Coating by direct immersion for 30 s, air drying, and sealed hermetically in plastic trays with 20% CO2 and 80% O2. | [31] |
Shrimps | Oil-in-water nanoemulsion | 10.2–11 | Saffron EO | E-coli and S aureus | 4 °C and 8 °C 14 d Coating by direct immersion, draining, and sealing in PE (polyethylene) bags. | [34] |
Red sea bream | Oil-in-water nanoemulsion | 799.5–114.7 | Ginger EO | E-coli and S aureus | 4 °C, 10 d Coating by direct dipping. | [48] |
Fresh pork tenderloin | Gelatin | 4000–6000 | Eugenol EO | TVC, Enterobacteriaceae lactic acid bacteria, Pseudomonas spp. | 4 °C, 15 d Coating by soaking for 30 s and covered with cling films. | [49] |
Chicken fillets | Basil seed gum | - | Shirazi thyme EO and summery savory EO | Mesophilic, psychrotrophic and LAB | 4 °C, 12 d Coating by soaking for 120 s, drain for 2 min ×2. | [32] |
Scopthalmus Maximus | Locust bean gum and sodium alginate | - | Daphnetin | TVC, psychrophiles, and Pseudomonas spp. | 4 °C, 18 d Coating by direct dipping for 20 min at 4 °C, drying for 60 min in air flow at 4 °C and then individually packed in PE. | [36] |
Chicken fillet | Konjac glucomannan/carrageenan | - | Camellia EO | TVC, psychrophiles, and LAB | 4 °C, 10 d Coating by direct immersion for 10 s, drying at ambient temp. for 10 min, and covering with plastic wrap. | [50] |
Turkey fillets | Alginate | 156.2 | Trachyspermum ammi EO | Listeria monocytogenes | 4 °C, 12 d Coating by direct dipping, dipping in 2% CaCl2 solution for 30 s and, packed in sterile zipper packs. | [51] |
Sliced bolognas | Pectin | - | Thymus vulgaris and Thymbra spicata EO | Mesophilic and LAB | 4 °C, 21 d Coating by dipping for 2 min and draining for 3 min before storage. | [52] |
Pork meat | Chitosan | - | Thyme EO | Pseudomonas, Lactococcus, and Acinetobacter | 4 °C, 12 d Coating by alcohol spraying, air drying for 5 min, and packed in plastic bags. | [53] |
Ready to eat chicken patties | Chicken bone gelatin–chitosan | 1370.8–183.6 | Cinnamon EO and rosemary extract | E. coli, Bacillus subtilis, and S aureus | 4 °C, 16 d Coating by direct dipping for 3 min, drained for 10 min and sealed in PE bags. | [38] |
Crayfish meat | Chitosan | - | Propolis extract | Total aerobic mesophilic, psychrotrophic and H2S-producing bacteria, yeasts- molds | 4 °C, 16 d Coating by direct dipping for 2 min, drying for 60 min in air flow at 10 °C and then individually packed in sterile PE. | [54] |
Chicken meat | Chitosan | - | Duck fat | TVC and Listeria spp. | 4 °C, 15 d Coating by direct dipping for 2 min under magnetic stirring at 800 rpm, dried in laminar hood at 25 °C for 2 h and packed in PE bags. | [55] |
Pork | Chitosan | 389.7–45.3 | Schizonepeta tenuifolia EO | TVC, Pseudomonas spp., LAB, and Enterobacteriaceae | 4 °C, 16 d Coating by direct dipping for 30 s) ×2 with 2 min break, draining for 10 min, and packed in oxygen-permeable PE film. | [56] |
Fresh meat | Chitosan | >1000 | Eugenol EO | E. coli and S. aureus | 4 °C, 14 d Coating by direct dipping for 1 min and draining. | [57] |
Chicken breast | Calcium alginate | - | Artemisia fragrance EO | TVC, coliforms, molds and yeast | 4 °C, 12 d Coating by direct dipping for 60 min at 4 °C, draining and packing in PE bags. | [58] |
Silver carp fillet | Sodiumalginate–carboxymethyl cellulose | - | Ziziphora clinopodioides EO, apple peel extract, and zinc oxide nanoparticles (alone and in combination) | Listeria monocytogenes | 4 °C, 14 d Coating by direct immersion at room temperature for 30 s, drained for 15 min, and dried under refrigeration for 2 h. | [59] |
Chicken breast | Whey protein isolate | - | Oregano and clove EO | Total aerobic mesophilic bacteria, Enterobacteriaceae, total aerobic psychrotrophic bacteria, LAB, and Pseudomonas spp. | 4 °C, 13 d Coating by immersion, draining, and drying under sterilized conditions. | [15] |
Paínho and alheira Portuguese sausage | Whey protein | - | Origanum virens EO | Salmonella spp. And L. monocytogenes | 4 °C, 106–126 d Coating by applying 1 mL of emulsion by silicone brush and packing in LDPE films by thermal vacuum sealing (30 s at 120 °C) | [16] |
Chicken breast | Pomegranate juice–chitosan | - | Zataria multiflora EO | TVC, Pseudomonas spp., lactic acid bacteria, Enterobacteriaceae, Psychrotrophic bacteria and yeasts– molds | 4 °C, 20 d Coating by direct immersion for 2 min twice with a short interval, drained for 5 h at 10 °C, and packing in sterilized LDPE packages. | [60] |
Rainbow trout fillet | Chitosan | - | Mentha spicata EO | TVC, psychrotrophic bacteria, Pseudomonas spp. and Enterobacteriaceae | 4 °C, 14 d Coating by direct immersion for 1 min, draining for 5 min, and packing in sterile stomacher bags. | [61] |
Silver carp fillet | Methylcellulose | - | Pimpinella affinis EO | TVC and psychrotrophic bacteria | 4 °C, 20 d Coating by direct immersion for 30 s ×2, and drained for 5 h at 10 °C. | [62] |
Bighead carp fillet | Sodium Alginate | - | Horsemint (Mentha longifolia) EO | TVC and psychrotrophic bacteria | 4 °C, 16 d Coating by direct immersion for 30 s and drained for 30 min at ambient conditions, | [63] |
Rainbow trout fillet | Fish gelatin | - | Oregano EO | TVC | 4 °C, 16 d Coating by direct immersion for 2 min ×2 with 1 min draining interval and drying for 1 h under sterile laminar hood. | [64] |
Shrimp | Chitosan | - | Garlic EO | Aerobic plate count | 4 °C, 11 d Coating by direct immersion for 5 min, drained and dried for 4 h at 4 °C, and packed in plastic wrap. | [65] |
Lamb meat | Chitosan | 96–93 | Satureja plant EO | TVC, Pseudomonas spp. and LAB | 4 °C, 20 d Coating by direct immersion for one min) ×2, drained and dried for 15 min at 25 °C | [66] |
Rainbow trout fillet | Carboxymethyl cellulose | - | Zataria multiflora Boiss EO and grapeseed extract | TVC, Pseudomonas spp. and LAB | 4 °C, 20 d Coating by direct immersion and drained. | [67] |
Refrigerated bream (Megalobrama amblycephala) | Sodium alginate | - | Vitamin C and tea polyphenols | TVC | 4 °C, 20 d Coating by direct immersion for 1 min, air dried for 1 min, and immersed in CaCl2 and packed in PE bags. | [68] |
Trout (Oncorhync-husmykiss) fillets | Carrageenan | - | Lemon EO | TVC, Pseudomonas spp. and Enterobacteriaceae | 4 °C, 15 d Coating by direct immersion. | [69] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gautam, S.; Lapčík, L.; Lapčíková, B.; Gál, R. Emulsion-Based Coatings for Preservation of Meat and Related Products. Foods 2023, 12, 832. https://doi.org/10.3390/foods12040832
Gautam S, Lapčík L, Lapčíková B, Gál R. Emulsion-Based Coatings for Preservation of Meat and Related Products. Foods. 2023; 12(4):832. https://doi.org/10.3390/foods12040832
Chicago/Turabian StyleGautam, Shweta, Lubomír Lapčík, Barbora Lapčíková, and Robert Gál. 2023. "Emulsion-Based Coatings for Preservation of Meat and Related Products" Foods 12, no. 4: 832. https://doi.org/10.3390/foods12040832
APA StyleGautam, S., Lapčík, L., Lapčíková, B., & Gál, R. (2023). Emulsion-Based Coatings for Preservation of Meat and Related Products. Foods, 12(4), 832. https://doi.org/10.3390/foods12040832