Identification, Typing and Drug Resistance of Cronobacter spp. in Powdered Infant Formula and Processing Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains Information
2.2. Reagents and Instruments
2.3. Strains Culture and DNA Extraction
2.4. 16S rRNA-Based PCR Identification and MLST Technology
2.5. Drug Resistance Evaluation
2.6. Transcriptome Sequencing of Representative Drug-Resistant Bacteria
2.7. Verification of Drug Resistance-Related Genes
3. Results
3.1. 16S rRNA Molecular Identification Results
3.2. MLST Analysis of Cronobacter Strains
3.3. Drug Resistance Analysis
3.4. Transcriptome Analysis of Strains under Antibiotic Conditions
3.5. qRT-PCR Validation of Drug Resistance-Related Genes
3.6. Analysis of Drug Resistance Mechanism
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gautam, K.; Lyudmila, S.; Lennox Kenneth, A. Cronobacter Species Contamination of Powdered Infant Formula and the Implications for Neonatal Health. Front. Pediatr. 2015, 3, 56. [Google Scholar]
- Hayman, M.M.; Edelson-Mammel, S.G.; Carter, P.J.; Chen, Y.; Metz, M.; Sheehan, J.F.; Tall, B.D.; Thompson, C.J.; Smoot, L.A. Prevalence of Cronobacter spp. and Salmonella in Milk Powder Manufacturing Facilities in the United States. J. Food Prot. 2020, 83, 1685–1692. [Google Scholar] [CrossRef]
- Pei, X.; Li, Y.; Zhang, H.; Zhan, L.; Yu, X.; Lan, G.; Jia, H.; Li, N.; Yang, D.; Mei, L. Surveillance and characterisation of Cronobacter in powdered infant formula processing factories. Food Control. 2018, 96, 318–323. [Google Scholar] [CrossRef]
- Bai, Y.; Yu, H.; Guo, D.; Fei, S.; Shi, C. Survival and Environmental Stress Resistance of Cronobacter sakazakii Exposed to Vacuum or Air Packaging and Stored at Different Temperatures. Front. Microbiol. 2019, 10, 303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iversen, C.; Lehner, A.; Mullane, N.; Marugg, J.; Fanning, S.; Stephan, R.; Joosten, H. Identification of “Cronobacter” spp. (Enterobacter sakazakii). J. Clin. Microbiol. 2007, 45, 3814–3816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iversen, C.; Lehner, A.; Mullane, N.; Bidlas, E.; Cleenwerck, I.; Marugg, J.; Fanning, S.; Stephan, R.; Joosten, H. The taxonomy of Enterobacter sakazakii: Proposal of a new genus Cronobacter gen. nov. and descriptions of Cronobacter sakazakii comb. nov. Cronobacter sakazakii subsp. sakazakii, comb. nov., Cronobacter sakazakii subsp. malonaticus subsp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov. and Cronobacter genomospecies 1. BMC Evol. Biol. 2007, 7, 64. [Google Scholar] [CrossRef] [Green Version]
- Iversen, C.; Mullane, N.; McCardell, B.; Tall, B.; Lehner, A.; Fanning, S.; Stephan, R.; Joosten, H. Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov., comb. nov., Cronobacter malonaticus sp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov., Cronobacter genomospecies 1, and of three subspecies, Cronobacter dublinensis subsp. dublinensis subsp. nov., Cronobacter dublinensis subsp. lausannensis subsp. nov. and Cronobacter dublinensis subsp. lactaridi subsp. nov. Int. J. Syst. Evol. Microbiol. 2008, 58, 1442–1447. [Google Scholar] [CrossRef]
- Forsythe, S.J. Updates on the Cronobacter Genus. Annu. Rev. Food Sci. Technol. 2018, 9, 23–44. [Google Scholar] [CrossRef]
- Fu, S.; Qin, X.; Wang, Z.; Yang, X.; Chen, S.; Yang, T.; Jin, H.; Man, C.; Jiang, Y. Screening of specific nucleic acid targets for Cronobacter sakazakii and visual detection by loop-mediated isothermal amplification and lateral flow dipstick method in powdered infant formula. J. Dairy Sci. 2021, 104, 5152–5165. [Google Scholar] [CrossRef]
- Fu, S.; Jiang, Y.; Jiang, X.; Zhao, Y.; Chen, S.; Yang, X.; Man, C. Probe-free label system for rapid detection of Cronobacter genus in powdered infant formula. AMB Express 2018, 8, 155. [Google Scholar] [CrossRef]
- Fu, S.; Jiang, Y.; Qin, X.; Yang, T.; Chen, S.; Yang, X.; Zhang, W.; Qu, Y.; Man, C. Electricity-free amplification and visual detection of Cronobacter species in powdered infant formula. J. Dairy Sci. 2020, 103, 6882–6893. [Google Scholar] [CrossRef]
- Sulaiman, I.M.; Tang, K.; Segars, K.; Miranda, N.; Sulaiman, N.; Simpson, S. Application of MALDI-TOF mass spectrometry, and DNA sequencing-based SLST and MLST analysis for the identification of Cronobacter spp. isolated from environmental surveillance samples. Arch. Microbiol. 2021, 203, 4813–4820. [Google Scholar] [CrossRef] [PubMed]
- Costa, P.V.; Vasconcellos, L.; Forsythe, S.J.; Brandão, M.L.L. Diversity of Cronobacter genus isolated between 1970 and 2019 on the American continent and genotyped using multi-locus sequence typing. FEMS Microbiol. Lett. 2021, 368, fnab027. [Google Scholar] [CrossRef] [PubMed]
- Joseph, S.; Sonbol, H.; Hariri, S.; Desai, P.; McClelland, M.; Forsythe, S.J. Diversity of the Cronobacter Genus as Revealed by Multilocus Sequence Typing. J. Clin. Microbiol. 2012, 50, 3031–3039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonbol, H.; Joseph, S.; McAuley, C.M.; Craven, H.M.; Forsythe, S.J. Multilocus sequence typing of Cronobacter spp. from powdered infant formula and milk powder production factories. Int. Dairy J. 2013, 30, 1–7. [Google Scholar] [CrossRef]
- Fei, P.; Man, C.; Lou, B.; Forsythe, S.J.; Chai, Y.; Li, R.; Niu, J.; Jiang, Y. Genotyping and Source Tracking of Cronobacter sakazakii and C. malonaticus Isolates from Powdered Infant Formula and an Infant Formula Production Factory in China. Appl. Environ. Microbiol. 2015, 81, 5430–5439. [Google Scholar] [CrossRef] [Green Version]
- Depardieu, F.; Podglajen, I.; Leclercq, R.; Collatz, E.; Courvalin, P. Modes and Modulations of Antibiotic Resistance Gene Expression. Clin. Microbiol. Rev. 2007, 20, 79–114. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, R.; Singh, N.; Pal, G.K.; Goel, G. Trending biocontrol strategies against Cronobacter sakazakii: A recent updated review. Food Res. Int. 2020, 137, 109385. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yu, H.; Jiang, H.; Jiao, Y.; Zhang, Y.; Shao, J. Genetic Diversity, Antimicrobial Susceptibility, and Biofilm Formation of Cronobacter spp. Recovered from Spices and Cereals. Front. Microbiol. 2017, 8, 2567. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Forsythe, S.J.; Yang, X.; Fu, S.; Man, C.; Jiang, Y. Invited review: Stress resistance of Cronobacter spp. affecting control of its growth during food production. J. Dairy Sci. 2021, 104, 11348–11367. [Google Scholar] [CrossRef]
- Jiang, H.; Xiang, Y.; He, X.; Li, C.; Lin, F.; Shao, J.; Li, Y. Identification and antibiotic resistance of Cronobacter spp. isolated from dried edible mushrooms. J. Food Sci. 2022, 87, 3588–3598. [Google Scholar] [CrossRef] [PubMed]
- Kakatkar, A.S.; Gautam, R.K.; Godambe, P.L.; Shashidhar, R. Culture dependent and independent studies on emerging food-borne pathogens Cronobacter sakazakii, Klebsiella pneumoniae and Enterococcus faecalis in Indian food. Int. Food Res. J. 2017, 24, 2645–2651. [Google Scholar]
- Berthold-Pluta, A.; Garbowska, M.; Stefańska, I.; Pluta, A. Microbiological quality of selected ready-to-eat leaf vegetables, sprouts and non-pasteurized fresh fruit-vegetable juices including the presence of Cronobacter spp. Food Microbiol. 2017, 65, 221–230. [Google Scholar] [CrossRef]
- Ling, N.; Li, C.; Zhang, J.; Wu, Q.; Zeng, H.; He, W.; Ye, Y.; Wang, J.; Ding, Y.; Chen, M.; et al. Prevalence and Molecular and Antimicrobial Characteristics of Cronobacter spp. Isolated from Raw Vegetables in China. Front. Microbiol. 2018, 9, 1149. [Google Scholar] [CrossRef] [PubMed]
- Parra-Flores, J.; Aguirre, J.; Juneja, V.; Jackson, E.E.; Cruz-Córdova, A.; Silva-Sanchez, J.; Forsythe, S. Virulence and Antibiotic Resistance Profiles of Cronobacter sakazakii and Enterobacter spp. Involved in the Diarrheic Hemorrhagic Outbreak in Mexico. Front. Microbiol. 2018, 9, 2206. [Google Scholar] [CrossRef] [Green Version]
- Csorba, C.; Pajić, M.; Blagojević, B.; Forsythe, S.; Radinović, M.; Velebit, B. Prevalence, characterization, and antibiotic susceptibility of Cronobacter spp. in a milk powder processing environment: The first reported case in Serbia. Food Sci. Nutr. 2021, 10, 554–563. [Google Scholar] [CrossRef]
- Carvalho, G.G.; Calarga, A.P.; Teodoro, J.R.; Queiroz, M.M.; Astudillo-Trujillo, C.A.; Levy, C.E.; Brocchi, M.; Kabuki, D.Y. Isolation, comparison of identification methods and antibiotic resistance of Cronobacter spp. in infant foods. Food Res. Int. 2020, 137, 109643. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Liang, Q.; Zhan, Z.; Feng, J.; Zhao, Y.; Chen, Y.; Huang, M.; Tong, Y.; Wu, W.; Chen, W.; et al. Co-occurrence of 3 different resistance plasmids in a multi-drug resistant Cronobacter sakazakii isolate causing neonatal infections. Virulence 2017, 9, 110–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Y.; Zhou, A.; Zhou, D.; Xiao, X.; Yu, Y.; Li, X. Cronobacter sakazakii CICC 21544 responds to the combination of carvacrol and citral by regulating proton motive force. Lwt 2020, 122, 109040. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, Z.; Soteyome, T.; Hua, J.; Zhang, L.; Yuan, L.; Ye, Y.; Cai, Z.; Yang, L.; Chen, L.; et al. Impact of pmrA on Cronobacter sakazakii planktonic and biofilm cells: A comprehensive transcriptomic study. Food Microbiol. 2021, 98, 103785. [Google Scholar] [CrossRef]
- Cardoso, M.H.; de Almeida, K.C.; Cândido, E.S.; Fernandes, G.D.R.; Dias, S.C.; de Alencar, S.A.; Franco, O.L. Comparative transcriptome analyses of magainin I-susceptible and -resistant Escherichia coli strains. Microbiology 2018, 164, 1383–1393. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, Á.; Muñoz, E.; López, M.C.; Cordero, M.; Martínez, J.P.; Viñas, M. Transcriptomics as a tool to discover new antibacterial targets. Biotechnol. Lett. 2017, 39, 819–828. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Tetu, S.G.; Paulsen, I.T.; Hassan, K.A. A Transcriptomic Approach to Identify Novel Drug Efflux Pumps in Bacteria. Methods Mol. Biol. 2017, 1700, 221–235. [Google Scholar] [CrossRef]
- Sieniawska, E.; Georgiev, M.I. Metabolomics: Towards acceleration of antibacterial plant-based leads discovery. Phytochem. Rev. 2021, 21, 765–781. [Google Scholar] [CrossRef]
- Hariri, S.; Joseph, S.; Forsythe, S.J. Cronobacter sakazakii ST4 Strains and Neonatal Meningitis, United States. Emerg. Infect. Dis. 2013, 19, 175–177. [Google Scholar] [CrossRef]
- Lachowska, M.; Izdebski, R.; Urbanowicz, P.; Żabicka, D.; Królak-Olejnik, B. Infection of Cronobacter sakazakii ST1 Producing SHV-12 in a Premature Infant Born from Triplet Pregnancy. Microorganisms 2021, 9, 1878. [Google Scholar] [CrossRef]
- Al-Nabulsi, A.A.; Osaili, T.M.; Elabedeen, N.A.Z.; Jaradat, Z.W.; Shaker, R.R.; Kheirallah, K.A.; Tarazi, Y.H.; Holley, R.A. Impact of environmental stress desiccation, acidity, alkalinity, heat or cold on antibiotic susceptibility of Cronobacter sakazakii. Int. J. Food Microbiol. 2011, 146, 137–143. [Google Scholar] [CrossRef]
- Lai, K.K. Enterobacter sakazakii Infections among Neonates, Infants, Children, and Adults. Medicine 2001, 80, 113–122. [Google Scholar] [CrossRef]
- Kim, K.; Jang, S.S.; Kim, S.K.; Park, J.-H.; Heu, S.; Ryu, S. Prevalence and genetic diversity of Enterobacter sakazakii in ingredients of infant foods. Int. J. Food Microbiol. 2008, 122, 196–203. [Google Scholar] [CrossRef]
- Pakbin, B.; Mahmoudi, R.; Mousavi, S.; Allahyari, S.; Amani, Z.; Peymani, A.; Qajarbeygi, P.; Hoseinabadi, Z. Genotypic and antimicrobial resistance characterizations of Cronobacter sakazakii isolated from powdered milk infant formula: A comparison between domestic and imported products. Food Sci. Nutr. 2020, 8, 6708–6717. [Google Scholar] [CrossRef]
- Odeyemi, O.; Sani, N.A. Antibiotic resistance, putative virulence factors and curli fimbrination among Cronobacter species. Microb. Pathog. 2019, 136, 103665. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Jia, X.; Chen, L.; Peters, B.M.; Lin, C.-W.; Chen, D.; Li, L.; Li, B.; Li, Y.; Xu, Z.; et al. Effect of polymyxin resistance (pmr) on biofilm formation of Cronobacter sakazakii. Microb. Pathog. 2017, 106, 16–19. [Google Scholar] [CrossRef] [PubMed]
Antimicrobial Group | Antibiotics | Content (μg/tablet) | Diameter of Inhibition Zone (mm) | ||
---|---|---|---|---|---|
Resistance | Intermediary | Sensitivity | |||
penicillins | |||||
1 | ampicillin | 10 | ≤13 | 14–16 | ≥17 |
2 | piperacillin | 100 | ≤17 | 18–20 | ≥21 |
cephalosporins | |||||
3 | cefazolin | 30 | ≤14 | 15–17 | ≥18 |
4 | cefuroxime | 30 | ≤14 | 15–17 | ≥18 |
5 | ceftazidime | 30 | ≤17 | 18–20 | ≥21 |
6 | ceftriaxone | 30 | ≤19 | 20–22 | ≥23 |
7 | cefoperazone | 75 | ≤15 | 16–20 | ≥21 |
aminoglycosides | |||||
8 | amikacin | 30 | ≤14 | 15–16 | ≥17 |
9 | gentamicin | 10 | ≤12 | 13–14 | ≥15 |
10 | kanamycin | 30 | ≤13 | 14–17 | ≥18 |
11 | neomycin | 30 | ≤12 | 13–16 | ≥17 |
tetracyclines | |||||
12 | tetracycline | 30 | ≤11 | 12–14 | ≥15 |
13 | doxycycline | 30 | ≤10 | 11–13 | ≥14 |
macrolides | |||||
14 | erythromycin | 15 | ≤13 | 14–22 | ≥23 |
fluoroquinolones | |||||
15 | norfloxacin | 10 | ≤12 | 13–16 | ≥17 |
16 | ofloxacin | 5 | ≤12 | 13–15 | ≥16 |
17 | ciprofloxacin | 5 | ≤15 | 16–20 | ≥21 |
polypeptides | |||||
18 | polymyxin B | 300 | ≤8 | 8–11 | ≥12 |
sulfonamides | |||||
19 | sulfamethoxazole/trimethoprim | 23.75/1.25 | ≤10 | 11–15 | ≥16 |
Phenylpropanols | |||||
20 | chloramphenicol | 30 | ≤12 | 13–17 | ≥18 |
Strains | atpD | fusA | glnS | gltB | gyrB | infB | ppsA | ST | CC |
---|---|---|---|---|---|---|---|---|---|
CS1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
CS2 | 5 | 1 | 3 | 3 | 5 | 5 | 4 | 4 | 4 |
CM3 | 10 | 7 | 6 | 7 | 9 | 14 | 9 | 7 | 7 |
CS4 | 11 | 8 | 7 | 5 | 8 | 15 | 10 | 8 | 8 |
CS5 | 18 | 17 | 10 | 12 | 18 | 24 | 18 | 12 | - |
CS6 | 15 | 14 | 15 | 13 | 22 | 5 | 16 | 13 | 13 |
CS7 | 3 | 12 | 16 | 5 | 16 | 20 | 14 | 17 | 17 |
CS8 | 3 | 11 | 13 | 18 | 11 | 17 | 13 | 21 | 21 |
CS9 | 16 | 1 | 19 | 19 | 26 | 5 | 26 | 22 | - |
CS10 | 20 | 18 | 16 | 10 | 3 | 20 | 27 | 23 | 23 |
CS11 | 3 | 8 | 37 | 22 | 29 | 36 | 32 | 31 | 31 |
CS12 | 44 | 15 | 3 | 5 | 5 | 38 | 59 | 37 | 37 |
CS13 | 3 | 15 | 28 | 22 | 5 | 38 | 19 | 40 | 40 |
CS14 | 48 | 17 | 10 | 69 | 71 | 5 | 81 | 42 | - |
CS15 | 3 | 8 | 13 | 15 | 22 | 20 | 21 | 50 | - |
CM16 | 12 | 7 | 8 | 8 | 10 | 16 | 43 | 60 | - |
CS17 | 16 | 8 | 13 | 40 | 15 | 15 | 10 | 64 | 64 |
CS18 | 55 | 14 | 59 | 70 | 70 | 70 | 80 | 73 | 73 |
CS19 | 19 | 16 | 19 | 41 | 19 | 15 | 23 | 83 | 83 |
CS20 | 3 | 8 | 3 | 3 | 18 | 46 | 127 | 198 | 52 |
CS21 | 15 | 8 | 13 | 94 | 99 | 98 | 126 | 199 | - |
CM22 | 10 | 7 | 6 | 99 | 9 | 14 | 9 | 201 | 7 |
CT23 | 47 | 39 | 101 | 121 | 118 | 49 | 153 | 236 | - |
CM24 | 89 | 13 | 107 | 8 | 10 | 35 | 160 | 258 | - |
CS25 | 16 | 37 | 108 | 22 | 74 | 56 | 4 | 259 | - |
CS81 | 16 | 8 | 9 | 109 | 125 | 3 | 102 | 260 | - |
CS100 | 16 | 8 | 13 | 40 | 15 | 15 | 161 | 261 | 64 |
CS26 | 5 | 1 | 3 | 127 | 5 | 5 | 4 | 268 | 4 |
CS27 | 55 | 14 | 59 | 128 | 70 | 70 | 80 | 269 | 73 |
CT28 | 115 | 5 | 144 | 165 | 158 | 29 | 203 | 367 | - |
CM29 | 117 | 7 | 40 | 181 | 188 | 165 | 120 | 438 | - |
CS30 | 3 | 18 | 9 | 267 | 1 | 225 | 210 | 618 | - |
CD31 | 95 | 23 | 114 | 123 | 157 | 132 | 171 | 788 | - |
CS32 | 15 | 14 | 15 | 13 | 22 | 5 | 347 | 789 | - |
CS33 | 55 | 14 | 59 | 70 | 70 | 70 | 389 | 790 | - |
Antibiotics | Resistance Rate (%) | Mediation Rate (%) | Sensitivity Rate (%) |
---|---|---|---|
ampicillin | 20.00 | 5.71 | 74.29 |
piperacillin | 8.57 | 11.43 | 80.00 |
cefazolin | 28.57 | 40.00 | 31.43 |
cefuroxime | 14.29 | 5.71 | 80.00 |
ceftazidime | 20.00 | 5.71 | 74.29 |
ceftriaxone | 25.71 | 14.29 | 60.00 |
cefoperazone | 8.57 | 45.71 | 45.71 |
amikacin | 25.71 | 20.00 | 54.29 |
gentamicin | 11.43 | 20.00 | 68.57 |
kanamycin | 28.57 | 42.86 | 28.57 |
neomycin | 37.14 | 57.14 | 5.71 |
tetracycline | 8.57 | 5.71 | 85.71 |
doxycycline | 8.57 | 0 | 91.43 |
erythromycin | 100 | 0 | 0 |
norfloxacin | 11.43 | 17.14 | 71.43 |
ofloxacin | 2.86 | 5.71 | 91.43 |
ciprofloxacin | 0 | 0 | 100 |
polymyxin B | 14.29 | 20.00 | 65.71 |
sulfamethoxazole/trimethoprim | 45.71 | 22.86 | 31.43 |
chloramphenicol | 2.86 | 14.29 | 82.86 |
Multiple Numbers | Drug Resistant Spectrum | Strain Number | Total |
---|---|---|---|
1 | erythromycin | 6, 9, 11, 18, 26, 100 | 6 (17.14%) |
2 | amikacin-erythromycin | 7 | 5 (14.29%) |
cefazolin-erythromycin | 8, 16, 19 | ||
kanamycin-erythromycin | 21 | ||
3 | gentamicin-doxycycline-erythromycin | 2 | 7 (20.00%) |
ampicillin-cefazolin-erythromycin | 4, 81 | ||
gentamicin-sulfamethoxazole/trimethoprim-erythromycin | 12 | ||
cefazolin-sulfamethoxazole/trimethoprim-erythromycin | 13 | ||
neomycin-sulfamethoxazole/trimethoprim-erythromycin | 15 | ||
ceftriaxone-amikacin-erythromycin | 32 | ||
4 | ampicillin-cefoperazone-neomycin-erythromycin | 3 | 4 (11.43%) |
cefuroxime-tetracycline-polymyxin B-erythromycin | 5 | ||
neomycin-tetracycline-sulfamethoxazole/trimethoprim-erythromycin | 28 | ||
ceftazidime-ceftriaxone-sulfamethoxazole/trimethoprim-erythromycin | 33 | ||
5 | kanamycin-neomycin-polymyxin B-chloramphenicol- erythromycin | 10 | 3 (8.57%) |
amikacin-kanamycin-norfloxacin-sulfamethoxazole/trimethoprim-erythromycin | 22 | ||
cefazolin-amikacin-kanamycin-norfloxacin-erythromycin | 30 | ||
6 | cefazolin-amikacin-kanamycin-neomycin-sulfamethoxazole/trimethoprim-erythromycin | 20 | 2 (5.71%) |
cefazolin-amikacin-kanamycin-neomycin-sulfamethoxazole/trimethoprim-erythromycin | 31 | ||
7 | piperacillin-amikacin-kanamycin-neomycin-doxycycline-sulfamethoxazole/trimethoprim-erythromycin | 1 | 6 (17.14%) |
ceftazidime-cefazolin-amikacin-neomycin-norfloxacin-sulfamethoxazole/trimethoprim-erythromycin | 23 | ||
cefazolin-amikacin-gentamicin-kanamycin-neomycin-sulfamethoxazole/trimethoprim-erythromycin | 24 | ||
ceftazidime-gentamicin-kanamycin-neomycin-norfloxacin-sulfamethoxazole/trimethoprim-erythromycin | 25 | ||
ampicillin-cefuroxime-ceftazidime-cefazolin-polymyxin B-sulfamethoxazole/trimethoprim-erythromycin | 27 | ||
ampicillin-cefuroxime-ceftazidime-cefazolin-neomycin-sulfamethoxazole/trimethoprim-erythromycin | 29 | ||
11 | ampicillin-piperacillin-cefazolin-cefuroxime-ceftazidime-cefazolin-cefoperazone-neomycin-polymyxin B-sulfamethoxazole/trimethoprim-erythromycin | 17 | 1 (2.86%) |
13 | ampicillin-piperacillin-cefazolin-cefuroxime-ceftazidime-cefazolin-cefoperazone-neomycin-tetracycline-ofloxacin-polymyxin B-sulfamethoxazole/trimethoprim-erythromycin | 14 | 1 (2.86%) |
Gene | Gene Annotation | log2FoldChange | p-Value |
---|---|---|---|
CSK29544_00553 | permease of the drug/metabolite transporter (DMT) superfamily | 3.77 | 2.65 × 10−43 |
CSK29544_03853 | putative ABC transporter, ATP-binding protein | −4.46 | 3.53 × 10−43 |
emrA (CSK29544_01824) | multidrug efflux system protein | 3.27 | 1.39 × 10−29 |
CSK29544_03309 | multidrug efflux protein | 2.81 | 3.63 × 10−25 |
CSK29544_02809 | methyl-accepting chemotaxis citrate transducer | 2.36 | 7.87 × 10−16 |
CSK29544_00467 | methyl-accepting chemotaxis sensory transducer | 2.06 | 1.74 × 10−13 |
yojI (CSK29544_02362) | multidrug transport system ATP-binding/permease protein | 1.96 | 4.79 × 10−13 |
baeR (CSK29544_02460) | two-component system, OmpR family, response regulator | −2.20 | 1.27 × 10−12 |
CSK29544_01823 | multidrug resistance protein B | 1.97 | 1.45 × 10−10 |
mdfA (CSK29544_03801) | multidrug efflux system translocase | 2.41 | 2.35 × 10−8 |
mdtA (CSK29544_02465) | membrane fusion protein, multidrug efflux system | −1.50 | 8.72 × 10−7 |
fliM (CSK29544_02582) | flagellar motor switch protein | 1.83 | 1.66 × 10−6 |
eamA (CSK29544_03092) | O-acetylserine/cystein export protein | −1.82 | 4.17 × 10−6 |
mdlA (CSK29544_04123) | ATP-binding cassette, multidrug efflux pump | 2.05 | 2.38 × 10−5 |
CSK29544_01507 | methyl-accepting chemotaxis protein | 2.24 | 3.26 × 10−5 |
mdtD (CSK29544_02462) | MFS transporter, DHA2 family, multidrug resistance protein | −2.26 | 1.53 × 10−4 |
emrB (CSK29544_03823) | EmrB subfamily drug resistance transporter | 2.13 | 4.00 × 10−4 |
emrE (CSK29544_03219) | multidrug transporter | −2.18 | 5.47 × 10−4 |
acrD (CSK29544_01993) | multidrug efflux pump | −2.01 | 1.04 × 10−3 |
CSK29544_00887 | multidrug resistance protein D | 2.48 | 1.50 × 10−2 |
pump (CSK29544_00631) | transcription repressor of multidrug efflux | 2.50 | 2.41 × 10−2 |
Gene | Relative Transcript Level (2−ΔΔCt) | |||
---|---|---|---|---|
CS6 | CS9 | CS17 | CS14 | |
emrA (CSK29544_01824) | 1.25 ± 0.35 | 1.31 ± 0.28 | 6.85 ± 0.26 | 7.14 ± 0.21 |
CSK29544_03309 | 0.94 ± 0.22 | 1.27 ± 0.40 | 5.09 ± 0.15 | 5.13 ± 0.34 |
yojI (CSK29544_02362) | 0.36 ± 0.12 | 0.46 ± 0.17 | 1.87 ± 0.19 | 2.20 ± 0.17 |
mdfA (CSK29544_03801) | 0.44 ± 0.20 | 0.83 ± 0.21 | 4.98 ± 0.47 | 5.06 ± 0.28 |
fliM (CSK29544_02582) | 0.37 ± 0.09 | 0.65 ± 0.25 | 1.96 ± 0.23 | 2.31 ± 0.23 |
mdlA (CSK29544_04123) | 0.99 ± 0.29 | 1.02 ± 0.22 | 2.25 ± 0.28 | 2.17 ± 0.22 |
emrB (CSK29544_03823) | 0.71 ± 0.43 | 0.58 ± 0.17 | 3.39 ± 0.26 | 3.22 ± 0.41 |
pump (CSK29544_00631) | 0.66 ± 0.21 | 0.43 ± 0.14 | 5.53 ± 0.37 | 5.66 ± 0.20 |
CSK29544_03853 | 1.34 ± 0.25 | 0.85 ± 0.23 | 0.38 ± 0.06 | 0.32 ± 0.16 |
baeR (CSK29544_02460) | 0.45 ± 0.11 | 0.79 ± 0.22 | 0.46 ± 0.17 | 0.47 ± 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Fu, S.; Song, D.; Qin, X.; Zhang, W.; Man, C.; Yang, X.; Jiang, Y. Identification, Typing and Drug Resistance of Cronobacter spp. in Powdered Infant Formula and Processing Environment. Foods 2023, 12, 1084. https://doi.org/10.3390/foods12051084
Li H, Fu S, Song D, Qin X, Zhang W, Man C, Yang X, Jiang Y. Identification, Typing and Drug Resistance of Cronobacter spp. in Powdered Infant Formula and Processing Environment. Foods. 2023; 12(5):1084. https://doi.org/10.3390/foods12051084
Chicago/Turabian StyleLi, Hongxuan, Shiqian Fu, Danliangmin Song, Xue Qin, Wei Zhang, Chaoxin Man, Xinyan Yang, and Yujun Jiang. 2023. "Identification, Typing and Drug Resistance of Cronobacter spp. in Powdered Infant Formula and Processing Environment" Foods 12, no. 5: 1084. https://doi.org/10.3390/foods12051084
APA StyleLi, H., Fu, S., Song, D., Qin, X., Zhang, W., Man, C., Yang, X., & Jiang, Y. (2023). Identification, Typing and Drug Resistance of Cronobacter spp. in Powdered Infant Formula and Processing Environment. Foods, 12(5), 1084. https://doi.org/10.3390/foods12051084