Use of Sub-Atmospheric Pressure Storage to Improve the Quality and Shelf-Life of Marmande Tomatoes cv. Rojito
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Experimental Design
2.2. Quality Attributes Evaluation
2.2.1. Weight Loss
2.2.2. Colour and Firmness
2.2.3. Ethylene Production
2.2.4. Total Soluble Solids, Total Phenolic Content (TPC), Ascorbic Acid, Chlorophylls and Carotenoids
2.3. Sensory Evaluation
2.4. Statistical Analysis
3. Results
3.1. Weight Loss
3.2. Ethylene Production and Colour Evolution
3.3. Fruit Pigment Evolution
3.4. Fruit Quality Characteristics
3.5. Sensory Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heuvelink, E.; Okello, R.C.; Peet, M.; Giovannoni, J.J.; Dorais, M. Tomato. In The Physiology of Vegetable Crops; CABI: Wallingford, UK, 2020; pp. 138–178. [Google Scholar]
- Duque, L.F.; Amador, M.V.; Guzmán, M.; Asensio, C.; Valenzuela, J.L. Development of a New Essential Oil-Based Technology to Maintain Fruit Quality in Tomato. Horticulturae 2021, 7, 303. [Google Scholar] [CrossRef]
- Guzmán, M.; Sánchez, A.; Díaz, J.R.; Valenzuela, J.L. Postharvest quality of three tomato cultivars. Acta Hortic. 2009, 821, 241–248. [Google Scholar] [CrossRef]
- Guillén, F.; Castillo, S.; Zapata, P.J.; Martínez-Romero, D.; Serrano, M.; Valero, D. Efficacy of 1-MCP treatment in tomato fruit. 1. Duration and concentration of 1-MCP treatment to gain an effective delay of postharvest ripening. Postharvest Biol. Technol. 2007, 43, 23–27. [Google Scholar] [CrossRef]
- Olveira-Bouzas, V.; Pita-Calvo, C.; Lourdes Vázquez-Odériz, M.; Ángeles Romero-Rodríguez, M. Evaluation of a modified atmosphere packaging system in pallets to extend the shelf-life of the stored tomato at cooling temperature. Food Chem. 2021, 364, 130309. [Google Scholar] [CrossRef]
- Burg, S.P.; Burg, E.A. Fruit storage at subatmospheric pressures. Science 1966, 153, 314–315. [Google Scholar] [CrossRef] [PubMed]
- Li, W.X.; Zhang, M.; Wang, S.J. Effect of three-stage hypobaric storage on membrane lipid peroxidation and activities of defense enzyme in green asparagus. LWT—Food Sci. Technol. 2008, 41, 2175–2181. [Google Scholar] [CrossRef]
- An, D.S.; Park, E.; Lee, D.S. Effect of hypobaric packaging on respiration and quality of strawberry and curled lettuce. Postharvest Biol. Technol. 2009, 52, 78–83. [Google Scholar] [CrossRef]
- Li, J.; Bao, X.; Xu, Y.; Zhang, M.; Cai, Q.; Li, L.; Wang, Y. Hypobaric storage reduced core browning of Yali pear fruits. Sci. Hortic. 2017, 225, 547–552. [Google Scholar] [CrossRef]
- Sohn, T.H.; Cheon, S.H.; Choi, S.W.; Moon, K.D. Changes of flavor components in tomato fruits during subatmospheric pressure storage. Appl. Biol. Chem. 1988, 31, 298–307. [Google Scholar]
- Melgar, D.; Conde, E.; Megías, Z.; Rebolloso, M.M.; Valenzuela, J.L.; Jamilena, M. Efecto de la conservación hipobárica sobre la calidad de fruto en tomate Raf. Actas Hortic. 2015, 71, 352–355. [Google Scholar]
- Pristijono, P.; Scarlett, C.J.; Bowyer, M.C.; Vuong, Q.V.; Stathopoulos, C.E.; Jessup, A.J.; Golding, J.B. Use of low-pressure storage to improve the quality of tomatoes. J. Hortic. Sci. Biotechnol. 2017, 92, 583–590. [Google Scholar] [CrossRef] [Green Version]
- Burg, S.P. Postharvest Physiology and Hypobaric Storage of Fresh Produce; CABI Publisher: Cambridge, MA, USA, 2004. [Google Scholar]
- Vithu, P.; Moses, J.A. Hypobaric storage of horticultural products. A review. In Engineering Practices for Agricultural Production and Water Conservation; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Oxford, UK, 2017; pp. 155–170. [Google Scholar]
- Spalding, D.H.; Reeder, W.F. Low pressure (hypobaric) storage of mangos. J. Am. Soc. Hortic. Sci. 1977, 102, 367–369. [Google Scholar] [CrossRef]
- Apelbaum, A.; Zauberman, G.; Fuchs, Y. Subatmospheric pressure storage of mango fruits. Sci. Hortic. 1977, 7, 153–160. [Google Scholar] [CrossRef]
- Romanazzi, G.; Nigro, F.; Ippolito, A.; Salerno, M. Effect of short hypobaric treatments on postharvest rots of sweet cherries, strawberries and table grapes. Postharvest Biol. Technol. 2001, 22, 1–6. [Google Scholar] [CrossRef]
- Chen, H.; Ling, J.; Wu, F.; Zhang, L.; Sun, Z.; Yang, H. Effect of hypobaric storage on flesh lignification, active oxygen metabolism and related enzyme activities in bamboo shoots. LWT—Food Sci. Technol. 2013, 51, 190–195. [Google Scholar] [CrossRef]
- Huan, C.; Jiang, L.; An, X.; Yu, M.; Xu, Y.; Ma, R.; Yu, Z. Potential role of reactive oxygen species and antioxidant genes in the regulation of peach fruit development and ripening. Plant Physiol. Biochem. 2016, 104, 294–303. [Google Scholar] [CrossRef]
- Valenzuela, J.L.; Manzano, S.; Palma, F.; Carvajal, F.; Garrido, D.; Jamilena, M. Oxidative stress associated with chilling injury in immature fruit. Postharvest technological and biotechnological solutions. Int. J. Mol. Sci. 2017, 18, 1467. [Google Scholar] [CrossRef] [PubMed]
- Hashmi, M.S.; East, A.R.; Palmer, J.S.; Heyes, J.A. Pre-storage hypobaric treatments delay fungal decay of strawberries. Postharvest Biol. Technol. 2013, 77, 75–79. [Google Scholar] [CrossRef]
- Li, H.; James, A.; He, X.; Zhang, M.; Cai, Q.; Wang, Y. Effect of hypobaric treatment on the quality and reactive oxygen species metabolism of blueberry fruit at storage. CyTA-J. Food 2019, 17, 937–948. [Google Scholar] [CrossRef] [Green Version]
- Burg, S. Hypobaric Storage in Food Industry. In Advances in Application and Theory; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Pristijono, P.; Bowyer, M.C.; Scarlett, C.J.; Vuong, Q.V.; Stathopoulos, C.E.; Golding, J.B. Effect of low-pressure storage on the quality of green capsicums (Capsicum annum L.). J. Hortic. Sci. Biotechnol. 2018, 93, 529–536. [Google Scholar] [CrossRef] [Green Version]
- USDA. United States Standard for Grades of Fresh Tomatoes; USDA: Washington, DC, USA, 1991.
- Singleton, L.V.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Horwitz, W.; Latimer, G.W. AOAC International. In Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2007. [Google Scholar]
- Nagata, M.; Yamashita, I. Simple method for simultaneous determination of chlorophyll and carotenoids in tomato. J. Jpn. Soc. Hortic. Sci. 1992, 61, 686–687. [Google Scholar]
- Iglesias, M.J.; López, J.G.; Collados Luján, J.F.; Ortiz, F.L.; Pereznieto, H.B.; Toresano, F.; Camacho, F. Effect of genetic and phenotypic factors on the composition of commercial marmande type tomatoes studied through HRMAS NMR spectroscopy. Food Chem. 2014, 142, 1–11. [Google Scholar] [CrossRef]
- Hashmi, M.S.; East, A.R.; Palmer, J.S.; Heyes, J.A. Hypobaric treatment stimulates defence-related enzymes in strawberry. Postharvest Biol. Technol. 2013, 85, 77–82. [Google Scholar] [CrossRef]
- Kou, X.; Wu, J.Y.; Wang, Y.; Chen, Q.; Xue, Z.; Bai, Y.; Zhou, F. Effects of hypobaric treatments on the quality, bioactive compounds, and antioxidant activity of tomato. J. Food Sci. 2016, 81, H1816–H1824. [Google Scholar] [CrossRef]
- Rahman, W.U.; Hashmi, M.S.; Durrani, Y.; Shah, S.; Ahmad, A.; Alam, S.; Ali, W. Hypobaric treatment augments the efficacy of 1-MCP in apple fruit. J. Food Sci. Technol. 2022, 59, 4221–4229. [Google Scholar] [CrossRef]
- Huan, C.; Li, H.; Jiang, Z.; Shen, S.; Zheng, X. Effect of hypobaric treatment on off-flavour development and energy metabolism in ‘Bruno’kiwifruit. LWT—Food Sci. Technol. 2021, 136, 110349. [Google Scholar] [CrossRef]
- Purvis, A.C.; Barmore, C.R. Involvement of ethylene in chlorophyll degradation in peel of citrus fruits. Plant Physiol. 1981, 68, 854–856. [Google Scholar] [CrossRef] [Green Version]
- Serrano, M.; Zapata, P.J.; Guillén, F.; Martínez-Romero, D.; Castillo, S.; Valero, D. Post-harvest ripening of tomato. In Tomatoes and Tomato Products; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Oxford, UK, 2008; pp. 67–84. [Google Scholar]
- Ling, Q.; Sadali, N.M.; Soufi, Z.; Zhou, Y.; Huang, B.; Zeng, Y.; Rodriguez-Concepcion, M.; Jarvis, R.P. The chloroplast-associated protein degradation pathway controls chromoplast development and fruit ripening in tomato. Nat. Plants 2021, 7, 655–666. [Google Scholar] [CrossRef] [PubMed]
- Sadali, N.M.; Sowden, R.G.; Ling, Q.; Jarvis, R.P. Differentiation of chromoplasts and other plastids in plants. Plant Cell Rep. 2019, 38, 803–818. [Google Scholar] [CrossRef] [Green Version]
- Karlova, R.; Rosin, F.M.; Busscher-Lange, J.; Parapunova, V.; Do, P.T.; Fernie, A.R.; Fraser, P.D.; Baxter, C.; Angenent, G.C.; de Maagd, R.A. Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. Plant Cell 2011, 23, 923–941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, F.; Wen, W.; Cheng, Y.; Fernie, A.R. The metabolic changes that effect fruit quality during tomato fruit ripening. Mol. Hortic. 2022, 2, 2. [Google Scholar] [CrossRef]
- Porat, R.; Lichter, A.; Terry, L.A.; Harker, R.; Buzby, J. Postharvest losses of fruit and vegetables during retail and in consumers’ homes. Quantifications, causes, and means of prevention. Postharvest Biol. Technol. 2018, 139, 135–149. [Google Scholar] [CrossRef] [Green Version]
Harvest | 3 Days | 6 Days | 9 Days | 12 Days | |
---|---|---|---|---|---|
Solid Soluble Content (°Brix) | |||||
Control | 8.0 ± 0.2 a A | 7.6 ± 0.2 a A | 7.4 ± 0.3 a A | 7.6 ± 0.2 a A | 7.7 ± 0.2 a A |
101 kPa | 8.0 ± 0.2 a A | 7.7 ± 03 a A | 7.6 ± 0.2 a A | 7.8 ± 0.3 a A | 7.9 ± 0.3 a A |
75 kPa | 8.0 ± 0.2 a A | 7.9 ± 0.2 a A | 7.8 ± 0.4 a A | 7.8 ± 0.3 a A | 8.1 ± 0.1 a A |
50 Kpa | 8.0 ± 0.2 a A | 7.9 ± 0.1 a A | 7.6 ± 0.3 a A | 8.0 ± 0.2 a A | 8.2 ± 0.3 a A |
Firmness (shore hardness) | |||||
Control | 82.30 ± 1.91 a A | 76.17 ± 2.18 b A | 62.50 ± 3.22 c B | 60.17 ± 2.40 c B | 54.17 ± 3.32 d C |
101 kPa | 82.30 ± 1.91 a A | 75.83 ± 2.17 b A | 75.67 ± 4.26 b A | 66.33 ± 2.84 c B | 60.00 ± 3.32 c B |
75 kPa | 82.30 ± 1.91 a A | 78.33 ± 3.52 a A | 79.50 ± 2.36 a A | 73.17 ± 1.19 b A | 66.50 ± 3.32 c A |
50 Kpa | 82.30 ± 1.91 a A | 79.50 ± 2.34 a A | 80.83 ± 2.39 a A | 75.33 ± 1.78 b A | 69.17 ± 0.91 b A |
Total Phenolic Content (mg·100 g−1 F.W.) | |||||
Control | 42.5 ± 3.8 e A | 57.8 ± 2.8 d A | 63.7 ± 1.9 c A | 87.5 ± 2.0 a A | 71.6 ± 3.1 b A |
101 kPa | 42.5 ± 3.8 e A | 55.7 ± 1.9 d A | 66.3 ± 2.6 c A | 82.8 ± 3.2 a A | 77.3 ± 3.4 a A |
75 kPa | 42.5 ± 3.8 c A | 51.2 ± 2.6 b A | 58.5 ± 2.4 b B | 75.2 ± 3.1 a B | 73.1 ± 3.6 a A |
50 Kpa | 42.5 ± 3.8 c A | 52.8 ± 2.4 b A | 55.4 ±1.9 b B | 68.8 ± 3.7 a B | 67.6 ± 2.1 a B |
Ascorbic Acid Content (mg·100 g−1 F.W.) | |||||
Control | 18.5 ± 3.7 a A | 17.9 ± 1.8 a A | 15.9 ± 2.3 b A | 15.7 ± 2.9 b A | 15.2 ± 1.9 b A |
101 kPa | 18.5 ± 3.7 a A | 18.3 ± 2.9 a A | 15.6 ± 2.8 b A | 16.1 ± 2.8 b A | 15.1 ± 2.3 b A |
75 kPa | 18.5 ± 3.7 a A | 18.5 ± 2.4 a A | 17.5 ± 2.5 a A | 17.0 ± 2.7 a A | 16.7 ± 2.1 a A |
50 Kpa | 18.5 ± 3.7 a A | 18.6 ± 2.2 a A | 18.3 ± 2.1 a A | 17.8 ± 1.9 a A | 17.6 ± 2.2 a A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salas-Sanjuán, M.d.C.; Rebolloso, M.d.M.; del Moral, F.; Valenzuela, J.L. Use of Sub-Atmospheric Pressure Storage to Improve the Quality and Shelf-Life of Marmande Tomatoes cv. Rojito. Foods 2023, 12, 1197. https://doi.org/10.3390/foods12061197
Salas-Sanjuán MdC, Rebolloso MdM, del Moral F, Valenzuela JL. Use of Sub-Atmospheric Pressure Storage to Improve the Quality and Shelf-Life of Marmande Tomatoes cv. Rojito. Foods. 2023; 12(6):1197. https://doi.org/10.3390/foods12061197
Chicago/Turabian StyleSalas-Sanjuán, María del Carmen, María del Mar Rebolloso, Fernando del Moral, and Juan Luis Valenzuela. 2023. "Use of Sub-Atmospheric Pressure Storage to Improve the Quality and Shelf-Life of Marmande Tomatoes cv. Rojito" Foods 12, no. 6: 1197. https://doi.org/10.3390/foods12061197
APA StyleSalas-Sanjuán, M. d. C., Rebolloso, M. d. M., del Moral, F., & Valenzuela, J. L. (2023). Use of Sub-Atmospheric Pressure Storage to Improve the Quality and Shelf-Life of Marmande Tomatoes cv. Rojito. Foods, 12(6), 1197. https://doi.org/10.3390/foods12061197