Fruit-Based Fermented Beverages: Contamination Sources and Emerging Technologies Applied to Assure Their Safety
Abstract
:1. Introduction
2. Microbiological Risks Found in Fruit-Based Fermented Beverages
3. Chemical Risks Found in Fruit-Based Fermented Beverages
3.1. Mycotoxins
3.2. Biogenic Amines
3.3. Pesticides
3.4. Heavy Metals
4. Microplastics Detected in Fruit-Based Fermented Beverages
5. Techniques Applied for Limiting Formation and Contaminants Removal
5.1. Enzymatic Procedures
5.2. Chemical Methods
5.3. Physical Procedures
5.4. Biological Decontamination Procedures
6. Final Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. The Future of Food and Agriculture: Trends and Challenges; FAO: Rome, Italy, 2017; ISSN 2522-722X. [Google Scholar]
- Pop, C.; Suharoschi, R.; Pop, O.L. Dietary Fiber and Prebiotic Compounds in Fruits and Vegetables Food Waste. Sustainability 2021, 13, 7219. [Google Scholar] [CrossRef]
- FAOSTAT. 2020. Available online: http://www.fao.org/faostat/en/#data (accessed on 9 August 2022).
- Kaur, P.; Ghoshal, G.; Banerjee, U.C. Traditional Bio-Preservation in Beverages: Fermented Beverages. In Preservatives and Preservation Approaches in Beverages; Elsevier: Amsterdam, The Netherlands, 2019; pp. 69–113. [Google Scholar]
- Coskun, F. A Traditional Turkish Fermented Non-Alcoholic Grape-Based Beverage, “Hardaliye”. Beverages 2017, 3, 2. [Google Scholar] [CrossRef] [Green Version]
- Romero-Luna, H.E.; Peredo-Lovillo, A.; Dávila-Ortiz, G. Tepache: A Pre-Hispanic Fermented Beverage as a Potential Source of Probiotic Yeasts. In Hispanic Foods: Chemistry of Fermented Foods; American Chemical Society: New York, NY, USA, 2022; pp. 135–147. [Google Scholar]
- Motlhanka, K.; Lebani, K.; Boekhout, T.; Zhou, N. Fermentative Microbes of Khadi, a Traditional Alcoholic Beverage of Botswana. Fermentation 2020, 6, 51. [Google Scholar] [CrossRef]
- Ranadheera, C.S.; Prasanna, P.H.P.; Pimentel, T.C.; Azeredo, D.R.P.; Rocha, R.S.; Cruz, A.G.; Vidanarachchi, J.K.; Naumovski, N.; McConchie, R.; Ajlouni, S. Microbial Safety of Nonalcoholic Beverages. In Safety Issues in Beverage Production; Elsevier: Amsterdam, The Netherlands, 2020; pp. 187–221. [Google Scholar]
- Harris, L.J.; Farber, J.N.; Beuchat, L.R.; Parish, M.E.; Suslow, T.V.; Garrett, E.H.; Busta, F.F. Outbreaks Associated with Fresh Produce: Incidence, Growth, and Survival of Pathogens in Fresh and Fresh-Cut Produce. Compr. Rev. Food Sci. Food Saf. 2003, 2, 78–141. [Google Scholar] [CrossRef]
- Ubeda, C.; Hornedo-Ortega, R.; Cerezo, A.B.; Garcia-Parrilla, M.C.; Troncoso, A.M. Chemical Hazards in Grapes and Wine, Climate Change and Challenges to Face. Food Chem. 2020, 314, 126222. [Google Scholar] [CrossRef]
- Skowron, K.; Budzyńska, A.; Grudlewska-Buda, K.; Wiktorczyk-Kapischke, N.; Andrzejewska, M.; Wałecka-Zacharska, E.; Gospodarek-Komkowska, E. Two Faces of Fermented Foods—The Benefits and Threats of Its Consumption. Front. Microbiol. 2022, 13, 845166. [Google Scholar] [CrossRef]
- Pop, O.L.; Socaci, S.A.; Suharoschi, R.; Vodnar, D.C. Pro and Prebiotics Foods That Modulate Human Health. In The Role of Alternative and Innovative Food Ingredients and Products in Consumer Wellness; Elsevier: Amsterdam, The Netherlands, 2019; pp. 283–313. [Google Scholar]
- Christofi, S.; Malliaris, D.; Katsaros, G.; Panagou, E.; Kallithraka, S. Limit SO2 Content of Wines by Applying High Hydrostatic Pressure. Innov. Food Sci. Emerg. Technol. 2020, 62, 102342. [Google Scholar] [CrossRef]
- Raúl, F.; Guerrero, E.C.-V. Demonstrating the Efficiency of Sulphur Dioxide Replacements in Wine: A Parameter Review. Trends Food Sci. Technol. 2015, 42, 27–43. [Google Scholar] [CrossRef]
- Tedesco, F.; Siesto, G.; Pietrafesa, R.; Romano, P.; Salvia, R.; Scieuzo, C.; Falabella, P.; Capece, A. Chemical Methods for Microbiological Control of Winemaking: An Overview of Current and Future Applications. Beverages 2022, 8, 58. [Google Scholar] [CrossRef]
- Wells, A.; Osborne, J.P. Impact of Acetaldehyde- and Pyruvic Acid-Bound Sulphur Dioxide on Wine Lactic Acid Bacteria. Lett. Appl. Microbiol. 2012, 54, 187–194. [Google Scholar] [CrossRef]
- García-Ríos, E.; Guillamón, J.M. Sulfur Dioxide Resistance in Saccharomyces Cerevisiae: Beyond SSU1. Microb. Cell 2019, 6, 527–530. [Google Scholar] [CrossRef] [PubMed]
- Pop, O.L.; Diaconeasa, Z.; Thorsten, B.; Ciuzan, O.; Pamfil, D.; Vodnar, D.C.; Socaciu, C. Effect of Glycerol, as Cryoprotectant in the Encapsulation and Freeze Drying of Microspheres Containing Probiotic Cells. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Food Sci. Technol. 2015, 72, 27–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scientific Opinion on the Re-evaluation of Dimethyl Dicarbonate (DMDC, E 242) as a Food Additive. EFSA J. 2015, 13, 4319. [CrossRef] [Green Version]
- Redan, B.W.; Jablonski, J.E.; Halverson, C.; Jaganathan, J.; Mabud, M.A.; Jackson, L.S. Factors Affecting Transfer of the Heavy Metals Arsenic, Lead, and Cadmium from Diatomaceous-Earth Filter Aids to Alcoholic Beverages during Laboratory-Scale Filtration. J. Agric. Food Chem. 2019, 67, 2670–2678. [Google Scholar] [CrossRef] [PubMed]
- Escudero-López, B.; Cerrillo, I.; Gil-Izquierdo, Á.; Hornero-Méndez, D.; Herrero-Martín, G.; Berná, G.; Medina, S.; Ferreres, F.; Martín, F.; Fernández-Pachón, M.-S. Effect of Thermal Processing on the Profile of Bioactive Compounds and Antioxidant Capacity of Fermented Orange Juice. Int. J. Food Sci. Nutr. 2016, 67, 779–788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassoun, A.; Aït-Kaddour, A.; Abu-Mahfouz, A.M.; Rathod, N.B.; Bader, F.; Barba, F.J.; Biancolillo, A.; Cropotova, J.; Galanakis, C.M.; Jambrak, A.R.; et al. The Fourth Industrial Revolution in the Food Industry—Part I: Industry 4.0 Technologies. Crit. Rev. Food Sci. Nutr. 2022, 2022, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Hassoun, A.; Bekhit, A.E.-D.; Jambrak, A.R.; Regenstein, J.M.; Chemat, F.; Morton, J.D.; Gudjónsdóttir, M.; Carpena, M.; Prieto, M.A.; Varela, P.; et al. The Fourth Industrial Revolution in the Food Industry—Part II: Emerging Food Trends. Crit. Rev. Food Sci. Nutr. 2022, 2022, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Krieger-Weber, S.; Heras, J.M.; Suarez, C. Lactobacillus Plantarum, a New Biological Tool to Control Malolactic Fermentation: A Review and an Outlook. Beverages 2020, 6, 23. [Google Scholar] [CrossRef] [Green Version]
- Berbegal, C.; Spano, G.; Tristezza, M.; Grieco, F.; Capozzi, V. Microbial Resources and Innovation in the Wine Production Sector. S. Afr. J. Enol. Vitic. 2017, 38, 156–166. [Google Scholar] [CrossRef]
- Virdis, C.; Sumby, K.; Bartowsky, E.; Jiranek, V. Lactic Acid Bacteria in Wine: Technological Advances and Evaluation of Their Functional Role. Front. Microbiol. 2021, 11, 612118. [Google Scholar] [CrossRef]
- Pop, O.; Dulf, F.; Cuibus, L.; Castro-Giráldez, M.; Fito, P.; Vodnar, D.; Coman, C.; Socaciu, C.; Suharoschi, R. Characterization of a Sea Buckthorn Extract and Its Effect on Free and Encapsulated Lactobacillus Casei. Int. J. Mol. Sci. 2017, 18, 2513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petruzzi, L.; Capozzi, V.; Berbegal, C.; Corbo, M.R.; Bevilacqua, A.; Spano, G.; Sinigaglia, M. Microbial Resources and Enological Significance: Opportunities and Benefits. Front. Microbiol. 2017, 8, 995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callejón, S.; Sendra, R.; Ferrer, S.; Pardo, I. Identification of a Novel Enzymatic Activity from Lactic Acid Bacteria Able to Degrade Biogenic Amines in Wine. Appl. Microbiol. Biotechnol. 2014, 98, 185–198. [Google Scholar] [CrossRef] [PubMed]
- Gabrić, D.; Barba, F.; Roohinejad, S.; Gharibzahedi, S.M.T.; Radojčin, M.; Putnik, P.; Bursać Kovačević, D. Pulsed Electric Fields as an Alternative to Thermal Processing for Preservation of Nutritive and Physicochemical Properties of Beverages: A Review. J. Food Process Eng. 2018, 41, e12638. [Google Scholar] [CrossRef]
- Rios-Corripio, G.; la Peña, M.M.; Welti-Chanes, J.; Guerrero-Beltrán, J.Á. Pulsed Electric Field Processing of a Pomegranate (Punica granatum L.) Fermented Beverage. Innov. Food Sci. Emerg. Technol. 2022, 79, 103045. [Google Scholar] [CrossRef]
- Vazquez-Cabral, D.; Valdez-Fragoso, A.; Rocha-Guzman, N.E.; Moreno-Jimenez, M.R.; Gonzalez-Laredo, R.F.; Morales-Martinez, P.S.; Rojas-Contreras, J.A.; Mujica-Paz, H.; Gallegos-Infante, J.A. Effect of Pulsed Electric Field (PEF)-Treated Kombucha Analogues from Quercus Obtusata Infusions on Bioactives and Microorganisms. Innov. Food Sci. Emerg. Technol. 2016, 34, 171–179. [Google Scholar] [CrossRef]
- Vaquero, C.; Loira, I.; Raso, J.; Álvarez, I.; Delso, C.; Morata, A. Pulsed Electric Fields to Improve the Use of Non-Saccharomyces Starters in Red Wines. Foods 2021, 10, 1472. [Google Scholar] [CrossRef]
- Liang, Z.; Cheng, Z.; Mittal, G.S. Inactivation of Spoilage Microorganisms in Apple Cider Using a Continuous Flow Pulsed Electric Field System. LWT—Food Sci. Technol. 2006, 39, 351–357. [Google Scholar] [CrossRef]
- Umego, E.C.; He, R.; Huang, G.; Dai, C.; Ma, H. Ultrasound-assisted Fermentation: Mechanisms, Technologies, and Challenges. J. Food Process. Preserv. 2021, 45, e15559. [Google Scholar] [CrossRef]
- Aung, T.; Eun, J.-B. Production and Characterization of a Novel Beverage from Laver (Porphyra Dentata) through Fermentation with Kombucha Consortium. Food Chem. 2021, 350, 129274. [Google Scholar] [CrossRef]
- Aguilar, K. Evaluating Ultrasound Pre-Treatment as a Tool for Improving the Process of a Fermented Beverage Made from Pineapple by-Products. Braz. J. Food Technol. 2022, 25, e2021116. [Google Scholar] [CrossRef]
- Deng, Y.; Bi, H.; Yin, H.; Yu, J.; Dong, J.; Yang, M.; Ma, Y. Influence of Ultrasound Assisted Thermal Processing on the Physicochemical and Sensorial Properties of Beer. Ultrason. Sonochem. 2018, 40, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Mesa, J.; Hinestroza-Córdoba, L.I.; Barrera, C.; Seguí, L.; Betoret, E.; Betoret, N. High Homogenization Pressures to Improve Food Quality, Functionality and Sustainability. Molecules 2020, 25, 3305. [Google Scholar] [CrossRef] [PubMed]
- Gottardi, D.; Siroli, L.; Braschi, G.; Rossi, S.; Ferioli, F.; Vannini, L.; Patrignani, F.; Lanciotti, R. High-Pressure Homogenization and Biocontrol Agent as Innovative Approaches Increase Shelf Life and Functionality of Carrot Juice. Foods 2021, 10, 2998. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Dai, Y.; Wu, H.; Liu, X.; Wang, Y.; Cao, J.; Zhou, J. Effects of Pressure and Multiple Passes on the Physicochemical and Microbial Characteristics of Lupin-based Beverage Treated with High-pressure Homogenization. J. Food Process. Preserv. 2019, 43, e13912. [Google Scholar] [CrossRef]
- Stier, R.F.; Nagle, N.E. Ensuring Safety in Juices and Juice Products: Good Agricultural Practices. In Beverage Quality and Safety; CRC Press: Boca Raton, FL, USA, 2003; pp. 15–22. [Google Scholar]
- Pinto, T.; Vilela, A.; Cosme, F. Chemical and Sensory Characteristics of Fruit Juice and Fruit Fermented Beverages and Their Consumer Acceptance. Beverages 2022, 8, 33. [Google Scholar] [CrossRef]
- Azam, M.S.; Ahmed, S.; Islam, M.N.; Maitra, P.; Islam, M.M.; Yu, D. Critical Assessment of Mycotoxins in Beverages and Their Control Measures. Toxins 2021, 13, 323. [Google Scholar] [CrossRef]
- Piotrowska, M. Microbiological Decontamination of Mycotoxins: Opportunities and Limitations. Toxins 2021, 13, 819. [Google Scholar] [CrossRef]
- Shankar, V.; Mahboob, S.; Al-Ghanim, K.A.; Ahmed, Z.; Al-Mulhm, N.; Govindarajan, M. A Review on Microbial Degradation of Drinks and Infectious Diseases: A Perspective of Human Well-Being and Capabilities. J. King Saud Univ.—Sci. 2021, 33, 101293. [Google Scholar] [CrossRef]
- Pop, O.L.; Vodnar, D.C.; Suharoschi, R.; Mudura, E.; Socaciu, C.L. Plantarum ATCC 8014 Entrapment with Prebiotics and Lucerne Green Juice and Their Behavior in Simulated Gastrointestinal Conditions. J. Food Process Eng. 2016, 39, 433–441. [Google Scholar] [CrossRef]
- Kregiel, D. Health Safety of Soft Drinks: Contents, Containers, and Microorganisms. BioMed Res. Int. 2015, 2015, 128697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Białkowska, A.; Turkiewicz, M. Miscellaneous Cold-Active Yeast Enzymes of Industrial Importance. In Cold-Adapted Yeasts; Springer: Berlin/Heidelberg, Germany, 2014; pp. 377–395. [Google Scholar]
- Pop, O.L.; Suharoschi, R.; Gabbianelli, R. Biodetoxification and Protective Properties of Probiotics. Microorganisms 2022, 10, 1278. [Google Scholar] [CrossRef] [PubMed]
- Ciont, C.; Epuran, A.; Kerezsi, A.D.; Coldea, T.E.; Mudura, E.; Pasqualone, A.; Zhao, H.; Suharoschi, R.; Vriesekoop, F.; Pop, O.L. Beer Safety: New Challenges and Future Trends within Craft and Large-Scale Production. Foods 2022, 11, 2693. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-Y.; Sagong, H.-G.; Ryu, S.; Kang, D.-H. Effect of Continuous Ohmic Heating to Inactivate Escherichia Coli O157:H7, Salmonella Typhimurium and Listeria Monocytogenes in Orange Juice and Tomato Juice. J. Appl. Microbiol. 2012, 112, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Parish, M.E. Food Safety Issues and the Microbiology of Fruit Beverages and Bottled Water. In Microbiologically Safe Foods; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; pp. 291–304. [Google Scholar]
- Hernández, A.; Pérez-Nevado, F.; Ruiz-Moyano, S.; Serradilla, M.J.; Villalobos, M.C.; Martín, A.; Córdoba, M.G. Spoilage Yeasts: What Are the Sources of Contamination of Foods and Beverages? Int. J. Food Microbiol. 2018, 286, 98–110. [Google Scholar] [CrossRef]
- Filipe-Ribeiro, L.; Milheiro, J.; Matos, C.C.; Cosme, F.; Nunes, F.M. Reduction of 4-Ethylphenol and 4-Ethylguaiacol in Red Wine by Activated Carbons with Different Physicochemical Characteristics: Impact on Wine Quality. Food Chem. 2017, 229, 242–251. [Google Scholar] [CrossRef]
- Štulíková, K.; Vrzal, T.; Kubizniaková, P.; Enge, J.; Matoulková, D.; Brányik, T. Spoilage of Bottled Lager Beer Contaminated with Saccharomyces Cerevisiae Var. Diastaticus. J. Inst. Brew. 2021, 127, 256–261. [Google Scholar] [CrossRef]
- El-Sayed, R.A.; Jebur, A.B.; Kang, W.; El-Demerdash, F.M. An Overview on the Major Mycotoxins in Food Products: Characteristics, Toxicity, and Analysis. J. Futur. Foods 2022, 2, 91–102. [Google Scholar] [CrossRef]
- Chauhan, R.; Singh, J.; Sachdev, T.; Basu, T.; Malhotra, B.D. Recent Advances in Mycotoxins Detection. Biosens. Bioelectron. 2016, 81, 532–545. [Google Scholar] [CrossRef]
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide Contamination of Food-Crops with Mycotoxins: Validity of the Widely Cited ‘FAO Estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, X.; Li, J. Updating Techniques on Controlling Mycotoxins—A Review. Food Control 2018, 89, 123–132. [Google Scholar] [CrossRef]
- Mandappa, I.M.; Basavaraj, K.; Manonmani, H.K. Analysis of Mycotoxins in Fruit Juices. In Fruit Juices; Elsevier: Amsterdam, The Netherlands, 2018; pp. 763–777. [Google Scholar]
- Magan, N.; Medina, A.; Aldred, D. Possible Climate-Change Effects on Mycotoxin Contamination of Food Crops Pre- and Postharvest. Plant Pathol. 2011, 60, 150–163. [Google Scholar] [CrossRef]
- Medina, A.; Schmidt-Heydt, M.; Cárdenas-Chávez, D.L.; Parra, R.; Geisen, R.; Magan, N. Integrating Toxin Gene Expression, Growth and Fumonisin B1 and B2 Production by a Strain of Fusarium verticillioides under Different Environmental Factors. J. R. Soc. Interface 2013, 10, 20130320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muga, F.C.; Marenya, M.O.; Workneh, T.S. Effect of Temperature, Relative Humidity and Moisture on Aflatoxin Contamination of Stored Maize Kernels. Bulg. J. Agric. Sci. 2019, 25, 271–277. [Google Scholar]
- Vylkova, S. Environmental PH Modulation by Pathogenic Fungi as a Strategy to Conquer the Host. PLoS Pathog. 2017, 13, e1006149. [Google Scholar] [CrossRef] [Green Version]
- Mbengue, M.; Navaud, O.; Peyraud, R.; Barascud, M.; Badet, T.; Vincent, R.; Barbacci, A.; Raffaele, S. Emerging Trends in Molecular Interactions between Plants and the Broad Host Range Fungal Pathogens Botrytis Cinerea and Sclerotinia Sclerotiorum. Front. Plant Sci. 2016, 7, 422. [Google Scholar] [CrossRef] [Green Version]
- Brzonkalik, K.; Hümmer, D.; Syldatk, C.; Neumann, A. Influence of pH and Carbon to Nitrogen Ratio on Mycotoxin Production by Alternaria Alternata in Submerged Cultivation. AMB Express 2012, 2, 28. [Google Scholar] [CrossRef] [Green Version]
- Deepthi, B.V.; Deepa, N.; Vanitha, P.R.; Sreenivasa, M.Y. Stress Responses on the Growth and Mycotoxin Biosynthesis of Fusarium Proliferatum Associated with Stored Poultry Feeds. Appl. Food Res. 2022, 2, 100091. [Google Scholar] [CrossRef]
- Hamad, H.O.; Alma, M.H.; Ismael, H.M.; Göçeri, A. The Effect of Some Sugars on the Growth of Aspergillus Niger. Kahramanmaraş Sütçü İmam Üniversitesi Doğa Bilim. Derg. 2015, 17, 7. [Google Scholar] [CrossRef] [Green Version]
- Daou, R.; Joubrane, K.; Maroun, R.G.; Khabbaz, L.R.; Ismail, A.; Khoury, A. El Mycotoxins: Factors Influencing Production and Control Strategies. AIMS Agric. Food 2021, 6, 416–447. [Google Scholar] [CrossRef]
- Phokane, S.; Flett, B.C.; Ncube, E.; Rheeder, J.P.; Rose, L.J. Agricultural Practices and Their Potential Role in Mycotoxin Contamination of Maize and Groundnut Subsistence Farmin. S. Afr. J. Sci. 2019, 115, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quintela, S. Mycotoxins in Beverages: Occurrence, Regulation, Economic Impact and Cost-Effectiveness of Preventive and Removal Methods. In Safety Issues in Beverage Production; Elsevier: Amsterdam, The Netherlands, 2020; pp. 147–186. [Google Scholar]
- García Gabarra, A.; Castellà Soley, M.; Calleja Fernández, A. Ingestas de Energía y Nutrientes Recomendadas En La Unión Europea: 2008-2016. Nutr. Hosp. 2017, 34, 490. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Reports on Tasks for Scientific Cooperation. In Report of Experts Participating in Task 3.2.7. Assessment of Dietary Intake of Ochratoxin A by the Population of EU Member State; Directorate-General Health and Consumer Protection: Brussels, Belgium, 2002. [Google Scholar]
- Gil-Serna, J.; Vázquez, C.; González-Jaén, M.; Patiño, B. Wine Contamination with Ochratoxins: A Review. Beverages 2018, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Freire, L.; Braga, P.A.C.; Furtado, M.M.; Delafiori, J.; Dias-Audibert, F.L.; Pereira, G.E.; Reyes, F.G.; Catharino, R.R.; Sant’Ana, A.S. From Grape to Wine: Fate of Ochratoxin A during Red, Rose, and White Winemaking Process and the Presence of Ochratoxin Derivatives in the Final Products. Food Control 2020, 113, 107167. [Google Scholar] [CrossRef]
- Ortiz-Villeda, B.; Lobos, O.; Aguilar-Zuniga, K.; Carrasco-Sánchez, V. Ochratoxins in Wines: A Review of Their Occurrence in the Last Decade, Toxicity, and Exposure Risk in Humans. Toxins 2021, 13, 478. [Google Scholar] [CrossRef]
- Al Riachy, R.; Strub, C.; Durand, N.; Guibert, B.; Guichard, H.; Constancias, F.; Chochois, V.; Lopez-Lauri, F.; Fontana, A.; Schorr-Galindo, S. Microbiome Status of Cider-Apples, from Orchard to Processing, with a Special Focus on Penicillium Expansum Occurrence and Patulin Contamination. J. Fungi 2021, 7, 244. [Google Scholar] [CrossRef]
- Harris, K.L.; Bobe, G.; Bourquin, L.D. Patulin Surveillance in Apple Cider and Juice Marketed in Michigan. J. Food Prot. 2009, 72, 1255–1261. [Google Scholar] [CrossRef]
- Ji, X.; Xiao, Y.; Lyu, W.; Li, M.; Wang, W.; Tang, B.; Wang, X.; Yang, H. Probabilistic Risk Assessment of Combined Exposure to Deoxynivalenol and Emerging Alternaria Toxins in Cereal-Based Food Products for Infants and Young Children in China. Toxins 2022, 14, 509. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, D.-D.; Chen, X.-H.; Guo, Y.-B.; Jin, M.-C.; Zhao, Y.-G. Investigation on the Occurrence and Contamination of Multi-Mycotoxin in Chestnut and Jujube (Red Date). J. Chromatogr. A 2021, 1659, 462486. [Google Scholar] [CrossRef]
- Tölgyesi, Á.; Kozma, L.; Sharma, V.K. Determination of Alternaria Toxins in Sunflower Oil by Liquid Chromatography Isotope Dilution Tandem Mass Spectrometry. Molecules 2020, 25, 1685. [Google Scholar] [CrossRef] [Green Version]
- Fliszár-Nyúl, E.; Szabó, Á.; Szente, L.; Poór, M. Extraction of Mycotoxin Alternariol from Red Wine and from Tomato Juice with Beta-Cyclodextrin Bead Polymer. J. Mol. Liq. 2020, 319, 114180. [Google Scholar] [CrossRef]
- Carballo, D.; Fernández-Franzón, M.; Ferrer, E.; Pallarés, N.; Berrada, H. Dietary Exposure to Mycotoxins through Alcoholic and Non-Alcoholic Beverages in Valencia, Spain. Toxins 2021, 13, 438. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Lu, S. The Importance of Amine-Degrading Enzymes on the Biogenic Amine Degradation in Fermented Foods: A Review. Process Biochem. 2020, 99, 331–339. [Google Scholar] [CrossRef]
- Erdag, D.; Merhan, O.; Yildiz, B. Biochemical and Pharmacological Properties of Biogenic Amines. In Biogenic Amines; IntechOpen: London, UK, 2019. [Google Scholar]
- Vasconcelos, H.; de Almeida, J.M.M.M.; Matias, A.; Saraiva, C.; Jorge, P.A.S.; Coelho, L.C.C. Detection of Biogenic Amines in Several Foods with Different Sample Treatments: An Overview. Trends Food Sci. Technol. 2021, 113, 86–96. [Google Scholar] [CrossRef]
- Vinci, G.; Maddaloni, L. Biogenic Amines in Alcohol-Free Beverages. Beverages 2020, 6, 17. [Google Scholar] [CrossRef] [Green Version]
- Gardini, F.; Özogul, Y.; Suzzi, G.; Tabanelli, G.; Özogul, F. Technological Factors Affecting Biogenic Amine Content in Foods: A Review. Front. Microbiol. 2016, 7, 1218. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Biological Hazards (BIOHAZ). Scientific Opinion on Risk Based Control of Biogenic Amine Formation in Fermented Foods. ESFA J. 2011, 9, 2393. [Google Scholar]
- Jairath, G.; Singh, P.K.; Dabur, R.S.; Rani, M.; Chaudhari, M. Biogenic Amines in Meat and Meat Products and Its Public Health Significance: A Review. J. Food Sci. Technol. 2015, 52, 6835–6846. [Google Scholar] [CrossRef]
- Bjornsdottir-Butler, K.; McCarthy, S.A.; Dunlap, P.V.; Benner, R.A. Photobacterium Angustum and Photobacterium Kishitanii, Psychrotrophic High-Level Histamine-Producing Bacteria Indigenous to Tuna. Appl. Environ. Microbiol. 2016, 82, 2167–2176. [Google Scholar] [CrossRef] [Green Version]
- Lund, P.A.; De Biase, D.; Liran, O.; Scheler, O.; Mira, N.P.; Cetecioglu, Z.; Fernández, E.N.; Bover-Cid, S.; Hall, R.; Sauer, M.; et al. Understanding How Microorganisms Respond to Acid PH Is Central to Their Control and Successful Exploitation. Front. Microbiol. 2020, 11, 556140. [Google Scholar] [CrossRef]
- Yang, Q.; Meng, J.; Zhang, W.; Liu, L.; He, L.; Deng, L.; Zeng, X.; Ye, C. Effects of Amino Acid Decarboxylase Genes and PH on the Amine Formation of Enteric Bacteria From Chinese Traditional Fermented Fish (Suan Yu). Front. Microbiol. 2020, 11, 1130. [Google Scholar] [CrossRef] [PubMed]
- Özogul, F.; Kacar, Ç.; Hamed, I. Inhibition Effects of Carvacrol on Biogenic Amines Formation by Common Food-Borne Pathogens in Histidine Decarboxylase Broth. LWT—Food Sci. Technol. 2015, 64, 50–55. [Google Scholar] [CrossRef]
- Ruiz-Capillas, C.; Herrero, A. Impact of Biogenic Amines on Food Quality and Safety. Foods 2019, 8, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perpetuini, G.; Tittarelli, F.; Battistelli, N.; Arfelli, G.; Suzzi, G.; Tofalo, R. Chapter 8. Biogenic Amines in Global Beverages. In Biogenic Amines in Food: Analysis, Occurrence and Toxicity; Royal Society of Chemistry: London, UK, 2019; pp. 133–156. [Google Scholar]
- Özogul, Y.; Özogul, F. Chapter 1. Biogenic Amines Formation, Toxicity, Regulations in Food. In Biogenic Amines in Food: Analysis, Occurrence and Toxicity; Royal Society of Chemistry: London, UK, 2019; pp. 1–17. [Google Scholar]
- Gammone, M.; Vicentini, A.; Riccioni, G.; De Girolamo, M.; D’Aulerio, A.; D’Orazio, N. Food-Related Atrial Fibrillation? The Potential Role of Biogenic Amines in “Nutri-Arrhythmias” Genesis. Reports 2018, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Visciano, P.; Schirone, M. Update on Biogenic Amines in Fermented and Non-Fermented Beverages. Foods 2022, 11, 353. [Google Scholar] [CrossRef]
- Smit, I.; Pfliehinger, M.; Binner, A.; Großmann, M.; Horst, W.J.; Löhnertz, O. Nitrogen Fertilisation Increases Biogenic Amines and Amino Acid Concentrations in Vitis Vinifera Var. Riesling Musts and Wines. J. Sci. Food Agric. 2014, 94, 2064–2072. [Google Scholar] [CrossRef]
- Ancín-Azpilicueta, C.; Nieto-Rojo, R.; Gómez-Cordón, J. Influence of Fertilisation with Foliar Urea on the Content of Amines in Wine. Food Addit. Contam. Part A 2011, 28, 877–884. [Google Scholar] [CrossRef]
- Guo, Y.-Y.; Yang, Y.-P.; Peng, Q.; Han, Y. Biogenic Amines in Wine: A Review. Int. J. Food Sci. Technol. 2015, 50, 1523–1532. [Google Scholar] [CrossRef]
- Esposito, F.; Montuori, P.; Schettino, M.; Velotto, S.; Stasi, T.; Romano, R.; Cirillo, T. Level of Biogenic Amines in Red and White Wines, Dietary Exposure, and Histamine-Mediated Symptoms upon Wine Ingestion. Molecules 2019, 24, 3629. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, X.; Wang, S.; Yuan, G.; Liu, Y.; Gu, P.; Zhang, B.; Zhu, B. Comparison of Amino Acids, Biogenic Amines and Ammonium Ion of Wines Made of Different Types of Fruits. Int. J. Food Sci. Technol. 2017, 52, 448–456. [Google Scholar] [CrossRef]
- Commission Regulation (EU). No. 1019/2013. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32013R1019&from=EN (accessed on 27 July 2022).
- Hassaan, M.A.; El Nemr, A. Pesticides Pollution: Classifications, Human Health Impact, Extraction and Treatment Techniques. Egypt. J. Aquat. Res. 2020, 46, 207–220. [Google Scholar] [CrossRef]
- Tadeo, J.L. Analysis of Pesticides in Food and Environmental Samples, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Urkude, R.; Dhurvey, V.; Kochhar, S. Pesticide Residues in Beverages. In Quality Control in the Beverage Industry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 529–560. [Google Scholar]
- Fatunsin, O.T.; Oyeyiola, A.O.; Moshood, M.O.; Akanbi, L.M.; Fadahunsi, D.E. Dietary Risk Assessment of Organophosphate and Carbamate Pesticide Residues in Commonly Eaten Food Crops. Sci. Afr. 2020, 8, e00442. [Google Scholar] [CrossRef]
- Si, W.-S.; Wang, S.-Y.; Zhang, Y.-D.; Kong, C.; Bai, B. Pesticides and Risk Assessment in Shanghai Fruit and Raw Eaten Vegetables. Food Addit. Contam. Part B 2021, 14, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Farha, W.; Abd El-Aty, A.M.; Rahman, M.M.; Shin, H.-C.; Shim, J.-H. An Overview on Common Aspects Influencing the Dissipation Pattern of Pesticides: A Review. Environ. Monit. Assess. 2016, 188, 693. [Google Scholar] [CrossRef] [PubMed]
- Woodrow, J.E.; Gibson, K.A.; Seiber, J.N. Pesticides and Related Toxicants in the Atmosphere. In Reviews of Environmental Contamination and Toxicology; Springer: Berlin/Heidelberg, Germany, 2018; pp. 147–196. [Google Scholar]
- Özkara, A.; Akyil, D.; Konuk, M. Pesticides, Environmental Pollution, and Health. In Environmental Health Risk—Hazardous Factors to Living Species; IntechOpen: London, UK, 2016. [Google Scholar]
- Lurwanu, Y.; Wang, Y.; Wu, E.; He, D.; Waheed, A.; Nkurikiyimfura, O.; Wang, Z.; Shang, L.; Yang, L.; Zhan, J. Increasing Temperature Elevates the Variation and Spatial Differentiation of Pesticide Tolerance in a Plant Pathogen. Evol. Appl. 2021, 14, 1274–1285. [Google Scholar] [CrossRef]
- Choudhury, P.P.; Saha, S. Dynamics of Pesticides under Changing Climatic Scenario. Environ. Monit. Assess. 2020, 192, 814. [Google Scholar] [CrossRef]
- Op de Beeck, L.; Verheyen, J.; Stoks, R. Integrating Both Interaction Pathways between Warming and Pesticide Exposure on Upper Thermal Tolerance in High- and Low-Latitude Populations of an Aquatic Insect. Environ. Pollut. 2017, 224, 714–721. [Google Scholar] [CrossRef]
- Sadegh-Zadeh, F.; Abd Wahid, S.; Jalili, B. Sorption, Degradation and Leaching of Pesticides in Soils Amended with Organic Matter: A Review. Adv. Environ. Technol. 2017, 3, 119–132. [Google Scholar] [CrossRef]
- Schneider, M.; Endo, S.; Goss, K.-U. Volatilization of Pesticides from the Bare Soil Surface: Evaluation of the Humidity Effect. J. Environ. Qual. 2013, 42, 844–851. [Google Scholar] [CrossRef] [Green Version]
- Thuyet, D.Q.; Watanabe, H.; Ok, J. Effect of PH on the Degradation of Imidacloprid and Fipronil in Paddy Water. J. Pestic. Sci. 2013, 38, 223–227. [Google Scholar] [CrossRef] [Green Version]
- Dal Bosco, C.; Mariani, F.; Gentili, A. Hydrophobic Eutectic Solvent-Based Dispersive Liquid-Liquid Microextraction Applied to the Analysis of Pesticides in Wine. Molecules 2022, 27, 908. [Google Scholar] [CrossRef] [PubMed]
- Čuš, F.; Česnik, H.B.; Bolta, Š.V. Pesticide Residues, Copper and Biogenic Amines in Conventional and Organic Wines. Food Control 2022, 132, 108534. [Google Scholar] [CrossRef]
- Schusterova, D.; Hajslova, J.; Kocourek, V.; Pulkrabova, J. Pesticide Residues and Their Metabolites in Grapes and Wines from Conventional and Organic Farming System. Foods 2021, 10, 307. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Zhou, Y.; Zhan, R.; Zhu, L.; Chen, H.; Ma, Z.; Chen, X.; Lu, Y. Effects of Different Pesticides on the Brewing of Wine Investigated by GC-MS-Based Metabolomics. Metabolites 2022, 12, 485. [Google Scholar] [CrossRef]
- Russo, P.; Berbegal, C.; De Ceglie, C.; Grieco, F.; Spano, G.; Capozzi, V. Pesticide Residues and Stuck Fermentation in Wine: New Evidences Indicate the Urgent Need of Tailored Regulations. Fermentation 2019, 5, 23. [Google Scholar] [CrossRef] [Green Version]
- Boudreau, T.F.; Peck, G.M.; O’Keefe, S.F.; Stewart, A.C. The Interactive Effect of Fungicide Residues and Yeast Assimilable Nitrogen on Fermentation Kinetics and Hydrogen Sulfide Production during Cider Fermentation. J. Sci. Food Agric. 2017, 97, 693–704. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Dong, F.; Xu, J.; Liu, X.; Li, Y.; Kong, Z.; Liang, X.; Liu, N.; Zheng, Y. Residue Change of Pyridaben in Apple Samples during Apple Cider Processing. Food Control 2014, 37, 240–244. [Google Scholar] [CrossRef]
- Rana, S.; Kaur, R.; Jain, R.; Prabhakar, N. Ionic Liquid Assisted Growth of Poly(3,4-Ethylenedioxythiophene)/Reduced Graphene Oxide Based Electrode: An Improved Electro-Catalytic Performance for the Detection of Organophosphorus Pesticides in Beverages. Arab. J. Chem. 2019, 12, 1121–1133. [Google Scholar] [CrossRef]
- Ueker, M.E.; Silva, V.M.; Moi, G.P.; Pignati, W.A.; Mattos, I.E.; Silva, A.M.C. Parenteral Exposure to Pesticides and Occurence of Congenital Malformations: Hospital-Based Case–Control Study. BMC Pediatr. 2016, 16, 125. [Google Scholar] [CrossRef] [Green Version]
- Kalliora, C.; Mamoulakis, C.; Vasilopoulos, E.; Stamatiades, G.A.; Kalafati, L.; Barouni, R.; Karakousi, T.; Abdollahi, M.; Tsatsakis, A. Association of Pesticide Exposure with Human Congenital Abnormalities. Toxicol. Appl. Pharmacol. 2018, 346, 58–75. [Google Scholar] [CrossRef]
- Addissie, Y.A.; Kruszka, P.; Troia, A.; Wong, Z.C.; Everson, J.L.; Kozel, B.A.; Lipinski, R.J.; Malecki, K.M.C.; Muenke, M. Prenatal Exposure to Pesticides and Risk for Holoprosencephaly: A Case-Control Study. Environ. Health 2020, 19, 65. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-H.; Kabir, E.; Jahan, S.A. Exposure to Pesticides and the Associated Human Health Effects. Sci. Total Environ. 2017, 575, 525–535. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization; United Nations Environment Programme. Public Health Impact of Pesticides Used in Agriculture; WHO: Geneva, Switzerland, 1990.
- Iwegbue, C.M.A.; Overah, L.C.; Bassey, F.I.; Martincigh, B.S. Trace Metal Concentrations in Distilled Alcoholic Beverages and Liquors in Nigeria. J. Inst. Brew. 2014, 120, 521–528. [Google Scholar] [CrossRef]
- Izah, S.; Inyang, I.; Angaye, T.; Okowa, I. A Review of Heavy Metal Concentration and Potential Health Implications of Beverages Consumed in Nigeria. Toxics 2016, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Rahman, G.N.; Ahmed, M.B.M.; Sabry, B.A.; Ali, S.S.M. Heavy Metals Content in Some Non-Alcoholic Beverages (Carbonated Drinks, Flavored Yogurt Drinks, and Juice Drinks) of the Egyptian Markets. Toxicol. Rep. 2019, 6, 210–214. [Google Scholar] [CrossRef]
- Deka, A.K.; Handique, P.; Deka, D.C. Ethnic Food Beverages with Heavy Metal Contents: Parameters for Associated Risk to Human Health, North-East India. Toxicol. Rep. 2021, 8, 1220–1225. [Google Scholar] [CrossRef]
- Voica, C.; Magdas, D.-A.; Feher, I. Metal Content and Stable Isotope Determination in Some Commercial Beers from Romanian Markets. J. Chem. 2015, 2015, 192032. [Google Scholar] [CrossRef] [Green Version]
- Iwegbue, C.M.A.; Ojelum, A.L.; Bassey, F.I. A Survey of Metal Profiles in Some Traditional Alcoholic Beverages in Nigeria. Food Sci. Nutr. 2014, 2, 724–733. [Google Scholar] [CrossRef]
- Osei, C.B.; Tortoe, C.; Kyereh, E.; Adjei-Mensah, R.; Johnson, P.-N.T.; Aryee, D. Levels of Aflatoxins, Heavy and Trace Metal Contaminants in Two Non-Alcoholic Beverages, Asaana and Nmedaa, and Two Alcoholic Beverages, Burukutu and Pito Produced by the Informal Sector in Ghana. Sci. Afr. 2021, 12, e00813. [Google Scholar] [CrossRef]
- Okafor, V.N.; Omokpariola, D.O.; Okabekwa, C.V.; Umezinwa, E.C. Heavy Metals in Alcoholic Beverages Consumed in Awka, South-East Nigeria: Carcinogenic and Non-Carcinogenic Health Risk Assessments. Chem. Afr. 2022, 5, 2227–2239. [Google Scholar] [CrossRef]
- Cadmium in Food—Scientific Opinion of the Panel on Contaminants in the Food Chain. EFSA J. 2009, 7, 980. [CrossRef]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, Mechanism and Health Effects of Some Heavy Metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Zhang, J. Exposure to Lead and Cadmium of the Belgian Consumers from Ceramic Food Contact Articles. Toxicol. Rep. 2021, 8, 548–556. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Wang, X.; Ren, T.; Wang, J.; Shan, J. Microplastics Contamination in Food and Beverages: Direct Exposure to Humans. J. Food Sci. 2021, 86, 2816–2837. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhang, Y.; Tan, W.; Zhang, Z. Microplastics as an Emerging Environmental Pollutant in Agricultural Soils: Effects on Ecosystems and Human Health. Front. Environ. Sci. 2022, 10, 855292. [Google Scholar] [CrossRef]
- Pironti, C.; Ricciardi, M.; Motta, O.; Miele, Y.; Proto, A.; Montano, L. Microplastics in the Environment: Intake through the Food Web, Human Exposure and Toxicological Effects. Toxics 2021, 9, 224. [Google Scholar] [CrossRef] [PubMed]
- Shruti, V.C.; Pérez-Guevara, F.; Elizalde-Martínez, I.; Kutralam-Muniasamy, G. First Study of Its Kind on the Microplastic Contamination of Soft Drinks, Cold Tea and Energy Drinks—Future Research and Environmental Considerations. Sci. Total Environ. 2020, 726, 138580. [Google Scholar] [CrossRef] [PubMed]
- Liebezeit, G.; Liebezeit, E. Synthetic Particles as Contaminants in German Beers. Food Addit. Contam. Part A 2014, 31, 1574–1578. [Google Scholar] [CrossRef]
- Smith, M.; Love, D.C.; Rochman, C.M.; Neff, R.A. Microplastics in Seafood and the Implications for Human Health. Curr. Environ. Health Rep. 2018, 5, 375–386. [Google Scholar] [CrossRef] [Green Version]
- Cox, K.D.; Covernton, G.A.; Davies, H.L.; Dower, J.F.; Juanes, F.; Dudas, S.E. Human Consumption of Microplastics. Environ. Sci. Technol. 2019, 53, 7068–7074. [Google Scholar] [CrossRef] [Green Version]
- Lyagin, I.; Efremenko, E. Enzymes for Detoxification of Various Mycotoxins: Origins and Mechanisms of Catalytic Action. Molecules 2019, 24, 2362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mateo, E.M.; Medina, Á.; Mateo, F.; Valle-Algarra, F.M.; Pardo, I.; Jiménez, M. Ochratoxin A Removal in Synthetic Media by Living and Heat-Inactivated Cells of Oenococcus Oeni Isolated from Wines. Food Control 2010, 21, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Bejaoui, H.; Mathieu, F.; Taillandier, P.; Lebrihi, A. Ochratoxin A Removal in Synthetic and Natural Grape Juices by Selected Oenological Saccharomyces Strains. J. Appl. Microbiol. 2004, 97, 1038–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Var, I.; Erginkaya, Z.; Kabak, B. Reduction of Ochratoxin A Levels in White Wine by Yeast Treatments. J. Inst. Brew. 2009, 115, 30–34. [Google Scholar] [CrossRef]
- Bejaoui, H.; Mathieu, F.; Taillandier, P.; Lebrihi, A. Conidia of Black Aspergilli as New Biological Adsorbents for Ochratoxin A in Grape Juices and Musts. J. Agric. Food Chem. 2005, 53, 8224–8229. [Google Scholar] [CrossRef]
- Toy, J.Y.H.; Lu, Y.; Huang, D.; Matsumura, K.; Liu, S.-Q. Enzymatic Treatment, Unfermented and Fermented Fruit-Based Products: Current State of Knowledge. Crit. Rev. Food Sci. Nutr. 2022, 62, 1890–1911. [Google Scholar] [CrossRef]
- Kumar, S. Role of Enzymes in Fruit Juice Processing and Its Quality Enhancement. Pelagia Res. Libr. Adv. Appl. Sci. Res. 2015, 6, 114–124. [Google Scholar]
- Tang, H.; Peng, X.; Li, X.; Meng, X.; Liu, B. Biodegradation of Mycotoxin Patulin in Apple Juice by Calcium Carbonate Immobilized Porcine Pancreatic Lipase. Food Control 2018, 88, 69–74. [Google Scholar] [CrossRef]
- Castro, R.I.; Laurie, V.F.; Padilla, C.; Carrasco-Sánchez, V. Removal of Ochratoxin A from Red Wine Using Alginate-PVA-L. Plantarum (APLP) Complexes: A Preliminary Study. Toxins 2022, 14, 230. [Google Scholar] [CrossRef]
- Farbo, M.G.; Urgeghe, P.P.; Fiori, S.; Marceddu, S.; Jaoua, S.; Migheli, Q. Adsorption of Ochratoxin A from Grape Juice by Yeast Cells Immobilised in Calcium Alginate Beads. Int. J. Food Microbiol. 2016, 217, 29–34. [Google Scholar] [CrossRef]
- Zhu, Y.; Koutchma, T.; Warriner, K.; Zhou, T. Reduction of Patulin in Apple Juice Products by UV Light of Different Wavelengths in the UVC Range. J. Food Prot. 2014, 77, 963–971. [Google Scholar] [CrossRef]
- Zhu, R.; Feussner, K.; Wu, T.; Yan, F.; Karlovsky, P.; Zheng, X. Detoxification of Mycotoxin Patulin by the Yeast Rhodosporidium Paludigenum. Food Chem. 2015, 179, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Luz Mínguez, C.; Ruvira Garrigues, M.A.; López Ocaña, L.; Aznar Novella, R.; Mañes Vinuesa, J.; Meca, G. Transformation of Ochratoxin A by Microorganisms Isolated from Tempranillo Grapes in Wine Systems. Am. J. Enol. Vitic. 2020, 71, 167–174. [Google Scholar] [CrossRef]
- Afsah-Hejri, L.; Hajeb, P.; Ehsani, R.J. Application of Ozone for Degradation of Mycotoxins in Food: A Review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1777–1808. [Google Scholar] [CrossRef] [PubMed]
- Diao, E.; Wang, J.; Li, X.; Wang, X.; Gao, D. Patulin Degradation in Apple Juice Using Ozone Detoxification Equipment and Its Effects on Quality. J. Food Process. Preserv. 2018, 42, e13645. [Google Scholar] [CrossRef]
- Nan, M.; Xue, H.; Bi, Y. Contamination, Detection and Control of Mycotoxins in Fruits and Vegetables. Toxins 2022, 14, 309. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zeng, C.; Peng, B. Adsorption Properties of Magnetic Carbon Nanotubes for Patulin Removal from Aqueous Solution Systems. Food Control 2019, 102, 1–10. [Google Scholar] [CrossRef]
- Gonçalves, B.L.; Coppa, C.F.S.C.; de Neeff, D.V.; Corassin, C.H.; Oliveira, C.A.F. Mycotoxins in Fruits and Fruit-Based Products: Occurrence and Methods for Decontamination. Toxin Rev. 2019, 38, 263–272. [Google Scholar] [CrossRef]
- Cosme, F.; Inês, A.; Ferreira, B.; Silva, D.; Filipe-Ribeiro, L.; Abrunhosa, L.; Nunes, F.M. Elimination of Aflatoxins B1 and B2 in White and Red Wines by Bentonite Fining. Efficiency and Impact on Wine Quality. Foods 2020, 9, 1789. [Google Scholar] [CrossRef]
- Rodríguez-Bencomo, J.J.; Rigou, P.; Mattivi, F.; López, F.; Mehdi, A. Removal of Biogenic Amines from Wines by Chemisorption on Functionalized Silica and Effects on Other Wine Components. Sci. Rep. 2020, 10, 17279. [Google Scholar] [CrossRef]
- Bettini, S.; Santino, A.; Valli, L.; Giancane, G. A Smart Method for the Fast and Low-Cost Removal of Biogenic Amines from Beverages by Means of Iron Oxide Nanoparticles. RSC Adv. 2015, 5, 18167–18171. [Google Scholar] [CrossRef]
- Kim, M.; Shukla, S.; Oh, Y.; Chung, S.H.; Kim, M. Comparative Diminution of Patulin Content in Apple Juice With Food-Grade Additives Sodium Bicarbonate, Vinegar, Mixture of Sodium Bicarbonate and Vinegar, Citric Acid, Baking Powder, and Ultraviolet Irradiation. Front. Pharmacol. 2018, 9, 822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammadi, S.; Ziarati, P. Heavy Metal Removal from Commercially-Available Fruit Juice Packaged Products by Citric Acid. Orient. J. Chem. 2015, 31, 409–416. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Li, C.; Zhang, B.; Zhou, Z.; Shen, Y.; Liao, X.; Yang, J.; Wang, Y.; Li, X.; Li, Y.; et al. Advances in Biodetoxification of Ochratoxin A-A Review of the Past Five Decades. Front. Microbiol. 2018, 9, 1386. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Niu, Y.; Ma, T.; Xu, P.; Huang, W.; Zhan, J. Determination, Content Analysis and Removal Efficiency of Fining Agents on Ochratoxin A in Chinese Wines. Food Control 2017, 73, 382–392. [Google Scholar] [CrossRef]
- Erdoğan, A.; Ghimire, D.; Gürses, M.; Çetin, B.; Baran, A. Meyve Sularında Patulin Kirlenmesi ve Kontrol Önlemleri. Eur. J. Sci. Technol. 2018, 14, 39–48. [Google Scholar] [CrossRef]
- Carrasco-Sánchez, V.; Marican, A.; Vergara-Jaque, A.; Folch-Cano, C.; Comer, J.; Laurie, V.F. Polymeric Substances for the Removal of Ochratoxin A from Red Wine Followed by Computational Modeling of the Complexes Formed. Food Chem. 2018, 265, 159–164. [Google Scholar] [CrossRef]
- Pramanik, T.; Padan, S.K.; Gupta, R.; Bedi, P.; Singh, G. Comparative Efficacy of Microwave, Visible Light and Ultrasound Irradiation for Green Synthesis of Dihydropyrimidinones in Fruit Juice Medium. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2017; p. 020059. [Google Scholar]
- Zhong, L.; Carere, J.; Lu, Z.; Lu, F.; Zhou, T. Patulin in Apples and Apple-Based Food Products: The Burdens and the Mitigation Strategies. Toxins 2018, 10, 475. [Google Scholar] [CrossRef] [Green Version]
- Kalagatur, N.K.; Kamasani, J.R.; Mudili, V. Assessment of Detoxification Efficacy of Irradiation on Zearalenone Mycotoxin in Various Fruit Juices by Response Surface Methodology and Elucidation of Its In-Vitro Toxicity. Front. Microbiol. 2018, 9, 2937. [Google Scholar] [CrossRef] [Green Version]
- Abera, G. Review on High-Pressure Processing of Foods. Cogent Food Agric. 2019, 5, 1568725. [Google Scholar] [CrossRef]
- Hao, H.; Zhou, T.; Koutchma, T.; Wu, F.; Warriner, K. High Hydrostatic Pressure Assisted Degradation of Patulin in Fruit and Vegetable Juice Blends. Food Control 2016, 62, 237–242. [Google Scholar] [CrossRef]
- Avsaroglu, M.D.; Bozoglu, F.; Alpas, H.; Largeteau, A.; Demazeau, G. Use of Pulsed-High Hydrostatic Pressure Treatment to Decrease Patulin in Apple Juice. High Press. Res. 2015, 35, 214–222. [Google Scholar] [CrossRef]
- Chacha, J.S.; Zhang, L.; Ofoedu, C.E.; Suleiman, R.A.; Dotto, J.M.; Roobab, U.; Agunbiade, A.O.; Duguma, H.T.; Mkojera, B.T.; Hossaini, S.M.; et al. Revisiting Non-Thermal Food Processing and Preservation Methods—Action Mechanisms, Pros and Cons: A Technological Update (2016–2021). Foods 2021, 10, 1430. [Google Scholar] [CrossRef] [PubMed]
- Funes, G.J.; Gómez, P.L.; Resnik, S.L.; Alzamora, S.M. Application of Pulsed Light to Patulin Reduction in McIlvaine Buffer and Apple Products. Food Control 2013, 30, 405–410. [Google Scholar] [CrossRef]
- Shukla, S.; Khan, I.; Bajpai, V.K.; Lee, H.; Kim, T.; Upadhyay, A.; Huh, Y.S.; Han, Y.-K.; Tripathi, K.M. Sustainable Graphene Aerogel as an Ecofriendly Cell Growth Promoter and Highly Efficient Adsorbent for Histamine from Red Wine. ACS Appl. Mater. Interfaces 2019, 11, 18165–18177. [Google Scholar] [CrossRef]
- Capozzi, V.; Russo, P.; Ladero, V.; Fernández, M.; Fiocco, D.; Alvarez, M.A.; Grieco, F.; Spano, G. Biogenic Amines Degradation by Lactobacillus Plantarum: Toward a Potential Application in Wine. Front. Microbiol. 2012, 3, 122. [Google Scholar] [CrossRef] [Green Version]
- Delsart, C.; Franc, C.; Grimi, N.; de Revel, G.; Vorobiev, E.; Peuchot, M.M. Effects of Pulsed Electric Fields on Four Residual Fungicides in White Wines. In Proceedings of the 1st World Congress on Electroporation and Pulsed Electric Fields in Biology, Medicine and Food & Environmental Technologies, Portorož, Slovenia, 6–10 September 2015; Springer: Singapore, 2016; pp. 124–127. [Google Scholar]
- Zhou, Q.; Bian, Y.; Peng, Q.; Liu, F.; Wang, W.; Chen, F. The Effects and Mechanism of Using Ultrasonic Dishwasher to Remove Five Pesticides from Rape and Grape. Food Chem. 2019, 298, 125007. [Google Scholar] [CrossRef]
- Doulia, D.S.; Anagnos, E.K.; Liapis, K.S.; Klimentzos, D.A. Removal of Pesticides from White and Red Wines by Microfiltration. J. Hazard. Mater. 2016, 317, 135–146. [Google Scholar] [CrossRef]
- Modesti, M.; Baccelloni, S.; Brizzolara, S.; Aleandri, M.P.; Bellincontro, A.; Mencarelli, F.; Tonutti, P. Effects of Treatments with Ozonated Water in the Vineyard (cv Vermentino) on Microbial Population and Fruit Quality Parameters. BIO Web Conf. 2019, 13, 04011. [Google Scholar] [CrossRef]
- Venkatachalapathy, R.; Packirisamy, A.S.B.; Indira Ramachandran, A.C.; Udhyasooriyan, L.P.; Peter, M.J.; Senthilnathan, K.; Basheer, V.A.; Muthusamy, S. Assessing the Effect of Chitosan on Pesticide Removal in Grape Juice during Clarification by Gas Chromatography with Tandem Mass Spectrometry. Process Biochem. 2020, 94, 305–312. [Google Scholar] [CrossRef]
- Pankaj, S.K.; Wan, Z.; Colonna, W.; Keener, K.M. Effect of High Voltage Atmospheric Cold Plasma on White Grape Juice Quality. J. Sci. Food Agric. 2017, 97, 4016–4021. [Google Scholar] [CrossRef] [PubMed]
- Cosme, F.; Inês, A.; Silva, D.; Filipe-Ribeiro, L.; Abrunhosa, L.; Nunes, F.M. Elimination of Ochratoxin A from White and Red Wines: Critical Characteristics of Activated Carbons and Impact on Wine Quality. LWT 2021, 140, 110838. [Google Scholar] [CrossRef]
- Pallarés, N.; Sebastià, A.; Martínez-Lucas, V.; González-Angulo, M.; Barba, F.J.; Berrada, H.; Ferrer, E. High Pressure Processing Impact on Alternariol and Aflatoxins of Grape Juice and Fruit Juice-Milk Based Beverages. Molecules 2021, 26, 3769. [Google Scholar] [CrossRef] [PubMed]
- Massoud, R.; Zoghi, A. Potential Probiotic Strains with Heavy Metals and Mycotoxins Bioremoval Capacity for Application in Foodstuffs. J. Appl. Microbiol. 2022, 133, 1288–1307. [Google Scholar] [CrossRef]
- Nahle, S.; El Khoury, A.; Savvaidis, I.; Chokr, A.; Louka, N.; Atoui, A. Detoxification Approaches of Mycotoxins: By Microorganisms, Biofilms and Enzymes. Int. J. Food Contam. 2022, 9, 3. [Google Scholar] [CrossRef]
- Assaf, J.C.; El Khoury, A.; Atoui, A.; Louka, N.; Chokr, A. A Novel Technique for Aflatoxin M1 Detoxification Using Chitin or Treated Shrimp Shells: In Vitro Effect of Physical and Kinetic Parameters on the Binding Stability. Appl. Microbiol. Biotechnol. 2018, 102, 6687–6697. [Google Scholar] [CrossRef]
- Assaf, J.C.; Nahle, S.; Louka, N.; Chokr, A.; Atoui, A.; El Khoury, A. Assorted Methods for Decontamination of Aflatoxin. Toxins 2019, 11, 304. [Google Scholar] [CrossRef] [Green Version]
- Muhialdin, B.J.; Saari, N.; Meor Hussin, A.S. Review on the Biological Detoxification of Mycotoxins Using Lactic Acid Bacteria to Enhance the Sustainability of Foods Supply. Molecules 2020, 25, 2655. [Google Scholar] [CrossRef]
- Ogunremi, O.R.; Freimüller Leischtfeld, S.; Mischler, S.; Miescher Schwenninger, S. Antifungal Activity of Lactic Acid Bacteria Isolated from Kunu-Zaki, a Cereal-Based Nigerian Fermented Beverage. Food Biosci. 2022, 49, 101648. [Google Scholar] [CrossRef]
- Liu, L.; Xie, M.; Wei, D. Biological Detoxification of Mycotoxins: Current Status and Future Advances. Int. J. Mol. Sci. 2022, 23, 1064. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, L.; Ming, Q.; Yue, T.; Ge, Q.; Yuan, Y.; Gao, Z.; Cai, R. Reduction the Contamination of Patulin during the Brewing of Apple Cider and Its Characteristics. Food Addit. Contam. Part A 2022, 39, 1149–1162. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.; Cai, R.; Yang, K.; Yue, T.; Gao, Z.; Yuan, Y.; Wang, Z. Detoxification of Patulin by Lactobacillus Pentosus DSM 20314 during Apple Juice Fermentation. Food Control 2022, 131, 108446. [Google Scholar] [CrossRef]
- Wei, C.; Yu, L.; Qiao, N.; Wang, S.; Tian, F.; Zhao, J.; Zhang, H.; Zhai, Q.; Chen, W. The Characteristics of Patulin Detoxification by Lactobacillus Plantarum 13M5. Food Chem. Toxicol. 2020, 146, 111787. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Cai, R.; Yue, T.; Yuan, Y.; Gao, Z.; Wang, Z. Bio-Control Ability of Lactic Acid Bacteria and Bifidobacteria Against Ochratoxin a During Grape Juice Fermentation. SSRN Electron. J. 2022. [Google Scholar] [CrossRef]
- Ben Taheur, F.; Mansour, C.; Ben Jeddou, K.; Machreki, Y.; Kouidhi, B.; Abdulhakim, J.A.; Chaieb, K. Aflatoxin B1 Degradation by Microorganisms Isolated from Kombucha Culture. Toxicon 2020, 179, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Magariño, S.; Cano-Mozo, E.; Albors, C.; Santos, A.; Navascués, E. Autochthonous Oenococcus Oeni Strain to Avoid Histamine Formation in Red Wines: A Study in Real Winemaking Conditions. Am. J. Enol. Vitic. 2021, 72, 170–180. [Google Scholar] [CrossRef]
- Villalba, M.L.; Mazzucco, M.B.; Lopes, C.A.; Ganga, M.A.; Sangorrín, M.P. Purification and Characterization of Saccharomyces Eubayanus Killer Toxin: Biocontrol Effectiveness against Wine Spoilage Yeasts. Int. J. Food Microbiol. 2020, 331, 108714. [Google Scholar] [CrossRef]
Risk Category | Contamination Level | Method or Technology | Thermal/Non-Thermal Procedure | Removal Yield | Reference |
---|---|---|---|---|---|
Biogen amine | Histamine concentration: 0.01–0.07 mg/20 mL wine | Ultrasonic treatment at 50 Hz along with 0, 10, and 30 mg naringenin | Non-thermal procedure | The sample treated at 50 Hz + 30 mL naringenin for 30 min showed a maximum reduction in the histamine concentration of 79.52% | [187] |
Histamine concentration: 0.1 mL of bacterial inoculum of each HIS/10 mL wine ~106 CFU/mL | Sustainable and lightweight graphene aerogel (GA) | Non-thermal procedure | A percentage of 80% of HIS (cell counts produced by bacterial contaminants: Cronobacter sakazakii, Staphylococcus aureus, and Aeromonas sp.) was extracted from red wine after 60 min under acidic (3.0) and neutral (7.4) pH conditions, using the synthesized GA | [188] | |
MRS broth supplemented with tyramine mmol/L and putrescine 1 mmol/L | Lactobacillus plantarum | Non-thermal procedure | Twenty-four hours after the inoculation of the L. brevis IOEB 9809 and E. faecium OT23 the concentration of putrescine and tyramine was lowered to 29.62 and 38.17%, respectively. | [189] | |
Pesticides | Pyrimethanil, Vinclozolin Cyprodinil, Procymidone concentration for each pesticide: 34 µg/L, 28 µg/L, and 51 µg/L | Pulsed electric field (PEF) | Thermal procedure | The results were directly proportional to the strength and energy of the treatment For cyprodinil, concentrations decreased by 18%, 36%, and 48%, respectively. For procymidone, there was a similar decrease of 16%, 15%, and 23%. Vinclozolin followed the same trend with decreases of 4%, 15%, and 32%, and pyrimethanil by 2%, 14%, and 27%. | [190] |
Tebuconazol, Thiamethoxam concentration for each pesticide 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 mg/L | Ultrasonic treatment | Non-thermal procedure | The removal rate of pesticides was between 72.1% and 100% | [191] | |
Fungicides, Insecticides, Herbicides concentration for each pesticide 0.1, 0.9, 2.3, mg/L | Microfiltration | Non-thermal procedure | According to the reduction effectiveness of the pesticides, the membranes were range: for white wine, as: CA > CN > PESU > NY > RC > PA and red wine: CA > CN > RC > PESU > PA > NY | [192] | |
Microorganisms in the vineyard: fungal contamination 15.3 CFU/g leaf bacteria contamination 40.7 CFU/g leaf yeast contamination 18 CFU/g leaf | Ozone (O3) | Non-thermal procedure | Treatment with ozonated water resulted in a reduction of fungal infestation to 8.0 CFU/g leaf, while, surprisingly, bacteria and yeasts had higher CFU levels on treated leaves, to 54.7 CFU/g leaf and 39.3 CFU/g leaf, respectively | [193] | |
Chlorpyrifos, Ethion, Diazinon, Fenitrothion, Fenthion, Phorate. contamination 200 μg/kg grape | Chitosan as fining agent | Non-thermal procedure | The efficiency of pesticide removal by chitosan ranged from 54% to 72% at a chitosan concentration of 0.05% and increased to 86 to 98% when using a higher chitosan concentration (max 0.5%) in comparison to other clarifiers, 0.05% chitosan had the greatest pesticide removal efficiency (72%) | [194] | |
Mycotoxins | Microbial contamination: Saccharomyces cerevisiae concentration of 7.4 log10 CFU/mL | Non-thermal high voltage atmospheric coldplasma (HVACP) | Non-thermal procedure | HVACP treatment of grape juice at 80 kV for 4 min resulted in a reduction of 7.3 log10 CFU/mL of S. cerevisiae without considerable (p > 0.05) change in pH, acidity, and electrical conductivity of the juice | [195] |
Ochratoxin A (OTA) concentration 5000 ng/L | Alginate-PVA-L. plantarum | Non-thermal procedure | The APLP complexes were effective in removing OTA from wines without significantly influencing their phenolic quality. A time of 52 min was required to achieve the goal of removing over 50% of the OTA | [160] | |
Ochratoxin A (OTA) concentration 10 μg/L | Activated carbons (ACs) | Non-thermal procedure | In white wine, OTA was completely removed, whereas red wine had a 40% removal efficiency | [196] | |
Patulin (PAT) contamination 1.0 mg/L | UV light | Thermal procedure | The UV fluence that leads to more than 70% reduction of patulin. However, the UVC lamp (222 nm) was the most effective UV source reducing 90% of PAT. No significant changes in pH, total soluble solids, and color in apple juice after UV exposure | [162] | |
Alternariol (AFB1) and Aflatoxins B1(AOHB1) concentrations of 100 µg/L | HPP | Non-thermal procedure | Treatment increased AFB1 and AOH removal by 24% and 37%, respectively, compared with thermal treatment in the different models studied | [197] |
Fermented Beverages | Biocontrol Strain | Inhibited/Detoxified Microorganism/Mycotoxin | Removal (%) | Reference |
---|---|---|---|---|
Apple cider | Saccharomyces cerevisiae 1027 | Patulin | 20.8–49.1 | [205] |
Fermented apple juice | Lactobacillus pentosus DSM 20314 | Patulin | 53.14 | [206] |
Fermented apple juice | Lactobacillus plantarum 13M5 | Patulin | 53.6 | [207] |
Fermented grape juice | Lacticaseibacillus rhamnosus 6133 | Ochratoxin A | 35.34 | [208] |
Red wine | Oenococcus oeni | Histamine | NA | [209] |
Wine-like medium | Saccharomyces eubayanus NPCC 1302 | Yeast | NA | [210] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avîrvarei, A.C.; Salanță, L.C.; Pop, C.R.; Mudura, E.; Pasqualone, A.; Anjos, O.; Barboza, N.; Usaga, J.; Dărab, C.P.; Burja-Udrea, C.; et al. Fruit-Based Fermented Beverages: Contamination Sources and Emerging Technologies Applied to Assure Their Safety. Foods 2023, 12, 838. https://doi.org/10.3390/foods12040838
Avîrvarei AC, Salanță LC, Pop CR, Mudura E, Pasqualone A, Anjos O, Barboza N, Usaga J, Dărab CP, Burja-Udrea C, et al. Fruit-Based Fermented Beverages: Contamination Sources and Emerging Technologies Applied to Assure Their Safety. Foods. 2023; 12(4):838. https://doi.org/10.3390/foods12040838
Chicago/Turabian StyleAvîrvarei, Alexandra Costina, Liana Claudia Salanță, Carmen Rodica Pop, Elena Mudura, Antonella Pasqualone, Ofelia Anjos, Natalia Barboza, Jessie Usaga, Cosmin Pompei Dărab, Cristina Burja-Udrea, and et al. 2023. "Fruit-Based Fermented Beverages: Contamination Sources and Emerging Technologies Applied to Assure Their Safety" Foods 12, no. 4: 838. https://doi.org/10.3390/foods12040838
APA StyleAvîrvarei, A. C., Salanță, L. C., Pop, C. R., Mudura, E., Pasqualone, A., Anjos, O., Barboza, N., Usaga, J., Dărab, C. P., Burja-Udrea, C., Zhao, H., Fărcaș, A. C., & Coldea, T. E. (2023). Fruit-Based Fermented Beverages: Contamination Sources and Emerging Technologies Applied to Assure Their Safety. Foods, 12(4), 838. https://doi.org/10.3390/foods12040838