Does Nepal Have the Agriculture to Feed Its Population with a Sustainable Diet? Evidence from the Perspective of Human–Land Relationship
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Food–Calorie Conversion Model
2.3. Definitions of Food and Calorie Demand Levels in Nepal
2.4. Food Demand–Supply Balance Model: Land Carrying Capacity Model
3. Study Area
3.1. Geographical Environment in Nepal
3.2. Agricultural Environment
4. Results
4.1. Food Consumption and Calorie Supply
4.1.1. Food Consumption and Calorie Supply Based on FAO Data
4.1.2. Food Consumption and Calorie Supply Based on the Questionnaire
4.2. Spatio-Temporal Characteristics of the Cereal Supply and Demand Balance
- (1)
- Cereal supply and demand balance at the national scale
- (2)
- Cereal supply and demand balance in the geographical regions
- (3)
- Cereal supply and demand balance in the counties
4.3. Spatio-Temporal Variations of the Calories Supply and Demand Balance
- (1)
- Calorie supply and demand balance at the national level
- (2)
- Calorie supply and demand balance in the geographical regions
- (3)
- Calorie supply and demand balance in the counties
5. Discussion
5.1. Characteristics and Impact of Internal Agricultural Production on Food Supply and Demand
5.2. Changes in Food Supply and Demand under an Open System
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. The Specific Agricultural Product Data Sources
Agricultural Products | Classification | |
Vegetal Products | Grains | Maize, Paddy, Wheat, Millet, Barley, Buckwheat |
Potato | / | |
Sugarcane | / | |
Oilseed | / | |
Pulses | Lentil, Chickpea, Pigeonpea, Blackram, Horsegram, Soyabean | |
Spices | Large Cardamom, Ginger, Garlic, Turmeric, Dry Chilli | |
Vegetables | Cauliflower, Broccoli, Cabbage, Tomato, Tree tomato, Broad Leaf Mustard, Carrot, Capsicum, Chilli, Peas, French Beans, Broad Beans, Asparagus Beans, Cowpea, Asparagus, Okra, Brinjal, Onion, Cucumber, Pumpkin, Squash, Bitter Gourd, Pointed Gourd, Sponge Gourd, Ridge Gourd, Snake Gourd, Bottle Gourd, Ash Gourd, Balsam Gourd, Kakari, Kundru, Chayote, Watermelon, Drumsticks, Fennel Leaf, Coriander Leaf, Cress, Amaranthus, Fenugreek Leaf, Swisschard, Lettuce, Spinach, Yam, Elephant Foot Yam, Colocasia | |
Fruits | Sweet Orange, lime/lemon, Mandarin, Apple, Pear, Walnut, Peach, Plum, Apricot, Persimmon, Pomegranate, Hog Plum, Kiwi, Mango, Banana, Guava, Papaya, Jackfruit, Pineapple, Litchi, Arecanut, Coconut | |
Animal Products | Meat | Buff, Mutton, Chevon, Chicken, Duck meat |
Egg | Hen egg, Duck egg | |
Milk | / |
Appendix B. Food–Calorie Conversion Parameters for All Specific Foods
Major Food | Specific Foods | Calories (kcal/100 g) | Conversion Factor | Intake Part Coefficient | Waste Coefficient |
Cereals | T1 | 330 | 0.78 | 0.76 | 0.92 |
T2 | 340 | 0.78 | 0.76 | 0.92 | |
T3 | 356 | 0.78 | 0.76 | 0.92 | |
T4 | 340 | 0.78 | 0.76 | 0.92 | |
T5 | 280 | 0.9 | 0.87 | 0.92 | |
T6 | 334 | 0.78 | 0.76 | 0.92 | |
Potatoes | T7 | 67 | 0.82 | 0.80 | 0.76 |
T8 | 91 | 0.82 | 0.80 | 0.76 | |
Sugar cane | T9 | 70 | 0.77 | 0.76 | 0.88 |
T10 | 30 | 0.77 | 0.76 | 0.88 | |
T11 | 390 | 0.77 | 0.76 | 0.88 | |
Beans | T12 | 343 | 0.9 | 0.89 | 0.89 |
T13 | 358 | 0.9 | 0.89 | 0.89 | |
T14 | 346 | 0.9 | 0.89 | 0.89 | |
T15 | 335 | 0.9 | 0.89 | 0.89 | |
T16 | 50 | 0.77 | 0.72 | 0.58 | |
T17 | 343 | 0.9 | 0.89 | 0.89 | |
Pulses | T18 | 340 | 0.9 | 0.89 | 0.89 |
T19 | 245 | 0.5 | 0.50 | 0.89 | |
T20 | 315 | 0.5 | 0.50 | 0.89 | |
T21 | 252 | 0.5 | 0.50 | 0.89 | |
T22 | 291 | 0.5 | 0.50 | 0.89 | |
T23 | 355 | 0.5 | 0.50 | 0.89 | |
T24 | 262 | 0.5 | 0.50 | 0.89 | |
T25 | 289 | 0.5 | 0.50 | 0.89 | |
T26 | 184 | 0.9 | 0.89 | 0.89 | |
T27 | 414 | 0.9 | 0.89 | 0.89 | |
T28 | 711 | 0.9 | 0.89 | 0.89 | |
Vegetables | T29 | 37 | 0.77 | 0.72 | 0.58 |
T30 | 22 | 0.77 | 0.72 | 0.58 | |
T31 | 23 | 0.77 | 0.72 | 0.58 | |
Fruits | T32 | 48 | 0.77 | 0.72 | 0.58 |
T33 | 43 | 0.77 | 0.72 | 0.58 | |
T34 | 26 | 0.77 | 0.72 | 0.58 | |
T35 | 45 | 0.77 | 0.72 | 0.58 | |
T36 | 52 | 0.77 | 0.72 | 0.58 | |
T37 | 41 | 0.77 | 0.72 | 0.58 | |
T38 | 16 | 0.77 | 0.72 | 0.58 | |
T39 | 15 | 0.77 | 0.72 | 0.58 | |
T40 | 34 | 0.77 | 0.72 | 0.58 | |
T41 | 26 | 0.77 | 0.72 | 0.58 | |
Spices | T42 | 337 | 0.77 | 0.72 | 0.58 |
T43 | 47 | 0.5 | 0.50 | 0.89 | |
T44 | 40 | 0.77 | 0.72 | 0.58 | |
Oilseed | T45 | 387 | 0.9 | 0.89 | 0.89 |
T46 | 0 | 0.9 | 0.90 | 1.00 | |
T47 | 158 | 0.9 | - | 1.00 | |
Meat | T48 | 77 | 1 | 0.96 | 0.84 |
T49 | 174 | 1 | 0.96 | 0.84 | |
T50 | 119 | 1 | 0.96 | 0.84 | |
T51 | 122 | 1 | 0.96 | 0.84 | |
T52 | 291 | 1 | 0.96 | 0.84 | |
T53 | 326 | 1 | 0.96 | 0.84 | |
T54 | 123 | 1 | 0.96 | 0.84 | |
Milk | T55 | 97 | 1 | 0.99 | 0.87 |
T56 | 73 | 1 | 0.99 | 0.87 | |
T57 | 61 | 1 | 0.99 | 0.87 | |
T58 | 69 | 1 | 0.99 | 0.87 | |
T59 | 94 | 0.9 | 0.89 | 0.87 | |
Egg | T60 | 139 | 0.9 | 0.89 | 0.87 |
Note: All food calorie conversion factors are referenced in this table, but this does not mean that all foods in this table are involved. (Source: http://www.fao.org/infoods/infoods/tables-and-databases/asia/en/, accessed on 6 September 2022. The food conversion factor, intake part coefficient, and waste coefficient in distribution and consumption are mainly from Global Food Losses and Food Waste [47]). |
References
- Vadrevu, K.P.; Justice, C.; Prasad, T.; Prasad, N.; Gutman, G. Land cover/land use change and impacts on environment in South Asia. J. Environ. Manag. 2015, 148, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Jat, M.L.; Chakraborty, D.; Ladha, J.K.; Parihar, C.M.; Datta, A.; Mandal, B.; Nayak, H.; Maity, P.; Rana, D.S.; Chaudhari, S.K.; et al. Carbon Sequestration Potential, Challenges, and Strategies towards Climate Action in Smallholder Agricultural Systems of South Asia. Crop Environ. 2022, 1, 86–101. [Google Scholar] [CrossRef]
- Downs, S.M.; Payne, A.; Fanzo, J. The development and application of a sustainable diets framework for policy analysis: A case study of Nepal. Food Policy 2017, 70, 40–49. [Google Scholar] [CrossRef]
- Bandara, J.S.; Cai, Y. The impact of climate change on food crop productivity, food prices and food security in South Asia. Econ. Anal. Policy 2014, 44, 451–465. [Google Scholar] [CrossRef]
- Gillespie, S.; Poole, N.; Van Den Bold, M.; Bhavani, R.V.; Dangour, A.D.; Shetty, P. Leveraging agriculture for nutrition in South Asia: What do we know, and what have we learned? Food Policy 2019, 82, 3–12. [Google Scholar] [CrossRef]
- Douglas, I. Climate change, flooding and food security in south Asia. Food Secur. 2009, 1, 127–136. [Google Scholar] [CrossRef]
- Cai, Y.Y.; Bandara, J.S.; Newth, D. A framework for integrated assessment of food production economics in South Asia under climate change. Environ. Modell. Softw. 2016, 75, 459–497. [Google Scholar] [CrossRef]
- Minten, B.; Barrett, C.B. Agricultural Technology, Productivity, and Poverty in Madagascar. World Dev. 2008, 36, 797–822. [Google Scholar] [CrossRef]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Qi, X.; Fu, Y.; Wang, R.Y.; Ng, C.N.; Dang, H.; He, Y. Improving the sustainability of agricultural land use: An integrated framework for the conflict between food security and environmental deterioration. Appl. Geogr. 2018, 90, 214–223. [Google Scholar] [CrossRef]
- Chalise, S.; Naranpanawa, A.; Bandara, J.S.; Sarker, T. A general equilibrium assessment of climate change–induced loss of agricultural productivity in Nepal. Econ. Model. 2017, 62, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Dos Reis, J.C.; Rodrigues, G.S.; de Barros, I.; Ribeiro Rodrigues, R.d.A.; Garrett, R.D.; Valentim, J.F.; Kamoi, M.Y.T.; Michetti, M.; Wruck, F.J.; Rodrigues-Filho, S.; et al. Integrated crop-livestock systems: A sustainable land-use alternative for food production in the Brazilian Cerrado and Amazon. J. Clean. Prod. 2021, 283, 124580. [Google Scholar] [CrossRef]
- Aryal, J.P.; Rahut, D.B.; Thapa, G.; Simtowe, F. Mechanisation of small-scale farms in South Asia: Empirical evidence derived from farm households survey. Technol. Soc. 2021, 65, 101591. [Google Scholar] [CrossRef]
- Bhatta, G.D.; Aggarwal, P.K.; Kristjanson, P.; Shrivastava, A.K. Climatic and non-climatic factors influencing changing agricultural practices across different rainfall regimes in South Asia. Curr. Sci. 2016, 110, 1272–1281. [Google Scholar]
- Karlson, R.H.; Cornell, H.V.; Hughes, T.P. Coral communities are regionally enriched along an oceanic biodiversity gradient. Nature 2004, 429, 867–870. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, Y.; Feng, Z.; Lang, T.; Wang, X.; Liu, Y. Food Security Risks of Countries along the Belt and Road in the Context of the COVID-19 Pandemic. J. Risk Anal. Crisis Response 2021, 11, 45. [Google Scholar] [CrossRef]
- Béné, C. Resilience of local food systems and links to food security—A review of some important concepts in the context of COVID-19 and other shocks. Food Secur. 2020, 12, 805–822. [Google Scholar] [CrossRef]
- Dixon, J.M.; Weerahewa, J.; Hellin, J.; Rola-Rubzen, M.F.; Huang, J.; Kumar, S.; Das, A.; Qureshi, M.E.; Krupnik, T.J.; Shideed, K.; et al. Response and resilience of Asian agrifood systems to COVID-19: An assessment across twenty-five countries and four regional farming and food systems. Agric. Syst. 2021, 193, 103168. [Google Scholar] [CrossRef]
- Afful, D.B.; Ayisi, K. Farmers’ perceptions of climate variability, their adaptation strategies and agricultural productivity: A case of Limpopo province, South Africa. S. Afr. J. Agric. Ext. (SAJAE) 2020, 48, 36–49. [Google Scholar] [CrossRef]
- Smith, L.C.; El Obeid, A.E.; Jensen, H.H. The geography and causes of food insecurity in developing countries. Agric. Econ. 2000, 22, 199–215. [Google Scholar] [CrossRef]
- Cakmak, I. Plant nutrition research: Priorities to meet human needs for food in sustainable ways. Plant Soil 2002, 247, 3–24. [Google Scholar] [CrossRef]
- Wang, J.N.; Chen, T.Q. The spread model of food safety risk under the supply-demand disturbance. Springerplus 2016, 5, 1765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Zhan, J.Y.; Zhao, F.; Zhang, F.; Teng, Y.M.; Wang, C.; Chu, X.; Kumi, M.A. The tradeoffs between food supply and demand from the perspective of ecosystem service flows: A case study in the Pearl River Delta, China. J. Environ. Manag. 2022, 301, 113814. [Google Scholar] [CrossRef] [PubMed]
- Fukase, E.; Martin, W. Economic growth, convergence, and world food demand and supply. World Dev. 2020, 132, 104954. [Google Scholar] [CrossRef]
- Bentham, J.; Singh, G.M.; Danaei, G.; Green, R.; Lin, J.K.; Stevens, G.A.; Farzadfar, F.; Bennett, J.E.; Di Cesare, M.; Dangour, A.D.; et al. Multidimensional characterization of global food supply from 1961 to 2013. Nat. Food 2020, 1, 70–75. [Google Scholar] [CrossRef] [Green Version]
- Neumann, K.; Verburg, P.H.; Stehfest, E.; Müller, C. The yield gap of global grain production: A spatial analysis. Agric. Syst. 2010, 103, 316–326. [Google Scholar] [CrossRef]
- Keating, B.A.; Herrero, M.; Carberry, P.S.; Gardner, J.; Cole, M.B. Food wedges: Framing the global food demand and supply towards 2050. Glob. Food Secur. 2014, 3, 125–132. [Google Scholar] [CrossRef]
- Arsenault, J.E.; Hijmans, R.J.; Brown, K.H. Improving nutrition security through agriculture: An analytical framework based on national food balance sheets to estimate nutritional adequacy of food supplies. Food Secur. 2015, 7, 693–707. [Google Scholar] [CrossRef]
- Chen, G.Q.; Han, M.Y. Global supply chain of arable land use: Production-based and consumption-based trade imbalance. Land Use Policy 2015, 49, 118–130. [Google Scholar] [CrossRef]
- Henchion, M.; Hayes, M.; Mullen, A.; Fenelon, M.; Tiwari, B. Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium. Foods 2017, 6, 53. [Google Scholar] [CrossRef] [Green Version]
- Sali, G.; Monaco, F.; Mazzocchi, C.; Corsi, S. Exploring Land Use Scenarios in Metropolitan Areas: Food Balance in a Local Agricultural System by Using a Multi-objective Optimization Model. Agric. Agric. Sci. Procedia 2016, 8, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.K.; Dumaresq, D.; Pittock, J. Impacts of rice intensification on rural households in the Mekong Delta: Emerging relationships between agricultural production, wild food supply and food consumption. Food Secur. 2018, 10, 1615–1629. [Google Scholar] [CrossRef]
- Jiang, L.; Cui, X.; Xu, X.; Jiang, Y.; Rounsevell, M.; Murray-Rust, D.; Liu, Y. A simple global food system model. Agric. Econ. (Zemědělská Ekon.) 2014, 60, 188–197. [Google Scholar] [CrossRef] [Green Version]
- Peters, C.J.; Wilkins, J.L.; Fick, G.W. Testing a complete-diet model for estimating the land resource requirements of food consumption and agricultural carrying capacity: The New York State example. Renew. Agric. Food Syst. 2007, 22, 145–153. [Google Scholar] [CrossRef] [Green Version]
- Luo, W.; Ren, Y.; Shen, L.; Zhu, M.; Jiang, Y.; Meng, C.; Zhang, P. An evolution perspective on the urban land carrying capacity in the urbanization era of China. Sci. Total Environ. 2020, 744, 140827. [Google Scholar] [CrossRef]
- Han, C.; Lu, B.; Zheng, J. Analysis and Prediction of Land Resources’ Carrying Capacity in 31 Provinces of China from 2008 to 2016. Sustainability 2021, 13, 13383. [Google Scholar] [CrossRef]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [Green Version]
- Ridoutt, B.; Baird, D.; Bastiaans, K.; Darnell, R.; Hendrie, G.; Riley, M.; Sanguansri, P.; Syrette, J.; Noakes, M.; Keating, B. Australia’s nutritional food balance: Situation, outlook and policy implications. Food Secur. 2017, 9, 211–226. [Google Scholar] [CrossRef]
- Miyan, M.A. Droughts in Asian Least Developed Countries: Vulnerability and sustainability. Weather. Clim. Extrem. 2015, 7, 8–23. [Google Scholar] [CrossRef] [Green Version]
- The Food Security Atlas of Nepal; NPC and WFP: Kathmandu, Nepal, 2019; pp. 1–56.
- Gumma, M.K.; Gauchan, D.; Nelson, A.; Pandey, S.; Rala, A. Temporal changes in rice-growing area and their impact on livelihood over a decade: A case study of Nepal. Agric. Ecosyst. Environ. 2011, 142, 382–392. [Google Scholar] [CrossRef]
- Ma, B. Literature review on land carrying capacity of the coordinated development of population, resources, environment and economy. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2017; p. 0401062017. [Google Scholar]
- Liu, D.; Feng, Z.; Yang, Y.; You, Z. Spatial patterns of ecological carrying capacity supply-demand balance in China at county level. J. Geogr. Sci. 2011, 21, 833–844. [Google Scholar] [CrossRef]
- Government of Nepal National Planning Commission Central Bureau of Statistics. Statistical Year Book of Nepal; Ramshahpath: Thapathali Kathmandu, Nepal, 2013–2017.
- Government of Nepal Ministry of Agriculture and Livestock Development. Statistical Information on Nepalese Agriculture; Singha Durbar: Kathmandu, Nepal, 2018–2020.
- Savada, A.M. (Ed.) Nepal: A Country Study; GPO for the Library of Congress: Washington, DC, USA, 1991. [Google Scholar]
- FAO. Global Food Losses and Food Waste—Extent, Causes and Prevention; FAO: Rome, Italy, 2011. [Google Scholar]
- Joint FAO; World Health Organization. Protein and Amino Acid Requirements in Human Nutrition: Report of a Joint FAO/WHO/UNU Expert Consultation; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Hic, C.; Pradhan, P.; Rybski, D.; Kropp, J.P. Food Surplus and Its Climate Burdens. Environ. Sci. Technol. 2016, 50, 4269–4277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paudel, B.; Zhang, Y.; Li, S.; Liu, L. Spatiotemporal changes in agricultural land cover in Nepal over the last 100 years. J. Geogr. Sci. 2018, 28, 1519–1537. [Google Scholar] [CrossRef] [Green Version]
- Morioka, M.; Kondo, T. Agricultural Productivity Growth and Household Food Security Improvement in Nepal. Rev. Dev. Econ. 2017, 21, e220–e240. [Google Scholar] [CrossRef] [Green Version]
- Pyakuryal, B.; Roy, D.; Thapa, Y.B. Trade liberalization and food security in Nepal. Food Policy 2010, 35, 20–31. [Google Scholar] [CrossRef] [Green Version]
- Anantha, K.H.; Garg, K.K.; Barron, J.; Dixit, S.; Venkataradha, A.; Singh, R.; Whitbread, A.M. Impact of best management practices on sustainable crop production and climate resilience in smallholder farming systems of South Asia. Agric. Syst. 2021, 194, 103276. [Google Scholar] [CrossRef]
- Holmelin, N.B. National specialization policy versus farmers’ priorities: Balancing subsistence farming and cash cropping in Nepal. J. Rural. Stud. 2021, 83, 71–80. [Google Scholar] [CrossRef]
Food | Calories (kcal/100 g) | Conversion Factor | Intake Part Coefficient | Waste Coefficient |
---|---|---|---|---|
Maize | 356 | 0.78 | 0.76 | 0.92 |
Millet | 340 | 0.78 | 0.76 | 0.92 |
Rice | 280 | 0.9 | 0.87 | 0.92 |
Wheat | 334 | 0.78 | 0.76 | 0.92 |
Potato | 67 | 0.82 | 0.80 | 0.76 |
Sugarcane | 30 | 0.77 | 0.76 | 0.88 |
Pulses | 340 | 0.9 | 0.89 | 0.89 |
Fruits | 45 | 0.77 | 0.72 | 0.58 |
Vegetables | 22 | 0.77 | 0.72 | 0.58 |
Spices | 337 | 0.77 | 0.72 | 0.58 |
Oilseeds | 387 | 0.9 | 0.89 | 0.89 |
Meat | 176 | 1 | 0.96 | 0.84 |
Milk | 61 | 1 | 0.99 | 0.87 |
Egg | 139 | 0.9 | 0.89 | 0.87 |
Type | Rating | Value Range |
---|---|---|
Food surplus | Over surplus | <0.5 |
Surplus | 0.5–0.875 | |
Food balance | Balance surplus | 0.875–1.0 |
Balance critical | 1.0–1.125 | |
Food deficit | Deficiency | 1.125–1.5 |
Seriously deficiency | >1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Yang, Y.; Zhang, C.; Xiao, C.; Song, X. Does Nepal Have the Agriculture to Feed Its Population with a Sustainable Diet? Evidence from the Perspective of Human–Land Relationship. Foods 2023, 12, 1076. https://doi.org/10.3390/foods12051076
Liu Y, Yang Y, Zhang C, Xiao C, Song X. Does Nepal Have the Agriculture to Feed Its Population with a Sustainable Diet? Evidence from the Perspective of Human–Land Relationship. Foods. 2023; 12(5):1076. https://doi.org/10.3390/foods12051076
Chicago/Turabian StyleLiu, Ying, Yanzhao Yang, Chao Zhang, Chiwei Xiao, and Xinzhe Song. 2023. "Does Nepal Have the Agriculture to Feed Its Population with a Sustainable Diet? Evidence from the Perspective of Human–Land Relationship" Foods 12, no. 5: 1076. https://doi.org/10.3390/foods12051076
APA StyleLiu, Y., Yang, Y., Zhang, C., Xiao, C., & Song, X. (2023). Does Nepal Have the Agriculture to Feed Its Population with a Sustainable Diet? Evidence from the Perspective of Human–Land Relationship. Foods, 12(5), 1076. https://doi.org/10.3390/foods12051076