Uncovering the Biotechnological Importance of Geotrichum candidum
Abstract
:1. Introduction
2. Administration as a Starter Culture
2.1. Cheeses
2.2. Cheeses Analogs
2.3. Malting
3. Administration as a Probiotic Strain
4. Antimicrobial Activity of G. candidum
5. Production of Enzymes with Industrial Interest
5.1. Lytic Polysaccharide Monooxygenases (LPMOs)
5.2. Lipases
5.3. Alkaline Proteases
5.4. Pectinases
5.5. Aldehyde Dehydrogenases, Glutamate Dehydrogenases, and Baeyer–Villiger Monooxygenases
6. Other Important Biotechnological Applications
6.1. Oleaginicity
6.2. Heavy Metal Removal from the Ecosystem
6.3. Ability to Degrade Electronic and Electrical Waste (EEW)
6.4. Ability to Degrade Organic Waste
6.5. Decolorization of Textile Effluent
6.6. Encapsulation of Curcumin
6.7. Degradation of Biogenic Amines
7. Current Genomic Information
8. Association with Diseases
8.1. Humans
8.2. Animals
8.3. Plants
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aguileta, G.; Marthey, S.; Chiapello, H.; Lebrun, M.-H.; Rodolphe, F.; Fournier, E.; Gendrault-Jacquemard, A.; Giraud, T. Assessing the performance of single-copy genes for recovering robust phylogenies. Syst. Biol. 2008, 57, 613–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pottier, I.; Gente, S.; Vernoux, J.-P.; Guéguen, M. Safety assessment of dairy microorganisms: Geotrichum candidum. Int. J. Food Microbiol. 2008, 126, 327–332. [Google Scholar] [CrossRef]
- Kurtzman, C.P.; Robnett, C.J. Relationships among genera of the Saccharomycotina (Ascomycota) from multigene phylogenetic analysis of type species. FEMS Yeast Res. 2013, 13, 23–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Hoog, G.S.; Smith, M.T. Ribosomal gene phylogeny and species delimitation in Geotrichum and its teleomorphs. Stud. Mycol. 2004, 50, 489–515. [Google Scholar]
- Marcellino, N.; Beuvier, E.; Grappin, R.; Guéguen, M.; Benson, D.R. Diversity of Geotrichum candidum Strains Isolated from Traditional Cheesemaking Fabrications in France. Appl. Environ. Microbiol. 2001, 67, 293–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavoie, K.; Touchette, M.; St-Gelais, D.; Labrie, S. Characterization of the fungal microflora in raw milk and specialty cheeses of the province of Quebec. Dairy Sci. Technol. 2012, 92, 455–468. [Google Scholar] [CrossRef] [Green Version]
- Vasei, M.; Imanieh, M.H. Duodenal colonization by Geotrichum candidum in a child with transient low serum levels of IgA and IgM. Apmis 1999, 107, 681–684. [Google Scholar] [CrossRef]
- Bonifaz, A.; Vázquez-González, D.; Macías, B.; Paredes-Farrera, F.; Hernández, M.A.; Araiza, J.; Ponce, R.M. Oral geotrichosis: Report of 12 cases. J. Oral Sci. 2010, 52, 477–483. [Google Scholar] [CrossRef] [Green Version]
- Dujon, B. Yeast evolutionary genomics. Nat. Rev. Genet. 2010, 11, 512–524. [Google Scholar] [CrossRef]
- Morel, G.; Sterck, L.; Swennen, D.; Marcet-Houben, M.; Onesime, D.; Levasseur, A.; Jacques, N.; Mallet, S.; Couloux, A.; Labadie, K.; et al. Differential gene retention as an evolutionary mechanism to generate biodiversity and adaptation in yeasts. Sci. Rep. 2015, 5, 11571. [Google Scholar] [CrossRef] [Green Version]
- Wouters, J.T.M.; Ayad, E.H.E.; Hugenholtz, J.; Smit, G. Microbes from raw milk for fermented dairy products. Int. Dairy J. 2002, 12, 91–109. [Google Scholar] [CrossRef]
- Butler, E.E.; Petersen, L.J. Sexual Reproduction in Geotrichum candidum. Science 1970, 169, 481–482. [Google Scholar] [CrossRef]
- Alper, I.; Frenette, M.; Labrie, S. Ribosomal DNA polymorphisms in the yeast Geotrichum candidum. Fungal Biol. 2011, 115, 1259–1269. [Google Scholar] [CrossRef]
- Mariani, C.; Briandet, R.; Chamba, J.-F.; Notz, E.; Carnet-Pantiez, A.; Eyoug, R.N.; Oulahal, N. Biofilm ecology of wooden shelves used in ripening the french raw milk smear cheese reblochon de savoie. J. Dairy Sci. 2007, 90, 1653–1661. [Google Scholar] [CrossRef] [Green Version]
- Boutrou, R.; Guéguen, M. Interests in Geotrichum candidum for cheese technology. Int. J. Food Microbiol. 2005, 102, 1–20. [Google Scholar] [CrossRef]
- Eliskases-Lechner, F.; Guéguen, M.; Panoff, J. Yeasts and Molds: Geotrichum candidum. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Ed.; Academic Press: Cambridge, MA, USA, 2011; pp. 765–771. [Google Scholar] [CrossRef]
- Linko, M.; Haikara, A.; Ritala, A.; Penttilä, M. Recent advances in the malting and brewing industry. J. Biotechnol. 1998, 65, 85–98. [Google Scholar] [CrossRef]
- Bertolini, M.C.; Laramee, L.; Thomas, D.Y.; Cygler, M.; Schrag, J.D.; Vernet, T. Polymorphism in the lipase genes of Geotrichum candidum strains. JBIC J. Biol. Inorg. Chem. 1994, 219, 119–125. [Google Scholar] [CrossRef]
- Borisova, A.S.; Eneyskaya, E.V.; Bobrov, K.S.; Jana, S.; Logachev, A.; Polev, D.E.; Lapidus, A.L.; Ibatullin, F.M.; Saleem, U.; Sandgren, M.; et al. Sequencing, biochemical characterization, crystal structure and molecular dynamics of cellobiohydrolase Cel7A from Geotrichum candidum 3C. FEBS J. 2015, 282, 4515–4537. [Google Scholar] [CrossRef] [PubMed]
- Piegza, M.; Witkowska, D.; Stempniewicz, R. Enzymatic and molecular characteristics of Geotrichum candidum strains as a starter culture for malting. J. Inst. Brew. 2014, 120, 341–346. [Google Scholar] [CrossRef]
- Alimadadi, N.; Pourvali, Z.; Nasr, S.; Abolhassan, S.; Fazeli, S. Screening of antagonistic yeast strains for postharvest control of Penicillium expansum causing blue mold decay in table grape. Fungal Biol. 2023, in press. [Google Scholar] [CrossRef]
- Bourdichon, F.; Casaregola, S.; Farrokh, C.; Frisvad, J.C.; Gerds, M.L.; Hammes, W.P.; Harnett, J.; Huys, G.; Laulund, S.; Ouwehand, A.; et al. Food fermentations: Microorganisms with technological beneficial use. Int. J. Food Microbiol. 2012, 154, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Alexandraki, V.; Kazou, M.; Angelopoulou, A.; Arena, M.P.; Capozzi, V.; Russo, P.; Fiocco, D.; Spano, G.; Papadimitriou, K.; Tsakalidou, E. The Microbiota of Non-cow Milk and Products. In Non-Bovine Milk and Milk Products, 1st ed.; Tsakalidou, E., Papadimitriou, K., Eds.; Academic Press: London, UK, 2016; pp. 117–159. [Google Scholar] [CrossRef]
- Garnier, L.; Valence, F.; Mounier, J. Diversity and Control of Spoilage Fungi in Dairy Products: An Update. Microorganisms 2017, 5, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazou, M.; Grafakou, A.; Tsakalidou, E.; Georgalaki, M. Zooming Into the Microbiota of Home-Made and Industrial Kefir Produced in Greece Using Classical Microbiological and Amplicon-Based Metagenomics Analyses. Front. Microbiol. 2021, 12, 621069. [Google Scholar] [CrossRef]
- Ipošová, P.; Lehotová, V.; Valík, Ľ.; Medveďová, A. Microbiological quality assessment of raw milk from a vending machine and of traditional slovakian pasta filata cheeses. J. Food Nutr. Res. 2020, 59, 272–279. [Google Scholar]
- Šipošová, P.; Koňuchová, M.; Valík, Ľ.; Medveďová, A. Growth dynamics of lactic acid bacteria and dairy microscopic fungus Geotrichum candidum during their co-cultivation in milk. Food Sci. Technol. Int. 2021, 27, 572–582. [Google Scholar] [CrossRef]
- Wszolek, M.; Kupiec-Teahan, B.; Guldager, H.S.; Tamime, A.Y. Production of Kefir, Koumiss and other Related Products. In Fermented Milks; Tamime, A.Y., Ed.; Blackwell Publishing: Oxford, UK, 2007; pp. 174–216. [Google Scholar] [CrossRef]
- Castellote, J.; Fraud, S.; Irlinger, F.; Swennen, D.; Fer, F.; Bonnarme, P.; Monnet, C. Investigation of Geotrichum candidum gene expression during the ripening of Reblochon-type cheese by reverse transcription-quantitative PCR. Int. J. Food Microbiol. 2015, 194, 54–61. [Google Scholar] [CrossRef]
- Lessard, M.-H.; Viel, C.; Boyle, B.; St-Gelais, D.; Labrie, S. Metatranscriptome analysis of fungal strains Penicillium camemberti and Geotrichum candidum reveal cheese matrix breakdown and potential development of sensory properties of ripened Camembert-type cheese. BMC Genom. 2014, 15, 235. [Google Scholar] [CrossRef] [Green Version]
- Dugat-Bony, E.; Straub, C.; Teissandier, A.; Onésime, D.; Loux, V.; Monnet, C.; Irlinger, F.; Landaud, S.; Leclercq-Perlat, M.-N.; Bento, P.; et al. Overview of a surface-ripened cheese community functioning by meta-omics analyses. PLoS ONE 2015, 10, e0124360. [Google Scholar] [CrossRef] [Green Version]
- Corsetti, A.; Rossi, J.; Gobbetti, M. Interactions between yeasts and bacteria in the smear surface-ripened cheeses. Int. J. Food Microbiol. 2001, 69, 1–10. [Google Scholar] [CrossRef]
- Gente, S.; La Carbona, S.; Guéguen, M. Levels of cystathionine γ lyase production by Geotrichum candidum in synthetic media and correlation with the presence of sulphur flavours in cheese. Int. J. Food Microbiol. 2007, 114, 136–142. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Yang, J.; Ma, X.; Jia, X.; Du, P.; Li, A. Influence of the addition of Geotrichum candidum on the microbial, chemical, textural, and sensory features of soft soy cheese. J. Food Process. Preserv. 2020, 44, e14823. [Google Scholar] [CrossRef]
- Galli, B.D.; Martin, J.G.P.; da Silva, P.P.M.; Porto, E.; Spoto, M.H.F. Sensory quality of Camembert-type cheese: Relationship between starter cultures and ripening molds. Int. J. Food Microbiol. 2016, 234, 71–75. [Google Scholar] [CrossRef]
- Galli, B.D.; Baptista, D.P.; Cavalheiro, F.G.; Negrão, F.; Eberlin, M.N.; Gigante, M.L. Peptide profile of Camembert-type cheese: Effect of heat treatment and adjunct culture Lactobacillus rhamnosus GG. Food Res. Int. 2019, 123, 393–402. [Google Scholar] [CrossRef]
- Aziza, M.; Couriol, C.; Amrane, A.; Boutrou, R. Evidences for synergistic effects of Geotrichum candidum on Penicillium camembertii growing on cheese juice. Enzym. Microb. Technol. 2005, 37, 218–224. [Google Scholar] [CrossRef]
- Boutrou, R.; Aziza, M.; Amrane, A. Enhanced proteolytic activities of Geotrichum candidum and Penicillium camembertii in mixed culture. Enzym. Microb. Technol. 2006, 39, 325–331. [Google Scholar] [CrossRef]
- Šipošová, P.; Koňuchová, M.; Valík, L.; Trebichavská, M.; Medveďová, A. Quantitative characterization of Geotrichum candidum growth in milk. Appl. Sci. 2021, 11, 4619. [Google Scholar] [CrossRef]
- Pracharova, P.; Lieben, P.; Pollet, B.; Beckerich, J.M.; Bonnarme, P.; Landaud, S.; Swennen, D. Geotrichum candidum gene expression and metabolite accumulation inside the cells reflect the strain oxidative stress sensitivity and ability to produce flavour compounds. FEMS Yeast Res. 2019, 19, foy111. [Google Scholar] [CrossRef]
- Perkins, V.; Vignola, S.; Lessard, M.-H.; Plante, P.-L.; Corbeil, J.; Dugat-Bony, E.; Frenette, M.; Labrie, S. Phenotypic and Genetic Characterization of the Cheese Ripening Yeast Geotrichum candidum. Front. Microbiol. 2020, 11, 737. [Google Scholar] [CrossRef]
- Leclercq-Perlat, M.-N.; Buono, F.; Lambert, D.; Latrille, E.; Spinnler, H.-E.; Corrieu, G. Controlled production of Camembert-type cheeses. Part I: Microbiological and physicochemical evolutions. J. Dairy Res. 2004, 71, 346–354. [Google Scholar] [CrossRef]
- Brennan, N.; Cogan, T.; Loessner, M.; Scherer, S. Bacterial surface-ripened cheeses. Cheese Chem. Phys. Microbiol. 2004, 2, 199–225. [Google Scholar] [CrossRef]
- Pagthinathan, M.; Nafees, M.S.M. Biochemistry of cheese ripening. AGRIEAST J. Agric. Sci. 2017, 10, 16. [Google Scholar] [CrossRef]
- Cholet, O.; Hénaut, A.; Casaregola, S.; Bonnarme, P. Gene expression and biochemical analysis of cheese-ripening yeasts: Focus on catabolism of L-methionine, lactate, and lactose. Appl. Environ. Microbiol. 2007, 73, 2561–2570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dieuleveux, V.; Van Der Pyl, D.; Chataud, J.; Gueguen, M. Purification and characterization of anti-Listeria compounds produced by Geotrichum candidum. Appl. Environ. Microbiol. 1998, 64, 800–803. [Google Scholar] [CrossRef] [Green Version]
- Featherstone, S. Cleaning and sanitising. In A Complete Course in Canning and Related Processes, 14th ed.; Fundemental Information on Canning; Featherstone, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; Chapter 13; Volume 1, pp. 429–457. [Google Scholar] [CrossRef]
- Luo, X.; Shi, H.; Wu, R.; Wu, J.; Pi, Y.; Zheng, Y.; Yue, X. Δ12 fatty acid desaturase gene from Geotrichum candidum in cheese: Molecular cloning and functional characterization. FEBS Open Bio 2019, 9, 18–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, H.; Tian, J.; Wu, C.; Li, M.; An, F.; Wu, R.; Shao, J.; Zheng, Y.; Luo, X.; Tao, D.; et al. Determination of allosteric and active sites responsible for catalytic activity of delta 12 fatty acid desaturase from Geotrichum candidum and Mortierella alpina by domain swapping. Enzym. Microb. Technol. 2020, 138, 109563. [Google Scholar] [CrossRef] [PubMed]
- Łopusiewicz, Ł.; Drozłowska, E.; Tarnowiecka-Kuca, A.; Bartkowiak, A.; Mazurkiewicz-Zapałowicz, K.; Salachna, P. Biotransformation of flaxseed oil cake into bioactive camembert-analogue using lactic acid bacteria, Penicillium camemberti and Geotrichum candidum. Microorganisms 2020, 8, 1266. [Google Scholar] [CrossRef]
- Teh, S.-S.; Niven, B.E.; Bekhit, A.E.-D.; Carne, A.; Birch, J. Optimization of polyphenol extraction and antioxidant activities of extracts from defatted flax seed cake (Linum usitatissimum L.) using microwave-assisted and pulsed electric field (PEF) technologies with response surface methodology. Food Sci. Biotechnol. 2015, 24, 1649–1659. [Google Scholar] [CrossRef]
- Bekhit, A.E.-D.A.; Shavandi, A.; Jodjaja, T.; Birch, J.; Teh, S.; Ahmed, I.A.M.; Al-Juhaimi, F.Y.; Saeedi, P.; Bekhit, A.A. Flaxseed: Composition, detoxification, utilization, and opportunities. Biocatal. Agric. Biotechnol. 2018, 13, 129–152. [Google Scholar] [CrossRef]
- Kawtharani, H.; Beaufort, S.; Anson, P.; Taillandier, P.; Mathieu, F.; Snini, S.P. Impact of the Inoculation Method of Geotrichum candidum, Used as Biocontrol Agent, on T-2 Toxin Produced by Fusarium sporotrichioides and F. langsethiae during the Malting Process. Toxins 2022, 14, 239. [Google Scholar] [CrossRef]
- Boivin, P.; Malanda, M. Improvement of malt quality and safety by adding starter culture during the malting process. MBAA Tech. Q. 1997, 34, 96–101. [Google Scholar]
- Assas, N.; Marouani, L.; Hamdi, M. Scale down and optimization of olive mill wastewaters decolorization by Geotrichum candidum. Bioprocess Biosyst. Eng. 2000, 22, 503–507. [Google Scholar] [CrossRef]
- Kawtharani, H.; Snini, S.P.; Heang, S.; Bouajila, J.; Taillandier, P.; Mathieu, F.; Beaufort, S. Phenyllactic acid produced by Geotrichum candidum reduces fusarium sporotrichioides and F. langsethiae growth and T-2 toxin concentration. Toxins 2020, 12, 209. [Google Scholar] [CrossRef] [Green Version]
- Van Der Fels-Klerx, H.J.; Stratakou, I. T-2 toxin and HT-2 toxin in grain and grain-based commodities in Europe: Occurrence, factors affecting occurrence, co-occurrence and toxicological effects. World Mycotoxin J. 2010, 3, 349–367. [Google Scholar] [CrossRef]
- Ibrar, M.; Zuberi, A.; Amir, I.; Imran, M.; Noor, Z. Effect of probiotic Geotrichum candidum on early rearing of Labeo rohita (Hamilton, 1822). Turk. J. Fish. Aquat. Sci. 2017, 17, 1263–1270. [Google Scholar] [CrossRef]
- Amir, I.; Zuberi, A.; Kamran, M.; Imran, M.; Murtaza, M.U.H. Evaluation of commercial application of dietary encapsulated probiotic (Geotrichum candidum QAUGC01): Effect on growth and immunological indices of rohu (Labeo rohita, Hamilton 1822) in semi-intensive culture system. Fish Shellfish Immunol. 2019, 95, 464–472. [Google Scholar] [CrossRef]
- Ghori, I.; Tabassum, M.; Ahmad, T.; Zuberi, A.; Imran, M. Geotrichum candidum enhanced the Enterococcus faecium impact in improving physiology, and health of Labeo rohita (Hamilton, 1822) by modulating gut microbiome under mimic aquaculture conditions. Turk. J. Fish. Aquat. Sci. 2018, 18, 1255–1267. [Google Scholar] [CrossRef]
- Amir, I.; Zuberi, A.; Imran, M.; Ullah, S. Evaluation of yeast and bacterial based probiotics for early rearing of Labeo rohita (Hamilton, 1822). Aquac. Res. 2018, 49, 3856–3863. [Google Scholar] [CrossRef]
- Noor-Ul, H.; Haokun, L.; Junyan, J.; Xiaoming, Z.; Dong, H.; Yunxia, Y.; Shouqi, X. Dietary supplementation of Geotrichum candidum improves growth, gut microbiota, immune-related gene expression and disease resistance in gibel carp CAS Ⅲ (Carassius auratus gibelio). Fish Shellfish Immunol. 2020, 99, 144–153. [Google Scholar] [CrossRef]
- Omeike, S.O.; Kareem, S.O.; Nandanwar, H.; Lasisi, A.A.; Oluwafemi, F.; Jangra, M. Purification, De Novo Characterization and Antibacterial Properties of a Novel, Narrow-Spectrum Bacteriostatic Tripeptide from Geotrichum candidum OMON-1. Arab. J. Sci. Eng. 2020, 46, 5275–5283. [Google Scholar] [CrossRef]
- Mookherjee, A.; Bera, P.; Mitra, A.; Maiti, M.K. Characterization and Synergistic Effect of Antifungal Volatile Organic Compounds Emitted by the Geotrichum candidum PF005, an Endophytic Fungus from the Eggplant. Microb. Ecol. 2017, 75, 647–661. [Google Scholar] [CrossRef]
- Mitra, M.; Singh, R.; Ghissing, U.; Das, A.K.; Mitra, A.; Maiti, M.K. Characterization of an alcohol acetyltransferase GcAAT responsible for the production of antifungal volatile esters in endophytic Geotrichum candidum PF005. Microbiol. Res. 2022, 260, 127021. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Zhou, S.; Xu, X.; Li, D.; Lin, Y.; Lyu, F.; Dong, M. A multi-scale approach to investigate adhesion properties of Pseudomonas aeruginosa PAO1 to Geotrichum candidum LG-8, a potential probiotic yeast. Foods 2020, 9, 912. [Google Scholar] [CrossRef]
- Eldin, A.M.; Kamel, Z.; Hossam, N. Purification and identification of surface active amphiphilic candidates produced by Geotrichum candidum MK880487 possessing antifungal property. J. Dispers. Sci. Technol. 2020, 42, 1082–1098. [Google Scholar] [CrossRef]
- Eldin, A.M.; Kamel, Z.; Hossam, N. Isolation and genetic identification of yeast producing biosurfactants, evaluated by different screening methods. Microchem. J. 2019, 146, 309–314. [Google Scholar] [CrossRef]
- Shalaby, M.G.; Al-Hossainy, A.F.; Abo-Zeid, A.M.; Mobark, H.; Mahmoud, Y.A.-G. Combined Experimental Thin Film, DFT-TDDFT Computational Study, structure properties for [FeO + P2O5] bio-nanocomposite by Geotrichum candidum and Environmental application. J. Mol. Struct. 2022, 1258, 132635. [Google Scholar] [CrossRef]
- Rudramurthy, G.R.; Swamy, M.K.; Sinniah, U.R.; Ghasemzadeh, A. Nanoparticles: Alternatives against drug-resistant pathogenic microbes. Molecules 2016, 21, 836. [Google Scholar] [CrossRef]
- Mystrioti, C.; Xenidis, A.; Papassiopi, N. Application of Iron Nanoparticles Synthesized by Green Tea for the Removal of Hexavalent Chromium in Column Tests. J. Geosci. Environ. Prot. 2014, 02, 28–36. [Google Scholar] [CrossRef]
- Tan, H.-T.; Corbin, K.R.; Fincher, G.B. Emerging technologies for the production of renewable liquid transport fuels from biomass sources enriched in Plant cell walls. Front. Plant Sci. 2016, 7, 1854. [Google Scholar] [CrossRef] [Green Version]
- Naik, S.N.N.; Goud, V.V.; Rout, P.K.; Dalai, A.K. Production of first and second generation biofuels: A comprehensive review. Renew. Sustain. Energy Rev. 2010, 14, 578–597. [Google Scholar] [CrossRef]
- Cherubini, F. The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Convers. Manag. 2010, 51, 1412–1421. [Google Scholar] [CrossRef]
- Tilman, D.; Hill, J.; Lehman, C. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 2006, 314, 1598–1600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, J.; Nelson, E.; Tilman, D.; Polasky, S.; Tiffany, D. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. USA 2006, 103, 11206–11210. [Google Scholar] [CrossRef] [Green Version]
- Berrin, J.-G.; Rosso, M.-N.; Hachem, M.A. Fungal secretomics to probe the biological functions of lytic polysaccharide monooxygenases. Carbohydr. Res. 2017, 448, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Ladevèze, S.; Haon, M.; Villares, A.; Cathala, B.; Grisel, S.; Herpoël-Gimbert, I.; Henrissat, B.; Berrin, J.-G. The yeast Geotrichum candidum encodes functional lytic polysaccharide monooxygenases. Biotechnol. Biofuels 2017, 10, 215. [Google Scholar] [CrossRef] [PubMed]
- Valinhas, R.V.; Pantoja, L.A.; Maia, A.C.F.; Miguel, M.G.C.; Vanzela, A.P.F.; Nelson, D.L.; Santos, A.S. Xylose fermentation to ethanol by new Galactomyces geotrichum and Candida akabanensis strains. PeerJ 2018, 6, e4673. [Google Scholar] [CrossRef] [Green Version]
- Gad, A.M.; Suleiman, W.B.; El-Sheikh, H.H.; Elmezayen, H.A.; Beltagy, E.A. Characterization of Cellulase from Geotrichum candidum Strain Gad1 Approaching Bioethanol Production. Arab. J. Sci. Eng. 2022, 47, 6837–6850. [Google Scholar] [CrossRef]
- Cherry, J.R.; Fidantsef, A.L. Directed evolution of industrial enzymes: An update. Curr. Opin. Biotechnol. 2003, 14, 438–443. [Google Scholar] [CrossRef]
- Shintani, N.; Shoda, M. Decolorization of oxygen-delignified bleaching effluent and biobleaching of oxygen-delignified kraft pulp by non-white-rot fungus Geotrichum candidum Dec 1. J. Environ. Sci. 2013, 25, S164–S168. [Google Scholar] [CrossRef]
- Pavlov, I.Y.; Bobrov, K.S.; Sumacheva, A.D.; Masharsky, A.E.; Polev, D.E.; Zhurishkina, E.V.; Kulminskaya, A.A. Scytalidium candidum 3C is a new name for the Geotrichum candidum Link 3C strain. J. Basic Microbiol. 2018, 58, 883–891. [Google Scholar] [CrossRef]
- Shimada, Y.; Sugihara, A.; Nagao, T.; Tominaga, Y. Induction of Geotrichum candidum lipase by long-chain fatty acids. J. Ferment. Bioeng. 1992, 74, 77–80. [Google Scholar] [CrossRef]
- Ramos, E.Z.; Júnior, R.H.M.; de Castro, P.F.; Tardioli, P.W.; Mendes, A.A.; Fernandéz-Lafuente, R.; Hirata, D.B. Production and immobilization of Geotrichum candidum lipase via physical adsorption on eco-friendly support: Characterization of the catalytic properties in hydrolysis and esterification reactions. J. Mol. Catal. B Enzym. 2015, 118, 43–51. [Google Scholar] [CrossRef]
- Asses, N.; Ayed, L.; Bouallagui, H.; Ben Rejeb, I.; Gargouri, M.; Hamdi, M. Use of Geotrichum candidum for olive mill wastewater treatment in submerged and static culture. Bioresour. Technol. 2009, 100, 2182–2188. [Google Scholar] [CrossRef] [PubMed]
- Brabcová, J.; Zarevúcka, M.; Macková, M. Differences in hydrolytic abilities of two crude lipases from Geotrichum candidum 4013. Yeast 2010, 27, 1029–1038. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, R.R.; Burkert, J.F.M.; Mazutti, M.A.; Maugeri, F.; Rodrigues, M.I. Evaluation of lipase production by Geotrichum candidum in shaken flasks and bench-scale stirred bioreactor using different impellers. Biocatal. Agric. Biotechnol. 2012, 1, 147–151. [Google Scholar] [CrossRef]
- Nicoletti, G.; Cipolatti, E.; Valerio, A.; Carbonera, N.G.; Soares, N.S.; Theilacker, E.; Ninow, J.L.; Oliveira, D. Evaluation of different methods for immobilization of Candida antarctica lipase B (CalB lipase) in polyurethane foam and its application in the production of geranyl propionate. Bioprocess Biosyst. Eng. 2015, 38, 1739–1748. [Google Scholar] [CrossRef]
- Brabcová, J.; Demianová, Z.; Vondrášek, J.; Jágr, M.; Zarevúcka, M.; Palomo, J.M. Highly selective purification of three lipases from Geotrichum candidum 4013 and their characterization and biotechnological applications. J. Mol. Catal. B Enzym. 2013, 98, 62–72. [Google Scholar] [CrossRef]
- Adlercreutz, P. Immobilisation and application of lipases in organic media. Chem. Soc. Rev. 2013, 42, 6406–6436. [Google Scholar] [CrossRef] [Green Version]
- Hasan, F.; Shah, A.A.; Hameed, A. Industrial applications of microbial lipases. Enzym. Microb. Technol. 2006, 39, 235–251. [Google Scholar] [CrossRef]
- Ferreira, M.M.; de Oliveira, G.F.; Basso, R.C.; Mendes, A.A.; Hirata, D.B. Optimization of free fatty acid production by enzymatic hydrolysis of vegetable oils using a non-commercial lipase from Geotrichum candidum. Bioprocess Biosyst. Eng. 2019, 42, 1647–1659. [Google Scholar] [CrossRef]
- Santos, K.C.; Cassimiro, D.M.J.; Avelar, M.H.M.; Hirata, D.B.; de Castro, H.F.; Fernández-Lafuente, R.; Mendes, A.A. Characterization of the catalytic properties of lipases from plant seeds for the production of concentrated fatty acids from different vegetable oils. Ind. Crops Prod. 2013, 49, 462–470. [Google Scholar] [CrossRef]
- Fraile, J.M.; García, J.I.; Herrerías, C.I.; Pires, E. Synthetic Transformations for the Valorization of Fatty Acid Derivatives. Synthesis 2017, 49, 1444–1460. [Google Scholar] [CrossRef] [Green Version]
- Murty, V.R.; Bhat, J.; Muniswaran, P.K.A. Hydrolysis of oils by using immobilized lipase enzyme: A review. Biotechnol. Bioprocess Eng. 2002, 7, 57–66. [Google Scholar] [CrossRef]
- Sugihara, A.; Shimada, Y.; Nakamura, M.; Nagao, T.; Tominaga, Y. Positional and fatty acid specificities of Geottichum candidum Upases. Protein Eng. Des. Sel. 1994, 7, 585–588. [Google Scholar] [CrossRef] [PubMed]
- Laguerre, M.; Nlandu Mputu, M.; Brïys, B.; Lopez, M.; Villeneuve, P.; Dubreucq, E. Regioselectivity and fatty acid specificity of crude lipase extracts from Pseudozyma tsukubaensis, Geotrichum candidum, and Candida rugosa. Eur. J. Lipid Sci. Technol. 2017, 119, 1600302. [Google Scholar] [CrossRef]
- Santos, L.F.S.; Silva, M.R.L.; Ferreira, E.E.A.; Gama, R.S.; Carvalho, A.K.F.; Barboza, J.C.S.; Luiz, J.H.H.; Mendes, A.A.; Hirata, D.B. Decyl oleate production by enzymatic esterification using Geotrichum candidum lipase immobilized on a support prepared from rice husk. Biocatal. Agric. Biotechnol. 2021, 36, 102142. [Google Scholar] [CrossRef]
- Oroz-Guinea, I.; Zorn, K.; Bornscheuer, U.T. Enrichment of Erucic and Gondoic Fatty Acids from Crambe and Camelina Oils Catalyzed by Geotrichum candidum Lipases I and II. J. Am. Oil Chem. Soc. 2019, 96, 1327–1335. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, M.M.; Santiago, F.L.B.; da Silva, N.A.G.; Luiz, J.H.H.; Fernandéz-Lafuente, R.; Mendes, A.A.; Hirata, D.B. Different strategies to immobilize lipase from Geotrichum candidum: Kinetic and thermodynamic studies. Process Biochem. 2018, 67, 55–63. [Google Scholar] [CrossRef]
- Shimada, Y.; Sugihara, A.; Iizumi, T.; Tominaga, Y. CDNA cloning and characterization of Geotrichum candidum lipase II. J. Biochem. 1990, 107, 703–707. [Google Scholar] [CrossRef] [PubMed]
- Sugihara, A.; Shimada, Y.; Tominaga, Y. Separation and characterization of two molecular forms of Geotrichum candidum lipase. J. Biochem. 1990, 107, 426–430. [Google Scholar] [CrossRef]
- Shimada, Y.; Sugihara, A.; Tominaga, Y.; Iizumi, T.; Tsunasawa, S.; Iizurni, T.; Susumu, T. CDNA molecular cloning of Geotrichum candidum lipase. J. Biochem. 1989, 106, 383–388. [Google Scholar] [CrossRef]
- Gopinath, S.C.B.; Hilda, A.; Priya, T.L.; Annadurai, G.; Anbu, P. Purification of lipase from Geotrichum candidum: Conditions optimized for enzyme production using Box–Behnken design. World J. Microbiol. Biotechnol. 2003, 19, 681–689. [Google Scholar] [CrossRef]
- Sidebottom, C.M.; Charton, E.; Dunn, P.P.J.; Mycock, G.; Davies, C.; Sutton, J.L.; Macrae, A.R.; Slabas, A.R. Geotrichum candidum produces several lipases with markedly different substrate specificities. JBIC J. Biol. Inorg. Chem. 1991, 202, 485–491. [Google Scholar] [CrossRef]
- de Morais Júnior, W.G.; Terrasan, C.R.F.; Fernández-Lorente, G.; Guisán, J.M.; Ribeiro, E.J.; de Resende, M.M.; Pessela, B.C. Solid-phase amination of Geotrichum candidum lipase: Ionic immobilization, stabilization and fish oil hydrolysis for the production of Omega-3 polyunsaturated fatty acids. Eur. Food Res. Technol. 2017, 243, 1375–1384. [Google Scholar] [CrossRef]
- de Morais Júnior, W.G.; Maia, A.M.; Martins, P.A.; Fernández-Lorente, G.; Guisán, J.M.; Pessela, B.C. Influence of different immobilization techniques to improve the enantioselectivity of lipase from Geotrichum candidum applied on the resolution of mandelic acid. Mol. Catal. 2018, 458, 89–96. [Google Scholar] [CrossRef]
- Guéguen, M.; Lenoir, J. Aptitude de l’espèce Geotrichum candidum à la production d’enzymes protéolytiques. Le Lait 1975, 55, 145–162. [Google Scholar] [CrossRef]
- Muhammad, A.; Imran, B.S.A.; Jean-Paul, V.; Muhammad, I.A.; Faryal, R.; Nathalie, D.; Muhammad, I. Purification, Characterization and thermodynamic assessment of an alkaline protease by Geotrichum candidum of dairy origin. Iran. J. Biotechnol. 2019, 17, 30–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agrawal, D.; Patidar, P.; Banerjee, T.; Patil, S. Production of alkaline protease by Penicillium sp. under SSF conditions and its application to soy protein hydrolysis. Process Biochem. 2004, 39, 977–981. [Google Scholar] [CrossRef]
- Ahmed, A.; Sohail, M. Characterization of pectinase from Geotrichum candidum AA15 and its potential application in orange juice clarification. J. King Saud Univ.-Sci. 2020, 32, 955–961. [Google Scholar] [CrossRef]
- Ejaz, U.; Ahmed, A.; Sohail, M. Statistical optimization of immobilization of yeast cells on corncob for pectinase production. Biocatal. Agric. Biotechnol. 2018, 14, 450–456. [Google Scholar] [CrossRef]
- Vaillant, F.; Millan, P.; O’Brien, G.; Dornier, M.; Decloux, M.; Reynes, M. Crossflow microfiltration of passion fruit juice after partial enzymatic liquefaction. J. Food Eng. 1999, 42, 215–224. [Google Scholar] [CrossRef]
- Sulaiman, M.Z.; Sulaiman, N.M.; Yih, L.S. Limiting permeate flux in the clarification of untreated starfruit juice by membrane ultrafiltration. Chem. Eng. J. 1998, 69, 145–148. [Google Scholar] [CrossRef]
- Patidar, M.K.; Nighojkar, S.; Kumar, A.; Nighojkar, A. Pectinolytic enzymes-solid state fermentation, assay methods and applications in fruit juice industries: A review. 3 Biotech 2018, 8, 199. [Google Scholar] [CrossRef]
- Rao, M.A.; Acree, T.E.; Cooley, H.J.; Ennis, R.W. Clarification of Apple Juice by Hollow Fiber Ultrafiltration: Fluxes and Retention of Odor-Active Volatiles. J. Food Sci. 1987, 52, 375–377. [Google Scholar] [CrossRef]
- dos Santos, T.C.; dos Santos Reis, N.; Silva, T.P.; Machado, F.D.P.P.; Bonomo, R.C.F.; Franco, M. Prickly palm cactus husk as a raw material for production of ligninolytic enzymes by Aspergillus niger. Food Sci. Biotechnol. 2016, 25, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Lessa, O.A.; Reis, N.D.S.; Leite, S.G.F.; Gutarra, M.L.E.; Souza, A.O.; Gualberto, S.A.; de Oliveira, J.R.; Aguiar-Oliveira, E.; Franco, M. Effect of the solid state fermentation of cocoa shell on the secondary metabolites, antioxidant activity, and fatty acids. Food Sci. Biotechnol. 2017, 27, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Padma, P.N.; Anuradha, K.; Reddy, G. Pectinolytic yeast isolates for cold-active polygalacturonase production. Innov. Food Sci. Emerg. Technol. 2011, 12, 178–181. [Google Scholar] [CrossRef]
- Ahmed, A.; Ejaz, U.; Sohail, M. Pectinase production from immobilized and free cells of Geotrichum candidum AA15 in galacturonic acid and sugars containing medium. J. King Saud Univ.-Sci. 2020, 32, 952–954. [Google Scholar] [CrossRef]
- Hollmann, F.; Arends, I.W.C.E.; Buehler, K.; Schallmey, A.; Bühler, B. Enzyme-mediated oxidations for the chemist. Green Chem. 2011, 13, 226–265. [Google Scholar] [CrossRef]
- Romano, D.; Villa, R.; Molinari, F. Preparative Biotransformations: Oxidation of Alcohols. Chemcatchem 2012, 4, 739–749. [Google Scholar] [CrossRef]
- Ceccoli, R.D.; Bianchi, D.A.; Rial, D.V. Flavoprotein monooxygenases for oxidative biocatalysis: Recombinant expression in microbial hosts and applications. Front. Microbiol. 2014, 5, 25. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Inoue, Y.; Matsuda, T.; Misawa, I. Stereoselective oxidation and reduction by immobilized Geotrichum candidum in an organic solvent. J. Chem. Soc. Perkin Trans. 1 1999, 2397–2402. [Google Scholar] [CrossRef]
- Mitsukura, K.; Sato, Y.; Yoshida, T.; Nagasawa, T. Oxidation of heterocyclic and aromatic aldehydes to the corresponding carboxylic acids by Acetobacter and Serratia strains. Biotechnol. Lett. 2004, 26, 1643–1648. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-Y.; Zong, M.-H.; Li, N. Whole-cell biocatalytic selective oxidation of 5-hydroxymethylfurfural to 5-hydroxymethyl-2-furancarboxylic acid. Green Chem. 2017, 19, 4544–4551. [Google Scholar] [CrossRef]
- Koesoema, A.A.; Standley, D.M.; Senda, T.; Matsuda, T. Impact and relevance of alcohol dehydrogenase enantioselectivities on biotechnological applications. Appl. Microbiol. Biotechnol. 2020, 104, 2897–2909. [Google Scholar] [CrossRef]
- Koesoema, A.A.; Standley, D.M.; Ohshima, S.; Tamura, M.; Matsuda, T. Control of enantioselectivity in the enzymatic reduction of halogenated acetophenone analogs by substituent positions and sizes. Tetrahedron Lett. 2020, 61, 151820. [Google Scholar] [CrossRef]
- Koesoema, A.A.; Standley, D.M.; Sriwong, K.T.; Tamura, M.; Matsuda, T. Access to both enantiomers of substituted 2-tetralol analogs by a highly enantioselective reductase. Tetrahedron Lett. 2020, 61, 151682. [Google Scholar] [CrossRef]
- Koesoema, A.A.; Sugiyama, Y.; Sriwong, K.T.; Xu, Z.; Verina, S.; Standley, D.M.; Senda, M.; Senda, T.; Matsuda, T. Reversible control of enantioselectivity by the length of ketone substituent in biocatalytic reduction. Appl. Microbiol. Biotechnol. 2019, 103, 9529–9541. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Matsuda, T. Asymmetric Reduction of Ketones by the Acetone Powder of Geotrichum candidum. J. Org. Chem. 1998, 63, 8957–8964. [Google Scholar] [CrossRef]
- Matsuda, T.; Yamagishi, Y.; Koguchi, S.; Iwai, N.; Kitazume, T. An effective method to use ionic liquids as reaction media for asymmetric reduction by Geotrichum candidum. Tetrahedron Lett. 2006, 47, 4619–4622. [Google Scholar] [CrossRef]
- Yamamoto, T.; Nakata, Y.; Cao, C.; Sugiyama, Y.; Asanuma, Y.; Kanamaru, S.; Matsuda, T. Acetophenone reductase with extreme stability against a high concentration of organic compounds or an elevated temperature. Appl. Microbiol. Biotechnol. 2013, 97, 10413–10421. [Google Scholar] [CrossRef]
- Nakata, Y.; Fukae, T.; Kanamori, R.; Kanamaru, S.; Matsuda, T. Purification and characterization of acetophenone reductase with excellent enantioselectivity from Geotrichum candidum NBRC 4597. Appl. Microbiol. Biotechnol. 2009, 86, 625–631. [Google Scholar] [CrossRef]
- Hoshino, T.; Yamabe, E.; Hawari, M.A.; Tamura, M.; Kanamaru, S.; Yoshida, K.; Koesoema, A.A.; Matsuda, T. Oxidation of aromatic and aliphatic aldehydes to carboxylic acids by Geotrichum candidum aldehyde dehydrogenase. Tetrahedron 2020, 76, 131387. [Google Scholar] [CrossRef]
- Basso, A.; Serban, S. Industrial applications of immobilized enzymes—A review. Mol. Catal. 2019, 479, 110607. [Google Scholar] [CrossRef]
- Matsuda, T.; Marukado, R.; Mukouyama, M.; Harada, T.; Nakamura, K. Asymmetric reduction of ketones by Geotrichum candidum: Immobilization and application to reactions using supercritical carbon dioxide. Tetrahedron Asymmetry 2008, 19, 2272–2275. [Google Scholar] [CrossRef]
- Matsuda, T.; Watanabe, K.; Kamitanaka, T.; Harada, T.; Nakamura, K. Biocatalytic reduction of ketones by a semi-continuous flow process using supercritical carbon dioxide. Chem. Commun. 2003, 1198–1199. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, T.; Harada, T.; Nakamura, K. Alcohol dehydrogenase is active in supercritical carbon dioxide. Chem. Commun. 2000, 1367–1368. [Google Scholar] [CrossRef]
- Koesoema, A.A.; Sugiyama, Y.; Xu, Z.; Standley, D.M.; Senda, M.; Senda, T.; Matsuda, T. Structural basis for a highly (S)-enantioselective reductase towards aliphatic ketones with only one carbon difference between side chain. Appl. Microbiol. Biotechnol. 2019, 103, 9543–9553. [Google Scholar] [CrossRef] [PubMed]
- Sriwong, K.T.; Ogura, K.; Hawari, M.A.; Matsuda, T. Geotrichum candidum aldehyde dehydrogenase-inorganic nanocrystal with enhanced activity. Enzym. Microb. Technol. 2021, 150, 109866. [Google Scholar] [CrossRef] [PubMed]
- Sriwong, K.T.; Kamogawa, R.; Issasi, C.S.C.; Sasaki, M.; Matsuda, T. Geotrichum candidum acetophenone reductase immobilization on reduced graphene oxide: A promising biocatalyst for green asymmetric reduction of ketones. Biochem. Eng. J. 2022, 177, 108263. [Google Scholar] [CrossRef]
- Zhu, J.; Lu, K.; Xu, X.; Wang, X.; Shi, J. Purification and characterization of a novel glutamate dehydrogenase from Geotrichum candidum with higher alcohol and amino acid activity. AMB Express 2017, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.L.P.; Caridade, T.N.D.S.; Magalhães, R.R.; De Sousa, K.T.; De Sousa, C.C.; Vale, J.A. Biocatalytic production of Ɛ-caprolactone using Geotrichum candidum cells immobilized on functionalized silica. Appl. Microbiol. Biotechnol. 2020, 104, 8887–8895. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.L.P.; Batista, P.K.; Filho, A.D.; Junior, C.S.D.N.; Rebouças, J.S.; Vale, J.A. Rapid conversion of cyclohexenone, cyclohexanone and cyclohexanol to ε-caprolactone by whole cells of Geotrichum candidum CCT 1205. Biocatal. Biotransform. 2017, 35, 185–190. [Google Scholar] [CrossRef]
- Diwan, B.; Gupta, P. A Deuteromycete Isolate Geotrichum candidum as Oleaginous Cell Factory for Medium-Chain Fatty Acid-Rich Oils. Curr. Microbiol. 2020, 77, 3738–3749. [Google Scholar] [CrossRef]
- Ratledge, C.; Wynn, J.P. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv. Appl. Microbiol. 2002, 51, 1–52. [Google Scholar] [CrossRef]
- Bach, A.C.; Babayan, V.K. Medium-chain triglycerides: An update. Am. J. Clin. Nutr. 1982, 36, 950–962. [Google Scholar] [CrossRef]
- Lee, Y.Y.; Tang, T.-K.; Lai, O.-M. Health benefits, enzymatic production, and application of medium- and long-chain triacylglycerol (MLCT) in food industries: A Review. J. Food Sci. 2012, 77, R137–R144. [Google Scholar] [CrossRef]
- Babayan, V.K. Medium chain length fatty acid esters and their medical and nutritional applications. J. Am. Oil Chem. Soc. 1981, 58, 49A–51A. [Google Scholar] [CrossRef]
- Carnielli, V.P.; Sulkers, E.J.; Moretti, C.; Wattimena, J.L.D.; van Goudoever, J.B.; Degenhart, H.J.; Zacchello, F.; Sauer, P.J.J. Conversion of octanoic acid into long-chain saturated fatty acids in premature infants fed a formula containing medium-chain triglycerides. Metabolism 1994, 43, 1287–1292. [Google Scholar] [CrossRef]
- Su, S.; Li, D.; Zhang, Q.; Xiao, R.; Huang, F.; Wu, J. Temporal trend and source apportionment of water pollution in different functional zones of Qiantang River, China. Water Res. 2011, 45, 1781–1795. [Google Scholar] [CrossRef] [PubMed]
- Radi, S.; Tighadouini, S.; Bacquet, M.; Degoutin, S.; Janus, L.; Mabkhot, Y.N. Fabrication and covalent modification of highly chelated hybrid material based on silica-bipyridine framework for efficient adsorption of heavy metals: Isotherms, kinetics and thermodynamics studies. RSC Adv. 2016, 6, 82505–82514. [Google Scholar] [CrossRef]
- Tembo, R.N. The Effects of Some Metals in Acidified Waters on Aquatic Organisms. Oceanogr. Fish. Open Access J. 2017, 4, 555645. [Google Scholar] [CrossRef] [Green Version]
- Ghorbani, M.; Seyedin, O.; Aghamohammadhassan, M. Adsorptive removal of lead (II) ion from water and wastewater media using carbon-based nanomaterials as unique sorbents: A review. J. Environ. Manag. 2019, 254, 109814. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, A.J.; Espínola, F.; Moya, M.; Ruiz, E. Biosorption of Pb(II) Ions by Klebsiella sp. 3S1 Isolated from a Wastewater Treatment Plant: Kinetics and Mechanisms Studies. BioMed Res. Int. 2015, 2015, 719060. [Google Scholar] [CrossRef] [Green Version]
- Hwang, I.-K.; Kim, K.-W.; Kim, J.-H.; Kang, J.-C. Toxic effects and depuration after the dietary lead(II) exposure on the bioaccumulation and hematological parameters in starry flounder (Platichthys stellatus). Environ. Toxicol. Pharmacol. 2016, 45, 328–333. [Google Scholar] [CrossRef]
- Zhang, D.; Yin, C.; Abbas, N.; Mao, Z.; Zhang, Y. Multiple heavy metal tolerance and removal by an earthworm gut fungus Trichoderma brevicompactum QYCD-6. Sci. Rep. 2020, 10, 6940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, M.; Xu, Y.; Qiao, Y.; Zhang, Z.; Liang, J.; Peng, Y.; Liao, J.; Qiao, Y.; Shang, C.; Guo, Z.; et al. A novel yeast strain Geotrichum sp. CS-67 capable of accumulating heavy metal ions. Ecotoxicol. Environ. Saf. 2022, 236, 113497. [Google Scholar] [CrossRef]
- Meng, L.; Li, Z.; Liu, L.; Chen, X.; Wu, J.; Li, W.; Zhang, X.; Dong, M. Lead removal from water by a newly isolated Geotrichum candidum LG-8 from Tibet kefir milk and its mechanism. Chemosphere 2020, 259, 127507. [Google Scholar] [CrossRef]
- Fomina, M.; Gadd, G.M. Biosorption: Current perspectives on concept, definition and application. Bioresour. Technol. 2014, 160, 3–14. [Google Scholar] [CrossRef]
- Carolin, C.F.; Kumar, P.S.; Saravanan, A.; Joshiba, G.J.; Naushad, M. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. J. Environ. Chem. Eng. 2017, 5, 2782–2799. [Google Scholar] [CrossRef]
- Bidhendi, M.E.; Gabris, M.A.; Goudarzi, V.; Abedynia, S.; Juma, B.H.; Sereshti, H.; Kamboh, M.A.; Soylak, M.; Nodeh, H.R. Removal of some heavy metal ions from water using novel adsorbent based on iron oxide-doped sol-gel organic-inorganic hybrid nanocomposite: Equilibrium and kinetic study. Desalination Water Treat. 2019, 147, 173–182. [Google Scholar] [CrossRef]
- Ibrahim, H.S.; Ammar, N.S.; Soylak, M.; Ibrahim, M. Removal of Cd(II) and Pb(II) from aqueous solution using dried water hyacinth as a biosorbent. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 96, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Tang, X.; Huang, Y.; Keller, A.A.; Lan, J. Competitive removal of Pb2+ and malachite green from water by magnetic phosphate nanocomposites. Water Res. 2019, 150, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Akbar, M.U.; Huma, Z.-E.; Salman, M.; Hussain, R.; Zahoor, A.F.; Mansha, A.; Asim, S.; Zuber, M. Synthetic materials to bionanocomposites: An overview. Bionanocomposites 2020, 1–20. [Google Scholar] [CrossRef]
- Bourzama, G.; Iratni, N.; Ennaghra, N.; Ouled-Haddar, H.; Soumati, B.; Amour, K.; Bechiri, K. In vitro removal of electronic and electrical wastes by fungi isolated from soil at Annaba area in northeast of Algeria. Environ. Nat. Resour. J. 2021, 19, 302–309. [Google Scholar] [CrossRef]
- Ankit; Saha, L.; Kumar, V.; Tiwari, J.; Sweta; Rawat, S.; Singh, J.; Bauddh, K. Electronic waste and their leachates impact on human health and environment: Global ecological threat and management. Environ. Technol. Innov. 2021, 24, 102049. [Google Scholar] [CrossRef]
- Cooke, W.B.; Pipes, W.O. The occurrence of fungi in activated sludge. Mycopathol. Mycol. Appl. 1970, 40, 249–270. [Google Scholar] [CrossRef] [PubMed]
- García, I.G.; Venceslada, J.B.; Peña, P.J.; Gómez, E.R. Biodegradation of phenol compounds in vinasse using Aspergillus terreus and Geotrichum candidum. Water Res. 1997, 31, 2005–2011. [Google Scholar] [CrossRef]
- Dragičević, T.; Hren, M.; Gmajnić, M.; Pelko, S.; Kungulovski, D.; Kungulovski, I.; Čvek, D.; Frece, J.; Markov, K.; Delaš, F. Biodegradation of olive mill wastewater by Trichosporon cutaneum and Geotrichum candidum. Arch. Ind. Hyg. Toxicol. 2010, 61, 399–405. [Google Scholar] [CrossRef]
- Verma, J.P.; Jaiswal, D.K. Book Review: Advances in Biodegradation and Bioremediation of Industrial Waste. Front. Microbiol. 2016, 6, 1555. [Google Scholar] [CrossRef] [Green Version]
- Jakovljević, V.D.; Vrvić, M.M. Potential of pure and mixed cultures of Cladosporium cladosporioides and Geotrichum candidum for application in bioremediation and detergent industry. Saudi J. Biol. Sci. 2018, 25, 529–536. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.J.; Ishikawa, K.; Hirai, M.; Shoda, M. Characteristics of a newly isolated fungus, Geotrichum candidum Dec 1, which decolorizes various dyes. J. Ferment. Bioeng. 1995, 79, 601–607. [Google Scholar] [CrossRef]
- Rajhans, G.; Sen, S.K.; Barik, A.; Raut, S. De-colourization of textile effluent using immobilized Geotrichum candidum: An insight into mycoremediation. Lett. Appl. Microbiol. 2021, 72, 445–457. [Google Scholar] [CrossRef] [PubMed]
- Máximo, C.; Amorim, M.T.P.; Costa-Ferreira, M. Biotransformation of industrial reactive azo dyes by Geotrichum sp. CCMI 1019. Enzym. Microb. Technol. 2003, 32, 145–151. [Google Scholar] [CrossRef]
- Vikrant, K.; Giri, B.S.; Raza, N.; Roy, K.; Kim, K.-H.; Rai, B.N.; Singh, R.S. Recent advancements in bioremediation of dye: Current status and challenges. Bioresour. Technol. 2018, 253, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Celia, M.P.; Suruthi, S. Textile dye degradation using bacterial strains isolated from textile mill effluent. Int. J. Appl. Res. 2016, 2, 337–341. [Google Scholar]
- Wu, Y.; Wang, X.; Yin, Z.; Dong, J. Geotrichum candidum arthrospore cell wall particles as a novel carrier for curcumin encapsulation. Food Chem. 2022, 404, 134308. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Ghosh, R.; Charcosset, C. Extraction, purification and applications of curcumin from plant materials-A comprehensive review. Trends Food Sci. Technol. 2021, 112, 419–430. [Google Scholar] [CrossRef]
- Liu, C.-H.; Huang, H.-Y. In vitro anti-propionibacterium activity by curcumin containing vesicle system. Chem. Pharm. Bull. 2013, 61, 419–425. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Lu, S. The importance of amine-degrading enzymes on the biogenic amine degradation in fermented foods: A review. Process Biochem. 2020, 99, 331–339. [Google Scholar] [CrossRef]
- Zhong, X.; Huo, D.; Fa, H.; Luo, X.; Wang, Y.; Zhao, Y.; Hou, C. Rapid and ultrasensitive detection of biogenic amines with colorimetric sensor array. Sens. Actuators B Chem. 2018, 274, 464–471. [Google Scholar] [CrossRef]
- Leuschner, R.G.K.; Hammes, W.P. Degradation of histamine and tyramine by Brevibacterium linens during surface ripening of Munster cheese. J. Food Prot. 1998, 61, 874–878. [Google Scholar] [CrossRef]
- Roig-Sagués, A.X.; Molina, A.P.; Hernández-Herrero, M. Histamine and tyramine-forming microorganisms in Spanish traditional cheeses. Eur. Food Res. Technol. 2002, 215, 96–100. [Google Scholar] [CrossRef]
- Gardini, F.; Tofalo, R.; Belletti, N.; Iucci, L.; Suzzi, G.; Torriani, S.; Guerzoni, M.E.; Lanciotti, R. Characterization of yeasts involved in the ripening of Pecorino Crotonese cheese. Food Microbiol. 2006, 23, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Molimard, P.; Lesschaeve, I.; Issanchou, S.; Brousse, M.; Spinnler, H.E. Effect of the association of surface flora on the sensory properties of mould-ripened cheese. Le Lait 1997, 77, 181–187. [Google Scholar] [CrossRef]
- Jacobsen, T.; Poulsen, O.M. Comparison of lipases from different strains of the fungus Geotrichum candidum. Biochim. et Biophys. Acta (BBA)-Lipids Lipid Metab. 1995, 1257, 96–102. [Google Scholar] [CrossRef]
- Jolley, K.A.; Maiden, M.C. Using MLST to study bacterial variation: Prospects in the genomic era. Futur. Microbiol. 2014, 9, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Guéguen, M.; Jacquet, J. Etudes sur les caractères culturaux et la morphologie de Geotrichum candidum Link. Le Lait 1982, 62, 625–644. [Google Scholar] [CrossRef]
- Jacques, N.; Mallet, S.; Laaghouiti, F.; Tinsley, C.R.; Casaregola, S. Specific populations of the yeast Geotrichum candidum revealed by molecular typing. Yeast 2017, 34, 165–178. [Google Scholar] [CrossRef]
- Alper, I.; Frenette, M.; Labrie, S. Genetic diversity of dairy Geotrichum candidum strains revealed by multilocus sequence typing. Appl. Microbiol. Biotechnol. 2013, 97, 5907–5920. [Google Scholar] [CrossRef]
- Tinsley, C.R.; Jacques, N.; Lucas, M.; Grondin, C.; Legras, J.-L.; Casaregola, S. Molecular Genetic Analysis with Microsatellite-like Loci Reveals Specific Dairy-Associated and Environmental Populations of the Yeast Geotrichum candidum. Microorganisms 2022, 10, 103. [Google Scholar] [CrossRef]
- Warringer, J.; Blomberg, A. Involvement of yeastYOL151W/GRE2 in ergosterol metabolism. Yeast 2006, 23, 389–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauser, M.; Horn, P.; Tournu, H.; Hauser, N.C.; Hoheisel, J.D.; Brown, A.J.P.; Dickinson, J.R.; Hoheisel, J.D. A transcriptome analysis of isoamyl alcohol-induced filamentation in yeast reveals a novel role for Gre2p as isovaleraldehyde reductase. FEMS Yeast Res. 2007, 7, 84–92. [Google Scholar] [CrossRef]
- de Hoog, G.S.; Smith, M.T. Galactomyces Redhead & Malloch (1977). In The Yeasts, 5th ed.; Kurtzman, C.P., Fell, J.W., Boekhout, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; Chapter 31; Volume 2, pp. 413–420. [Google Scholar] [CrossRef]
- Chitasombat, M.N.; Kofteridis, D.P.; Jiang, Y.; Tarrand, J.; Lewis, R.E.; Kontoyiannis, D.P. Rare opportunistic (non-Candida, non-Cryptococcus) yeast bloodstream infections in patients with cancer. J. Infect. 2012, 64, 68–75. [Google Scholar] [CrossRef] [Green Version]
- Bilman, F.B.; Yetik, M. Geotrichum candidum: A rare infection agent at urinary system and review of the literature. J. Clin. Exp. Investig. 2017, 8, 127–129. [Google Scholar] [CrossRef] [Green Version]
- Kassamali, H.; Anaissie, E.; Ro, J.; Rolston, K.; Kantarjian, H.; Fainstein, V.; Bodey, G.P. Disseminated Geotrichum candidum infection. J. Clin. Microbiol. 1987, 25, 1782–1783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prakash, P.Y.; Seetaramaiah, V.K.; Thomas, J.; Khanna, V.; Rao, S.P. Renal fungal bezoar owing to Geotrichum candidum. Med. Mycol. Case Rep. 2012, 1, 63–65. [Google Scholar] [CrossRef]
- Henrich, T.J.; Marty, F.M.; Milner, D.A.; Thorner, A.R. Disseminated Geotrichum candidum infection in a patient with relapsed acute myelogenous leukemia following allogeneic stem cell transplantation and review of the literature. Transpl. Infect. Dis. 2009, 11, 458–462. [Google Scholar] [CrossRef]
- André, N.; Coze, C.; Gentet, J.C.; Perez, R.; Bernard, J.L. Geotrichum candidum septicemia in a child with hepatoblastoma. Pediatr. Infect. Dis. J. 2004, 23, 86. [Google Scholar] [CrossRef]
- Heinic, G.S.; Greenspan, D.; MacPhail, L.A.; Greenspan, J.S. Oral Geotrichum candidum infection associated with HIV infection: A case report. Oral Surg. Oral Med. Oral Pathol. 1992, 73, 726–728. [Google Scholar] [CrossRef]
- Verghese, S.; Ravichandran, P. Geotrichum candidum infection in a renal transplant recipient. Indian J. Nephrol. 2003, 13, 72–76. [Google Scholar]
- Sfakianakis, A.; Krasagakis, K.; Stefanidou, M.; Maraki, S.; Koutsopoulos, A.; Kofteridis, D.; Samonis, G.; Tosca, A. Invasive cutaneous infection with Geotrichum candidum—Sequential treatment with amphotericin B and voriconazole. Med. Mycol. 2007, 45, 81–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keene, S.; Sarao, M.S.; McDonald, P.J.; Veltman, J. Cutaneous geotrichosis due to Geotrichum candidum in a burn patient. Access Microbiol. 2019, 1, e000001. [Google Scholar] [CrossRef] [PubMed]
- Hrdy, D.B.; Nassar, N.N.; Rinaldi, M.G. Traumatic joint infection due to Geotrichum candidum. Clin. Infect. Dis. 1995, 20, 468–469. [Google Scholar] [CrossRef]
- Myint, T.; Dykhuizen, M.J.; McDonald, C.H.; Ribes, J.A. Post operative fungal endopthalmitis due to Geotrichum candidum. Med. Mycol. Case Rep. 2015, 10, 4–6. [Google Scholar] [CrossRef]
- Graeff, L.D.; Seidel, D.; Vehreschild, M.J.G.T.; Hamprecht, A.; Kindo, A.; Racil, Z.; Demeter, J.; de Hoog, S.; Aurbach, U.; Ziegler, M.; et al. Invasive infections due to Saprochaete and Geotrichum species: Report of 23 cases from the FungiScope Registry. Mycoses 2017, 60, 273–279. [Google Scholar] [CrossRef]
- Figueredo, L.A.; Cafarchia, C.; Otranto, M. Geotrichum candidum as etiological agent of horse dermatomycosis. Vet. Microbiol. 2011, 148, 368–371. [Google Scholar] [CrossRef]
- Padalino, B.; Sandy, J.R.; Barrasso, R.; Trotta, A.; Bozzo, G.; Cafarchia, C. Rare Generalized Form of Fungal Dermatitis in a Horse: Case Report. Animals 2020, 10, 871. [Google Scholar] [CrossRef]
- Suprapta, D.N.; Arai, K.; Iwai, H. Distribution of Geotrichum candidum citrus race in citrus groves and non-citrus fields in Japan. Mycoscience 1995, 36, 277–282. [Google Scholar] [CrossRef]
- Palou, L.; Smilanick, J.L.; Crisosto, C.H. Evaluation of food additives as alternative or complementary chemicals to Conventional fungicides for the control of major postharvest diseases of stone fruit. J. Food Prot. 2009, 72, 1037–1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomidis, T.; Prodromou, I.; Farmakis, A.; Zambounis, A. Effect of temperature on the growth of Geotrichum candidum and chemical control of sour rot on tomatoes. Trop. Plant Pathol. 2021, 46, 545–552. [Google Scholar] [CrossRef]
- Eastburn, D.; Whiteside, J.O.; Garnsey, S.M.; Timmer, L.W. Compendium of Citrus Diseases. Mycologia 1990, 82, 539. [Google Scholar] [CrossRef]
- Cohen, E. Predisposition of Citrus Fruits to Sour Rot When Submerged in Water. Plant Dis. 1991, 75, 166–168. [Google Scholar] [CrossRef]
- Alam, M.W.; Rehman, A.; Malik, A.U.; Iqbal, Z.; Amin, M.; Ali, S.; Hameed, A.; Sarfraz, S. First report of Geotrichum candidum causing postharvest sour rot of peach in Punjab, Pakistan. Plant Dis. 2017, 101, 1543. [Google Scholar] [CrossRef]
- Cheng, H.; Tang, W.; Wang, H.; Liu, Q.; Li, H.; Liu, Y. First Report of Geotrichum candidum causing postharvest sour rot on kiwifruits in China. Plant Dis. 2021, 105, 1566. [Google Scholar] [CrossRef] [PubMed]
- Smilanick, J.L.; Mansour, M.F.; Margosan, D.A.; Gabler, F.M.; Goodwine, W.R. Influence of pH and NaHCO3 on effectiveness of imazalil to inhibit germination of Penicillium digitatum and to control postharvest green mold on citrus fruit. Plant Dis. 2005, 89, 640–648. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Dikshit, A.K. Biopesticides: An eco-friendly approach for pest control. J. Biopestic. 2010, 3, 186–188. [Google Scholar]
- Plaza, P.; Torres, R.; Usall, J.; Lamarca, N.; Viñas, I. Evaluation of the potential of commercial post-harvest application of essential oils to control citrus decay. J. Hortic. Sci. Biotechnol. 2004, 79, 935–940. [Google Scholar] [CrossRef]
- Plooy, W.D.; Regnier, T.; Combrinck, S. Essential oil amended coatings as alternatives to synthetic fungicides in citrus postharvest management. Postharvest Biol. Technol. 2009, 53, 117–122. [Google Scholar] [CrossRef]
- Moussa, H.; El Omari, B.; Chefchaou, H.; Tanghort, M.; Mzabi, A.; Chami, N.; Remmal, A. Action of thymol, carvacrol and eugenol on Penicillium and Geotrichum isolates resistant to commercial fungicides and causing postharvest citrus decay. Can. J. Plant Pathol. 2020, 43, 26–34. [Google Scholar] [CrossRef]
- Cai, X.; Xu, Z.; Li, X.; Wang, D.; Ren, X.; Kong, Q. Underlying mechanism of menthol on controlling postharvest citrus sour rot caused by Geotrichum citri-aurantii. Postharvest Biol. Technol. 2023, 196, 112160. [Google Scholar] [CrossRef]
- Bourhou, C.; Benouda, H.; Bellaouchi, R.; Merzouki, M.; Fraj, E.; Harit, T.; Challioui, A.; Asehraou, A.; Touzani, R.; Ozdemir, I.; et al. Synthesis of novel tetrazolic derivatives and evaluation of their antimicrobial activity. J. Mol. Struct. 2023, 1278, 134913. [Google Scholar] [CrossRef]
G. candidum Strain | Biosample | Bioproject | Assembly | Size (Mb) | Biological Process |
---|---|---|---|---|---|
CLIB 918 | SAMEA3158493 | PRJEB5752 | GCA_001402995.1 | 24.84 | 1. Lipases, proteases, and volatile sulfur compound production responsible for specific aromas in cheese 2. Expression of delta 12 fatty acid desaturase for linoleic acid and α-linolenic acid production 3. Lytic polysaccharide monooxygenases production. 4. Ergosterol biosynthesis. |
M2404 | SAMN27964038 | PRJNA833221 | GCA_023629735.1 | 26.02 | N/A |
K2 | SAMN20845018 | PRJNA755838 | GCA_020466465.1 | 24.98 | N/A |
M2401 | SAMN27964034 | PRJNA833221 | GCA_023629795.1 | 26.47 | N/A |
Z7-1 | SAMN20845971 | PRJNA755888 | GCA_020466515.1 | 25.3 | N/A |
QAUGC01 | SAMN10962553 | PRJNA523005 | GCA_019450175.1 | 23.41 | 1. Administration as a probiotic strain in rohu fish, Labeo rohita. 2. Alkaline serine protease production, with numerous industrial applications, such as dairy food formulations. |
F2203 | SAMN27964033 | PRJNA833221 | GCA_025504395.1 | 23.33 | N/A |
PX1908B | SAMN27964030 | PRJNA833221 | GCA_023627875.1 | 23.37 | N/A |
Y1111 | SAMN27964035 | PRJNA833221 | GCA_025504415.1 | 23.39 | N/A |
M1113A | SAMN27964031 | PRJNA833221 | GCA_025504455.1 | 23.38 | N/A |
B1101 | SAMN13174491 | PRJNA587010 | GCA_011420275.1 | 23.39 | N/A |
B1101 | SAMN27964032 | PRJNA833221 | GCA_025504425.1 | 23.39 | N/A |
B1109 | SAMN27964037 | PRJNA833221 | GCA_023627915.1 | 23.41 | N/A |
LMA-1028 | SAMN09709725 | PRJNA482619 | GCA_013365065.1 | 24.47 | Volatile compound production that contributes to cheese sensorial characteristics development. |
B1112B | SAMN27964036 | PRJNA833221 | GCA_025504335.1 | 23.41 | N/A |
LMA-563 | SAMN09692668 | PRJNA481060 | GCA_025234805.1 | 24.7 | Volatile compound production that contributes to cheese sensorial characteristics development. |
LMA-40 | SAMN09709337 | PRJNA482576 | GCA_014596635.1 | 24.37 | Volatile compound production that contributes to cheese sensorial characteristics development. |
LMA-77 | SAMN09709489 | PRJNA482610 | GCA_013365075.1 | 24.02 | Volatile compound production that contributes to cheese sensorial characteristics development. |
Z8-4 | SAMN20846412 | PRJNA755896 | GCA_020466505.1 | 24.89 | N/A |
LMA-317 | SAMN09709581 | PRJNA482616 | GCA_013305595.1 | 24.31 | Volatile compound production that contributes to cheese sensorial characteristics development. |
M4009 | SAMN27964039 | PRJNA833221 | GCA_025504325.1 | 23.32 | N/A |
LMA-70 | SAMN09709440 | PRJNA482605 | GCA_013365125.1 | 24.72 | Volatile compound production that contributes to cheese sensorial characteristics development. |
LMA-1147 | SAMN09862943 | PRJNA486748 | GCA_013305805.1 | 22.81 | Volatile compound production that contributes to cheese sensorial characteristics development. |
LMA-244 | SAMN09709542 | PRJNA482613 | GCA_013365045.1 | 23.66 | Volatile compound production that contributes to cheese sensorial characteristics development. |
OMON-1, GenBank: MF431584.1 | 1063 bp | Antibacterial properties | |||
Commercial strain GEO® | - | - | - | - | Starter culture for the production of flaxseed oil cake, an analog of Camembert cheese. |
X16010211, IFBM Malting Yeast® | - | - | - | - | Used as biocontrol agent on T-2 toxin produced by Fusarium sporotrichioides and F. langsethiae during the malting process, phenyllactic acid production. |
PF005 | - | - | - | - | Alcohol acetyltransferase, GcAAT, ethyl 3-methylbutanoate, 3-methyl-1-butanol, 2-phenylethanol, naphthalene, isopentyl acetate, and isobutyl acetate production, responsible for anti-fungal activities. |
HBCICC71016 | - | - | - | - | Dietary supplementation for gibel carp CAS Ⅲ (Carassius auratus gibelio) growth. |
LG-8, GenBank: MK640636.1 | - | - | - | 352 bp | 1. Pseudomonas aeruginosa PAO1 has adhesion properties to G. candidum cells. 2. Bioremediation of Pb2+. 3. Novel carrier for curcumin encapsulation. |
GenBank: MK880487 | - | - | - | 348 bp | Biosurfactant production responsible for antifungal properties. |
Gad1, GenBank: MN638741 | - | - | - | 696 bp | Cellulase production. |
3C, GenBank: KJ958925.1 | - | - | - | 1605 bp | Cellulase production, involved in industrial cellulase cocktails that are employed in biomass conversion and filter paper and cotton degradation. |
Dec_1 | - | - | - | - | Cellulase production, involved in industrial cellulase cocktails that are employed in biomass conversion and filter paper and cotton degradation. Various dye decolorization. |
NRRL Y-552, undação André Tosello (Campinas, SP, Brazil) | - | - | - | - | Lipases production, decyl oleate production. |
4013 | - | - | - | - | Lipase production. |
ATCC 34614 | - | - | - | - | Lipase production. |
AA15 | - | - | - | - | Pectinase production for fruit juice clarification. |
NBRC 4597 | - | - | - | - | Acetophenone reductase production, an enzyme with broad-spectrum activity regarding the oxidation of aldehydes to carboxylic acids and selective activity for the oxidation of dialdehydes to aldehydic acids. |
S12 (CCTCC AF2012005), (Wuhan, China) | - | - | - | - | Glutamate dehydrogenase production, highly active against glutamate, hexanol, α-ketoglutarate, and isoamyl alcohol. |
CCT 1205, André Tosello Foundation, Parque Taquaral, Campinas-SP, belonging to the Tropical Culture Collection | - | - | - | - | ε-caprolactone production. |
NBT 1, GenBank: MF461333 | - | - | - | 555 bp | Medium-chain fatty-acid-rich oil production. |
CS-67 | - | - | - | - | Bioremediation of Cu2+, Zn2+, and Ni2+. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamilari, E.; Stanton, C.; Reen, F.J.; Ross, R.P. Uncovering the Biotechnological Importance of Geotrichum candidum. Foods 2023, 12, 1124. https://doi.org/10.3390/foods12061124
Kamilari E, Stanton C, Reen FJ, Ross RP. Uncovering the Biotechnological Importance of Geotrichum candidum. Foods. 2023; 12(6):1124. https://doi.org/10.3390/foods12061124
Chicago/Turabian StyleKamilari, Eleni, Catherine Stanton, F. Jerry Reen, and R. Paul Ross. 2023. "Uncovering the Biotechnological Importance of Geotrichum candidum" Foods 12, no. 6: 1124. https://doi.org/10.3390/foods12061124
APA StyleKamilari, E., Stanton, C., Reen, F. J., & Ross, R. P. (2023). Uncovering the Biotechnological Importance of Geotrichum candidum. Foods, 12(6), 1124. https://doi.org/10.3390/foods12061124