Effect of Flavoring with Rosemary, Lemon and Orange on the Quality, Composition and Biological Properties of Olive Oil: Comparative Study of Extraction Processes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Flavored Olive Oils Preparation
2.2.1. Aromatization by Conventional Maceration Process
2.2.2. Aromatization by Direct Addition of Aromatic Fruits or Spice
2.3. Physical and Chemical Characteristics of Flavored Oils
2.4. Phytochemical Composition of Flavored Oils
2.4.1. Chlorophyll and Carotenoids Content
2.4.2. Fatty Acids Profile
2.4.3. Fourier Transform Infrared (FT-IR) Spectra Analysis
2.4.4. Volatile Compounds Analyses
2.4.5. Test of Rancimat
2.4.6. Phenolic Compounds Extraction
Preparation of the Methanolic Extracts of Flavored Oils
Total Phenolics and o-Diphenols Contents
2.5. Biological Evaluation
2.5.1. Antioxidant Activities
2.5.2. Pharmacological Investigations
Animals
Analgesic Activity
Ethanol-Induced Gastric Damage
2.6. Statistical Analysis
3. Results and Discussion
3.1. Impact of the Aromatization Treatment on the Quality Parameters of Olive Oil
3.2. Physicochemical Characteristics of Flavored Oils
3.3. Oxidative Stability Evaluation (Rancimat Method)
3.4. Fatty Acids Profile
3.5. Volatile Component Characteristics
3.6. FTIR Analysis
3.7. Phenolic Compounds
3.8. Biological and Pharmacological Assessment
3.8.1. Antioxidant Properties
3.8.2. Antinociceptive Activity
3.8.3. Gastroprotective Effect
3.9. Principal Components Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jimenez-Lopez, C.; Carpena, M.; Lourenço-Lopes, C.; Gallardo-Gomez, M.; Lorenzo, J.M.; Barba, F.J.; Prieto, M.A.; Simal-Gandara, J. Bioactive compounds and quality of extra virgin olive oil. Foods 2020, 9, 1014. [Google Scholar] [CrossRef]
- Jalarama Reddy, K.; Jayathilakan, K.; Pandey, M. Olive oil as functional component in meat and meat products: A review. J. Food Sci. Technol. 2015, 52, 6870–6878. [Google Scholar] [CrossRef]
- Cayuela-Sanchez, J.A.; Palarea-Albaladejo, J.; García-Martín, J.F.; del Carmen Perez-Camino, M. Olive oil nutritional labeling by using Vis/NIR spectroscopy and compositional statistical methods. Innov. Food Sci. Emerg. Technol. 2019, 51, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Amanpour, A.; Vandamme, J.; Polat, S.; Kelebek, H.; Van Durme, J.; Selli, S. Non-thermal plasma effects on the lipoxygenase enzyme activity, aroma and phenolic profiles of olive oil. Innov. Food Sci. Emerg. Technol. 2019, 54, 123–131. [Google Scholar] [CrossRef]
- Baccouri, B.; Manai, H.; Casas, J.; Osorio, E.; Zarrouk, M. Tunisian wild olive (Olea europaea L. subsp. oleaster) oils: Sterolic and triterpenic dialcohol compounds. Ind. Crops Prod. 2018, 120, 11–15. [Google Scholar] [CrossRef]
- Issaoui, M.; Flamini, G.; Hassine, K.B.; Chehab, H.; Brahmi, F.; Hammami, M. Improvement of Chemlali olive oil oxidative stability by blending with Chétoui and Rekhami cultivars. Int. J. Food Sci. Technol. 2009, 44, 1323–1332. [Google Scholar] [CrossRef]
- Moustakime, Y.; Hazzoumi, Z.; Joutei, K.A. Aromatization of virgin olive oil by seeds of Pimpinella anisum using three different methods: Physico-chemical change and thermal stability of flavored oils. Grain Oil Sci. Technol. 2021, 4, 108–124. [Google Scholar] [CrossRef]
- Abenoza, M.; Sánchez-Gimeno, A.C. Increasing the stability of Empeltre olive oils by aromatization with rosemary (Rosmarinus officinalis) and garlic (Allium sativum). Int. J. Gastron. Food Sci. 2021, 24, 100333. [Google Scholar] [CrossRef]
- Rubió, L.; Serra, A.; Chen, C.-Y.O.; Macia, A.; Romero, M.-P.; Covas, M.-I.; Solà, R.; Motilva, M.-J. Effect of the co-occurring components from olive oil and thyme extracts on the antioxidant status and its bioavailability in an acute ingestion in rats. Food Funct. 2014, 5, 740–747. [Google Scholar] [CrossRef]
- Ayadi, M.; Grati-Kamoun, N.; Attia, H. Physico-chemical change and heat stability of extra virgin olive oils flavoured by selected Tunisian aromatic plants. Food Chem. Toxicol. 2009, 47, 2613–2619. [Google Scholar] [CrossRef]
- Sacchi, R.; Della Medaglia, D.; Paduano, A.; Caporaso, N.; Genovese, A. Characterisation of lemon-flavoured olive oils. LWT-Food Sci. Technol. 2017, 79, 326–332. [Google Scholar] [CrossRef]
- Paduano, A.; Caporaso, N.; Santini, A.; Sacchi, R. Microwave and ultrasound-assisted extraction of capsaicinoids from chili peppers (Capsicum annuum L.) in flavored olive oil. J. Food Res. 2014, 3, 51. [Google Scholar] [CrossRef] [Green Version]
- Zellama, M.S.; Chahdoura, H.; Zairi, A.; Ziani, B.E.C.; Boujbiha, M.A.; Snoussi, M.; Ismail, S.; Flamini, G.; Mosbah, H.; Selmi, B. Chemical characterization and nutritional quality investigations of healthy extra virgin olive oil flavored with chili pepper. Environ. Sci. Pollut. Res. 2021, 29, 16392–16403. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Bonesi, M.; Falco, T.; Leporini, M.; Pagliuso, M.; Sicari, V.; Tundis, R. Carolea olive oil enriched with an infusion of Capsicuum annuum and C. chinense dried pepper powders to produce an added value flavoured olive oils. J. Food Process. Preserv. 2021, 45, e15776. [Google Scholar] [CrossRef]
- Moldao-Martins, M.; Beirao-da-Costa, S.; Neves, C.; Cavaleiro, C.; Salgueiro, L.g.; Beirao-da-Costa, M.L. Olive oil flavoured by the essential oils of Mentha× piperita and Thymus mastichina L. Food Qual. Prefer. 2004, 15, 447–452. [Google Scholar] [CrossRef]
- Khemakhem, I.; Yaiche, C.; Ayadi, M.A.; Bouaziz, M. Impact of aromatization by Citrus limetta and Citrus sinensis peels on olive oil quality, chemical composition and heat stability. J. Am. Oil Chem. Soc. 2015, 92, 701–708. [Google Scholar] [CrossRef]
- Zouari, S.; Zouari, N.; Fakhfakh, N.; Ayadi, M.; Neffati, M. Physicochemical properties and oxidative stability of extra virgin olive oil flavored by Artemisia herba alba and Thymus algeriensis. In Proceedings of the International Symposium on Medicinal and Aromatic Plants-SIPAM 2012, Djerba, Tunisia, 22–24 March 2012; pp. 137–144. [Google Scholar]
- Veillet, S.; Tomao, V.; Chemat, F. Ultrasound assisted maceration: An original procedure for direct aromatisation of olive oil with basil. Food Chem. 2010, 123, 905–911. [Google Scholar] [CrossRef]
- Soares, V.P.; Fagundes, M.B.; Guerra, D.R.; Leães, Y.S.V.; Speroni, C.S.; Robalo, S.S.; Emanuelli, T.; Cichoski, A.J.; Wagner, R.; Barin, J.S. Ultrasound assisted maceration for improving the aromatization of extra-virgin olive oil with rosemary and basil. Food Res. Int. 2020, 135, 109305. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, R.; Kowalska, G.; Pankiewicz, U.; Mazurek, A.; Sujka, M.; Włodarczyk-Stasiak, M.; Kałwa, K. Effect of the method of rapeseed oil aromatisation with rosemary Rosmarinus officinalis L. on the content of volatile fraction. Lwt 2018, 95, 40–46. [Google Scholar] [CrossRef]
- Sena-Moreno, E.; Alvarez-Ortí, M.; Serrano-Díaz, J.; Pardo, J.E.; Carmona, M.; Alonso, G.L. Olive oil aromatization with saffron by liquid–liquid extraction. J. Food Sci. Technol. 2018, 55, 1093–1103. [Google Scholar] [CrossRef]
- Fagundes, M.B.; Ballus, C.A.; Soares, V.P.; de Freitas Ferreira, D.; Leães, Y.S.V.; Robalo, S.S.; Vendruscolo, R.G.; Campagnol, P.C.B.; Barin, J.S.; Cichoski, A.J. Characterization of olive oil flavored with Brazilian pink pepper (Schinus terebinthifolius Raddi) in different maceration processes. Food Res. Int. 2020, 137, 109593. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, R.; Kowalska, G.; Pankiewicz, U.; Włodarczyk-Stasiak, M.; Sujka, M.; Mazurek, A. Effect of rapeseed oil aromatisation with marjoram on the content of volatile fraction and antioxidant properties. J. Food Sci. Technol. 2020, 57, 1138–1149. [Google Scholar] [CrossRef] [Green Version]
- Leone, A.; Romaniello, R.; Tamborrino, A.; Xu, X.-Q.; Juliano, P. Microwave and megasonics combined technology for a continuous olive oil process with enhanced extractability. Innov. Food Sci. Emerg. Technol. 2017, 42, 56–63. [Google Scholar] [CrossRef]
- Genovese, A.; Mondola, F.; Paduano, A.; Sacchi, R. Biophenolic Compounds Influence the In-Mouth Perceived Intensity of Virgin Olive Oil Flavours and Off-Flavours. Molecules 2020, 25, 1969. [Google Scholar] [CrossRef] [Green Version]
- Pereira, C.; Barros, L.; Ferreira, I.C. A comparison of the nutritional contribution of thirty-nine aromatic plants used as condiments and/or herbal infusions. Plant Foods Hum. Nutr. 2015, 70, 176–183. [Google Scholar] [CrossRef]
- Clodoveo, M.L.; Dipalmo, T.; Crupi, P.; Durante, V.; Pesce, V.; Maiellaro, I.; Lovece, A.; Mercurio, A.; Laghezza, A.; Corbo, F. Comparison between different flavored olive oil production techniques: Healthy value and process efficiency. Plant Foods Hum. Nutr. 2016, 71, 81–87. [Google Scholar] [CrossRef]
- Wolff, J.P. Manuel d′analyse des Corps Gras; Tokyo University of Fisheries: Tokyo, Japan, 1968. [Google Scholar]
- Ammar, I.; BenAmira, A.; Khemakem, I.; Attia, H.; Ennouri, M. Effect of Opuntia ficus-indica flowers maceration on quality and on heat stability of olive oil. J. Food Sci. Technol. 2017, 54, 1502–1510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Britto Policarpi, P.; Demoliner, F.; Ferrari, R.A.; Bascuñan, V.L.A.F.; Ramos, J.C.; Jachmanián, I.; Vitali, L.; Micke, G.A.; Block, J.M. Nutritional potential, chemical profile and antioxidant activity of Chichá (Sterculia striata) nuts and its by-products. Food Res. Int. 2017, 106, 736–744. [Google Scholar] [CrossRef]
- Mzoughi, Z.; Souid, G.; Timoumi, R.; Le Cerf, D.; Majdoub, H. Partial characterization of the edible Spinacia oleracea polysaccharides: Cytoprotective and antioxidant potentials against Cd induced toxicity in HCT116 and HEK293 cells. Int. J. Biol. Macromol. 2019, 136, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Bejaoui, M.A.; Sánchez-Ortiz, A.; Aguilera, M.P.; Ruiz-Moreno, M.J.; Sánchez, S.; Jiménez, A.; Beltrán, G. High power ultrasound frequency for olive paste conditioning: Effect on the virgin olive oil bioactive compounds and sensorial characteristics. Innov. Food Sci. Emerg. Technol. 2018, 47, 136–145. [Google Scholar] [CrossRef]
- Chandran, J.; Nayana, N.; Roshini, N.; Nisha, P. Oxidative stability, thermal stability and acceptability of coconut oil flavored with essential oils from black pepper and ginger. J. Food Sci. Technol. 2017, 54, 144–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stojković, D.; Reis, F.S.; Glamočlija, J.; Ćirić, A.; Barros, L.; Van Griensven, L.J.; Ferreira, I.C.; Soković, M. Cultivated strains of Agaricus bisporus and A. brasiliensis: Chemical characterization and evaluation of antioxidant and antimicrobial properties for the final healthy product–natural preservatives in yoghurt. Food Funct. 2014, 5, 1602–1612. [Google Scholar] [CrossRef] [PubMed]
- Mekni, M.; Azez, R.; Tekaya, M.; Mechri, B.; Hammami, M. Phenolic, non-phenolic compounds and antioxidant activity of pomegranate flower, leaf and bark extracts of four Tunisian cultivars. J. Med. Plants Res. 2013, 7, 1100–1107. [Google Scholar]
- Khan, F.A.; Khan, N.M.; Ahmad, S.; Aziz, R.; Ullah, I.; Almehmadi, M.; Allahyani, M.; Alsaiari, A.A.; Aljuaid, A. Phytochemical profiling, antioxidant, antimicrobial and cholinesterase inhibitory effects of essential oils isolated from the leaves of Artemisia scoparia and Artemisia absinthium. Pharmaceuticals 2022, 15, 1221. [Google Scholar] [CrossRef] [PubMed]
- Chahdoura, H.; Barreira, J.C.; Barros, L.; Dias, M.I.; Calhelha, R.C.; Flamini, G.; Soković, M.; Achour, L.; Ferreira, I.C. Bioactivity, hydrophilic, lipophilic and volatile compounds in pulps and skins of Opuntia macrorhiza and Opuntia microdasys fruits. LWT 2019, 105, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Chahdoura, H.; El Bok, S.; Refifa, T.; Adouni, K.; Khemiss, F.; Mosbah, H.; Ben-Attia, M.; Flamini, G.; Achour, L. Activity of anti-inflammatory, analgesic and antigenotoxic of the aqueous flower extracts of Opuntia microdasys Lem. Pfeiff. J. Pharm. Pharmacol. 2017, 69, 1056–1063. [Google Scholar] [CrossRef]
- Ammar, H.H.; Lajili, S.; Sakly, N.; Cherif, D.; Rihouey, C.; Le Cerf, D.; Bouraoui, A.; Majdoub, H. Influence of the uronic acid composition on the gastroprotective activity of alginates from three different genus of Tunisian brown algae. Food Chem. 2018, 239, 165–171. [Google Scholar] [CrossRef]
- Chabour, M. Olive oil extraction methods in Algeria: Changes and surviving traditions. Olivae 2003, 99, 50–55. [Google Scholar]
- Piscopo, A.; Mafrica, R.; De Bruno, A.; Romeo, R.; Santacaterina, S.; Poiana, M. Characterization of Olive Oils Obtained from Minor Accessions in Calabria (Southern Italy). Foods 2021, 10, 305. [Google Scholar] [CrossRef]
- Laribi, R.; Laincer, F.; Tamendjari, A.; Keciri, S.; Arrar, L.; Venturini, S.; Rovellini, P. Characterization of ten varieties of Algerian olive oil: Profile study in phenolic compounds by HPLC. Riv. Ital. Delle Sostanze Grasse 2011, 88, 161–171. [Google Scholar]
- Baccouri, B.; Temime, S.B.; Campeol, E.; Cioni, P.L.; Daoud, D.; Zarrouk, M. Application of solid-phase microextraction to the analysis of volatile compounds in virgin olive oils from five new cultivars. Food Chem. 2007, 102, 850–856. [Google Scholar] [CrossRef]
- Krichene, D.; Allalout, A.; Mancebo-Campos, V.; Salvador, M.; Zarrouk, M.; Fregapane, G. Stability of virgin olive oil and behaviour of its natural antioxidants under medium temperature accelerated storage conditions. Food Chem. 2010, 121, 171–177. [Google Scholar] [CrossRef]
- Dabbou, S.; Issaoui, M.; Servili, M.; Taticchi, A.; Sifi, S.; Montedoro, G.F.; Hammami, M. Characterisation of virgin olive oils from European olive cultivars introduced in Tunisia. Eur. J. Lipid Sci. Technol. 2009, 111, 392–401. [Google Scholar] [CrossRef]
- Criado, M.-N.; Romero, M.-P.; Casanovas, M.; Motilva, M.-J. Pigment profile and colour of monovarietal virgin olive oils from Arbequina cultivar obtained during two consecutive crop seasons. Food Chem. 2008, 110, 873–880. [Google Scholar] [CrossRef]
- D’Imperio, M.; Gobbino, M.; Picanza, A.; Costanzo, S.; Della Corte, A.; Mannina, L. Influence of harvest method and period on olive oil composition: An NMR and statistical study. J. Agric. Food Chem. 2010, 58, 11043–11051. [Google Scholar] [CrossRef] [PubMed]
- Gimeno, E.; Castellote, A.; Lamuela-Raventós, R.; De la Torre, M.; López-Sabater, M. The effects of harvest and extraction methods on the antioxidant content (phenolics, α-tocopherol, and β-carotene) in virgin olive oil. Food Chem. 2002, 78, 207–211. [Google Scholar] [CrossRef]
- Gimeno, E.; de la Torre-Carbot, K.; Lamuela-Raventós, R.M.; Castellote, A.I.; Fitó, M.; de la Torre, R.; Covas, M.-I.; López-Sabater, M.C. Changes in the phenolic content of low density lipoprotein after olive oil consumption in men. A randomized crossover controlled trial. Br. J. Nutr. 2007, 98, 1243–1250. [Google Scholar] [CrossRef] [Green Version]
- Temime, S.B.; Wael, T.; Bechir, B.; Leila, A.; Douja, D.; Mokhtar, Z. Changes in olive oil quality of Chétoui variety according to origin of plantation. J. Food Lipids 2006, 13, 88–99. [Google Scholar] [CrossRef]
- Mzoughi, Z.; Chahdoura, H.; Chakroun, Y.; Cámara, M.; Fernández-Ruiz, V.; Morales, P.; Mosbah, H.; Flamini, G.; Snoussi, M.; Majdoub, H. Wild edible Swiss chard leaves (Beta vulgaris L. var. cicla): Nutritional, phytochemical composition and biological activities. Food Res. Int. 2019, 119, 612–621. [Google Scholar] [CrossRef]
- Grechkin, A.N.; Brühlmann, F.; Mukhtarova, L.S.; Gogolev, Y.V.; Hamberg, M. Hydroperoxide lyases (CYP74C and CYP74B) catalyze the homolytic isomerization of fatty acid hydroperoxides into hemiacetals. Biochim. Et Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2006, 1761, 1419–1428. [Google Scholar] [CrossRef]
- Narain, N. Volatile compounds in date palm fruit. In Proceedings of the III International Date Palm Conference 736, Abu Dhabi, UAE, 19–21 February 2006; pp. 261–266. [Google Scholar]
- Rohman, A.; Man, Y.C. Fourier transform infrared (FTIR) spectroscopy for analysis of extra virgin olive oil adulterated with palm oil. Food Res. Int. 2010, 43, 886–892. [Google Scholar] [CrossRef]
- Boussahel, S.; Di Stefano, V.; Muscarà, C.; Cristani, M.; Melilli, M.G. Phenolic Compounds Characterization and Antioxidant Properties of Monocultivar Olive Oils from Northeast Algeria. Agriculture 2020, 10, 494. [Google Scholar] [CrossRef]
- Finicelli, M.; Squillaro, T.; Galderisi, U.; Peluso, G. Polyphenols, the Healthy Brand of Olive Oil: Insights and Perspectives. Nutrients 2021, 13, 3831. [Google Scholar] [CrossRef] [PubMed]
- Perrin, J.-L. Les composés mineurs et les antioxygènes naturels de l′olive et de son huile. Rev. Française Des Corps Gras 1992, 39, 25–32. [Google Scholar]
- Tsimidou, M.Z.; Georgiou, A.; Koidis, A.; Boskou, D. Loss of stability of “veiled”(cloudy) virgin olive oils in storage. Food Chem. 2005, 93, 377–383. [Google Scholar] [CrossRef]
- Merouane, A.; Noui, A.; Ali, K.N.B.; Saadi, A. Activité antioxydante des composés phénoliques d’huile d’olive extraite par méthode traditionnelle. Int. J. Biol. Chem. Sci. 2014, 8, 1865–1870. [Google Scholar] [CrossRef] [Green Version]
- Aissaoui, Y.; Boukhari, Y. Antioxidant, Antibacterial and Antifungal Effects of Phenolic Extracts of Extra Virgin Olive Oil from Two Western Regions of Algeria: A Comparative Study. Phytothérapie 2021, 19, 93–99. [Google Scholar] [CrossRef]
- Sacan, O.; Yanardag, R. Antioxidant and antiacetylcholinesterase activities of chard (Beta vulgaris L. var. cicla). Food Chem. Toxicol. 2010, 48, 1275–1280. [Google Scholar] [CrossRef]
- Ziogas, V.; Tanou, G.; Molassiotis, A.; Diamantidis, G.; Vasilakakis, M. Antioxidant and free radical-scavenging activities of phenolic extracts of olive fruits. Food Chem. 2010, 120, 1097–1103. [Google Scholar] [CrossRef]
- Jung, H.; Kim, I.; Jung, S.; Lee, J. Oxidative stability of chia seed oil and flax seed oil and impact of rosemary (Rosmarinus officinalis L.) and garlic (Allium cepa L.) extracts on the prevention of lipid oxidation. Appl. Biol. Chem. 2021, 64, 1–16. [Google Scholar] [CrossRef]
- El-Demerdash, F.M.; El-Sayed, R.A.; Abdel-Daim, M.M. Hepatoprotective potential of Rosmarinus officinalis essential oil against hexavalent chromium-induced hematotoxicity, biochemical, histological, and immunohistochemical changes in male rats. Environ. Sci. Pollut. Res. 2021, 28, 17445–17456. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, B.R.; Heleno, S.A.; Oliveira, M.B.P.; Barros, L.; Ferreira, I.C. Phenolic compounds: Current industrial applications, limitations and future challenges. Food Funct. 2021, 12, 14–29. [Google Scholar] [CrossRef]
- Mzoughi, Z.; Abdelhamid, A.; Rihouey, C.; Le Cerf, D.; Bouraoui, A.; Majdoub, H. Optimized extraction of pectin-like polysaccharide from Suaeda fruticosa leaves: Characterization, antioxidant, anti-inflammatory and analgesic activities. Carbohydr. Polym. 2018, 185, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Calixto, J.B.; Otuki, M.F.; Santos, A.R. Anti-inflammatory compounds of plant origin. Part I. Action on arachidonic acid pathway, nitric oxide and nuclear factor κ B (NF-κB). Planta Med. 2003, 69, 973–983. [Google Scholar] [PubMed]
- Fezai, M.; Senovilla, L.; Jemaà, M.; Ben-Attia, M. Analgesic, anti-inflammatory and anticancer activities of extra virgin olive oil. J. Lipids 2013, 2013, 129736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babar, Z.U.D.; Ibrahim, M.I.M.; Singh, H.; Bukahri, N.I.; Creese, A. Evaluating drug prices, availability, affordability, and price components: Implications for access to drugs in Malaysia. PLoS Med. 2007, 4, e82. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Matsui, Y.; Ago, T.; Ota, K.; Sumimoto, H. Novel modular domain PB1 recognizes PC motif to mediate functional protein–protein interactions. EMBO J. 2001, 20, 3938–3946. [Google Scholar] [CrossRef] [Green Version]
- Seidavi, A.; Tavakoli, M.; Asroosh, F.; Scanes, C.G.; El-Hack, A.; Mohamed, E.; Naiel, M.A.; Taha, A.E.; Aleya, L.; El-Tarabily, K.A. Antioxidant and antimicrobial activities of phytonutrients as antibiotic substitutes in poultry feed. Environ. Sci. Pollut. Res. 2021, 29, 5006–5031. [Google Scholar] [CrossRef]
Properties | Control | EVOO + O | O + O | EVOO + R | O + R | EVOO + L | O + L | |
---|---|---|---|---|---|---|---|---|
RLC | OC | |||||||
Water content (%) | 0.15 ± 0.04 a | 0.04 ± 0.00 ab | 0.94 ± 0.05 c | 1.21 ± 0.03c | 0.09 ± 0.02a | 0.13 ± 0.09ab | 0.82 ± 0.15 abc | 0.90 ± 0.08 bc |
Refractive index | 1.4679 ± 0.002 a | 1.4700 ± 0.001 a | 1.4701 ± 0.001 a | 1.4691 ± 0.002 a | 1.4699 ± 0.001 a | 1.4702 ± 0.001 a | 1.4680 ± 0.002 a | 1.4689 ± 0.004 a |
Density (g) | 0.9144 ± 0.001 a | 0.914 ± 0.001 a | 0.9136 ± 0.002 a | 0.9127 ± 0.004 a | 0.9133 ± 0.002 a | 0.9133 ± 0.001 a | 0.9139 ± 0.001 a | 0.9126 ± 0.002 a |
Acidity (% oleic acid) | 0.19 ± 0.006 c | 0.21 ± 0.002 c | 0.11 ± 0.005 ab | 0.20 ± 0.005 c | 0.11 ± 0.005 ab | 0.16 ± 0.003 bc | 0.08 ± 0.01 a | 0.10 ± 0.004 a |
Peroxide index (meq of O2 per kg) | 23.33 ± 0.004 a | 22.97 ± 0.01 ab | 86.66 ± 0.002 f | 22.66 ± 0.002 cd | 23.33 ± 0.005 cd | 30.66 ± 0.002 e | 24.66 ± 0.002 d | 20.00 ± 0.01 bc |
Extinction coefficients | ||||||||
K232 | 2.40 ± 0.07 a | 2.42 ± 0.05 b | 2.39 ± 0.07 b | 2.45 ± 0.05 b | 2.45 ± 0.04 b | 2.42 ± 0.03 b | 2.39 ± 0.01 b | 2.25 ± 0.07 b |
K270 | 0.15 ± 0.01 c | 0.17 ± 0.05 e | 0.16 ± 0.04 d | 0.18 ± 0.05 f | 0.09 ± 0.05 a | 0.10 ± 0.04 b | 0.20 ± 0.09 h | 0.19 ± 0.04 g |
Pigments composition (mg/kg) | ||||||||
Total carotenoids | 9.20 ± 0.01 a | 8.61 ± 0.002 a | 31.77 ± 0.06 e | 20.94 ± 0.02 g | 22.88 ± 0.01 f | 17.63 ± 0.02 d | 14.83 ± 0.04 c | 12.53 ± 0.02 b |
Total chlorophylls | 22.23 ± 0.03 a | 21.06 ± 0.03 b | 21.73 ± 0.04 a | 21.10 ± 0.02 a | 47.96 ± 0.05 e | 33.15 ± 0.03 d | 34.30 ± 0.02 d | 31.57 ± 0.03 c |
Type of EVOO | Control | EVOO + O | O + O | EVOO + R | O + R | EVOO + L | O + L | |
---|---|---|---|---|---|---|---|---|
RLC | OC | |||||||
Induction time (hours) | 13.10 ± 0.45 e | 13.20 ± 0.51 de | 11.77 ± 0.60 cd | 10.39 ± 0.35 bc | 19.38 ± 0.26 f | 18.83 ± 0.36 f | 9.22 ± 0.18 b | 7.29 ± 0.26 a |
Fatty Acids | Control | EVOO + O | O + O | EVOO + R | O + R | EVOO + L | O + L | |
---|---|---|---|---|---|---|---|---|
RLC | OC | |||||||
Pentadecanoic acid(C15:0) | 0.24 ± 0.01 a | 0.26 ± 0.01 a | - | - | - | - | - | - |
Palmitic acid(C16:0) | 16.80 ± 0.08 a | 15.9 ± 0.10 b | 17.96 ± 0.06 d | 16.92 ± 0.14 b | 18.59 ± 1.62 e | 17.42 ± 1.12 c | 17.72 ± 1.05 d | 17.30 ± 2.08 c |
Palmitoleic acid(C16:1) | 2.30 ± 0.01 b | 2.6 ± 0.05 d | 2.22 ± 0.01 c | 2.07 ± 0.03 a | 2.09 ± 0.16 b | 2.07 ± 1.02 a | 2.07 ± 0.89 a | 2.4 ± 0.36 c |
Margaric acid(C17:0) | - | - | 0.03 ± 0.01a | - | - | - | 0.03 ± 0.01a | - |
Oleic acid (C18:1) | 66.12 ± 1.11 b | 64.86 ± 2.18 a | 65.58 ± 1.19 b | 65.29 ± 1.25 b | 65.50 ± 2.04 b | 65.28 ± 2.45 b | 65.45 ± 2.15 b | 64.31 ± 1.69 a |
Linoleic acid(C18:2n6c) | 9.98 ± 0.06 b | 10.06 ± 0.04 c | 10.79 ± 0.08 d | 10.02 ± 0.56 c | 8.37 ± 1.01 a | 10.15 ± 0.25 c | 8.89 ± 1.25 a | 10.45 ± 0.95 d |
Stearic acid (C18:0) | 2.15 ± 0.01 b | 2.05 ± 0.02 a | 2.51 ± 0.01 b | 2.03 ± 0.39 a | 2.91 ± 0.28 b | 2.56 ± 0.48 b | 2.90 ± 1.08 b | 2.56 ± 0.65 b |
Arachidic acid(C20:0) | 0.19 ± 0.01 a | 0.23 ± 0.01 a | 0.42 ± 0.01 c | 0.43 ± 0.02 c | 0.47 ± 0.12 e | 0.23 ± 1.02 b | 0.45 ± 0.05 d | 0.43 ± 0.15 c |
Gondoic acid (C20:1 n-9) | - | - | 0.18 ± 0.01a | - | 0.23 ± 0.08 | - | 0.20 ± 0.09 b | - |
Behenic acid(C22:0) | 0.12 ± 0.01 a | 0.11 ± 0.01 a | 0.11 ± 0.01 a | 0.12 ± 0.03 a | 0.13 ± 0.05 a | 0.12 ± 0.02 a | 0.12 ± 0.02 a | 0.12 ± 0.02 a |
Tricosanoic acid(C23:0) | - | - | 0.02 ± 0.01 a | - | 0.03 ± 0.06 a | - | - | - |
Lignoceric acid(C24:0) | 0.06 ± 0.01 b | 0.04 ± 0.01 a | 0.07 ± 0.01 c | 0.06 ± 0.01 | 0.07 ± 0.02 b | 0.06 ± 0.01 | 0.09 ± 0.01 b | 0.06 ± 0.01 a |
Hexacosanoic acid (C26:0) | - | - | - | - | 0.01 ± 0.01a | - | 0.09 ± 0.02b | - |
Saturated fatty acid (SFA) Monounsaturated fatty acid (MUFA) Polyunsaturated fatty acid (PUFA) | 19.56 ± 0.08 b 68.42 ± 1.09 b 9.98 ± 0.02 b | 18.59 ± 0.13 a 67.46 ± 0.23 a 10.06 ± 0.02 b | 21.10 ± 1.11 d 66.68 ± 2.05 a 11.01 ± 1.01 b | 19.56 ± 1.14 b 67.65 ± 2.17 a 10.02 ± 0.65 b | 22.21 ± 0.13 e 67.82 ± 2.18 a 8.70 ± 1.01 a | 20.39 ± 1.08 c 67.35 ± 2.36 a 10.15 ± 1.28 a | 21.40 ± 0.19 d 67.72 ± 0.85 a 9.14 ± 1.08 a | 20.35 ± 1.52 c 66.71 ± 2.15 a 10.45 ± 1.02 b |
N° | Constituents | LRI | Control | EVOO + O | O + O | EVOO + R | O + R | EVOO + L | O + L | |
---|---|---|---|---|---|---|---|---|---|---|
RLC | OC | |||||||||
1 | (E)-2-hexenal | 856 | 60.7 ± 0.6 d | 53 ± 0.5 e | 0.1 ± 0.01 a | 0.1 ± 0.01 a | 1.5 ± 0.10 c | 1.00 ± 0.1 b | - | - |
2 | α-thujene | 933 | - | - | - | - | - | - | 0.3 ± 0.1 a | 0.3 ± 0.1 a |
3 | α-pinene | 941 | - | - | 1.3 ± 0.1 a | 1.5 ± 0.1 b | 9.5 ± 0.1 e | 10.6 ± 0.1 f | 4.2 ± 0.1 c | 4.4 ± 0.1 d |
4 | Camphene | 955 | - | - | - | - | 6.9 ± 0.1 a | 7.5 ± 0.1 b | - | - |
5 | Sabinene | 977 | - | - | 1.5 ± 0.1 a | 1.9 ± 0.1 a | - | - | - | - |
6 | β-pinene | 982 | - | - | - | - | 5.1 ± 0.1 a | 5.6 ± 0.1 a | 14.8 ± 0.2 b | 15.6 ± 0.2 b |
7 | Myrcene | 993 | - | - | 3.4 ± 0.1 c | 3.9 ± 0.1 c | 1.6 ± 0.1 a | 2.1 ± 0.1 b | 5 ± 0.1 d | 5.3 ± 0.1 d |
8 | 3,7-decadiene * | 999 | 4.5 ± 0.1 a | 12.6 ± 0.2 b | - | - | - | - | - | - |
9 | (Z)-3-hexenyl acetate | 1008 | 3.4 ± 0.1 a | 9.8 ± 0.1 b | - | - | - | - | - | - |
10 | 1-hexyl acetate | 1010 | 1.3 ± 0.08 | - | - | - | - | - | - | - |
11 | δ-3-carene | 1013 | - | - | 0.2 ± 0.05 a | 0.2 ± 0.06 a | - | - | - | - |
12 | α-terpinene | 1020 | - | - | - | - | - | - | 0.1 ± 0.00 | - |
13 | p-cymene | 1028 | - | - | - | - | 0.2 ± 0.03 a | 0.4 ± 0.04 b | 0.2 ± 0.03 a | 0.2 ± 0.02 a |
14 | Limonene | 1032 | 22.4 ± 0.6 b | 8.2 ± 0.4 a | 92.7 ± 0.9 e | 91.4 ± 0.8 e | 60.5 ± 0.6 c | - | 62.1 ± 0.5 d | 60.2 ± 0.6 c |
15 | 1,8-cineole | 1034 | - | - | - | - | - | 59.2 ± 0.9 | - | - |
16 | (E)-β-ocimene | 1052 | 0.5 ± 0.08 b | - | 0.1 ± 0.01 a | - | - | - | - | - |
17 | γ-terpinene | 1063 | 1.2 ± 0.3 b | - | - | - | 0.2 ± 0.04 a | 0.3 ± 0.04 a | 11.9 ± 0.8 c | 12.8 ± 0.9 c |
18 | Terpinolene | 1090 | - | - | 0.1 ± 0.01 a | 0.1 ± 0.02 a | - | - | 0.4 ± 0.02 b | 0.3 ± 0.01 a |
19 | Linalool | 1101 | - | - | 0.4 ± 0.03 a | 0.6 ± 0.04 b | 0.3 ± 0.02 a | - | - | - |
20 | Nonanal | 1104 | 1.8 ± 0.03 b | - | - | 0.1 ± 0.01 a | - | 0.3 ± 0.02 a | - | 5.6 ± 0.6 b |
21 | Camphor | 1144 | - | - | - | - | 10.8 ± 0.2 a | 10.6 ± 0.9 a | - | - |
22 | Borneol | 1168 | - | - | - | - | 1.6 ± 0.02 b | 0.9 ± 0.01 a | - | - |
23 | 4-terpineol | 1179 | - | - | - | - | 0.1 ± 0.01 | - | - | - |
24 | α-terpineol | 1191 | - | - | - | - | - | 0.5 ± 0.03 | - | - |
25 | Decanal | 1204 | - | - | 0.1 ± 0.01 a | 0.1 ± 0.01 a | - | 0.2 ± 0.02 a | - | - |
26 | (E)-2-dodecene | 1205 | 1.8 ± 0.08 b | - | - | - | 0.1 ± 0.01 a | - | - | 8.4 ± 0.25 c |
27 | 1-ocytyl acetate | 1213 | 2 ± 0.16 | - | - | - | - | - | - | - |
28 | Neral | 1240 | - | - | - | - | - | - | 0.3 ± 0.06 a | 0.3 ± 0.05 a |
29 | Geranial | 1271 | - | - | - | - | - | - | 0.4 ± 0.07 a | 0.4 ± 0.06 a |
30 | Bornyl acetate | 1286 | - | - | - | - | - | 0.3 ± 0.06 | - | - |
31 | Neryl acetate | 1366 | - | - | - | - | - | - | - | 0.1 ± 0.01 |
32 | β-caryophyllene | 1419 | - | - | - | - | 0.6 ± 0.05 b | 0.4 ± 0.03 a | - | - |
33 | (E)-geranylacetone | 1456 | - | 1.6 ± 0.26 | - | - | - | - | - | - |
34 | (E,E)-α-farnesene | 1508 | 0.2 ± 0.01 a | 0.7 ± 0.08 b | 0.1 ± 0.01 a | - | - | - | - | - |
Monoterpene hydrocarbons | 24.1 ± 0.9 b | 8.2 ± 0.74 a | 99.2 ± 0.9 e | 99 ± 0.85 e | 84 ± 0.87 d | 26.5 ± 0.6 c | 99.1 ± 0.9 e | 99 ± 0.92 e | ||
Oxigenated monoterpenes | - | - | 0.4 ± 0.05 a | 0.6 ± 0.06 b | 13.3 ± 0.2 d | 71.5 ± 0.8 e | 0.7 ± 0.75 a | 0.8 ± 0.82 bc | ||
Sesquiterpene hydrocarbons | 0.2 ± 0.02 b | 0.7 ± 0.06 e | 0.1 ± 0.01 a | - | 0.6 ± 0.05 d | 0.4 ± 0.03 c | - | - | ||
Apocarotenoids | - | 1.6 ± 0.02 | - | - | - | - | - | - | ||
Non-terpene derivatives | 75.5 ± 0.7 c | 89.4 ± 0.9 d | 0.2 ± 0.01 a | 0.3 ± 0.02 a | 1.6 ± 0.01 b | 1.5 ± 0.01 b | - | - | ||
Non-terpene hydrocarbons | 6.3 ± 0.06 b | 21 ± 0.19 c | - | - | 0.1 ± 0.01 a | - | - | - | ||
Non-terpene aldehydes/ketones | 62.5 ± 0.6 d | 58.6 ± 0.6 c | 0.2 ± 0.01 a | 0.3 ± 0.02 a | 1.5 ± 0.01 b | 1.5 ± 0.02 b | - | - | ||
Non-terpene esters | 6.7 ± 0.07 a | 9.8 ± 0.08 b | - | - | - | - | - | - | ||
Total identified (%) | 99.8 ± 0.9 | 99.9 ± 0.8 | 99.9 ± 0.9 | 99.9 ± 0.9 | 99.5 ± 0.8 | 99.9 ± 0.9 | 99.8 ± 0.8 | 99.9 ± 0.9 |
Control | EVOO + O | O + O | EVOO + R | O + R | EVOO + L | O + L | |||
---|---|---|---|---|---|---|---|---|---|
RLC | OC | ||||||||
Phenols composition | Total Phenolics content (mgGAE/kg) | 649.35 ± 0.68 c | 648.86 ± 0.52 c | 761.97 ± 0.63 e | 680.08 ± 0.68 d | 1185.98 ± 0.75 g | 856.34 ± 0.48 f | 452.46 ± 0.28 b | 383.76 ± 0.23 a |
Total o-diphenols content (mg CAE/kg) | 132.03 ± 0.12 c | 131.76 ± 0.15 c | 145.10 ± 0.11 e | 140.94 ± 0.12 d | 170.85 ± 0.13 g | 158.07 ± 0.14 f | 122.32 ± 0.17 b | 111.16 ± 0.12 a | |
Antioxidant activity (EC50, mg/mL) | DPPH scavenging ability | 2.39 ± 0.12 d | 2.53 ± 0.07 d | 1.30 ± 0.01 a | 1.90 ± 0.08 b | 0.14 ± 0.02 a | 0.71 ± 0.01 c | 4.41 ± 0.16 e | 7.77 ± 0.19 f |
ABTS | 9.40 ± 0.06 c | 9.71 ± 0.09 c | 6.05 ± 0.23 c | 7.29 ± 0.13 a | 5.30 ± 0.64 ab | 5.54 ± 0.04 b | 10.85 ± 0.10 d | 12.43 ± 0.40 e | |
Reducing power | 1.55 ± 0.01 d | 1.60 ± 0.08 d | 0.60 ± 0.01 a | 1.06 ± 0.03 a | 0.04 ± 0.001 b | 0.08 ± 0.04 c | 3.04 ± 0.03 e | 3.50 ± 0.17 f | |
β-carotene bleaching inhibition | 4.49 ± 0.66 c | 4.89 ± 0.52 c | 1.61 ± 0.23 a | 2.01 ± 0.08 a | 0.69 ± 0.30 b | 1.02 ± 0.02 b | 5.87 ± 0.003 d | 6.23 ± 0.04 d |
Analgesic Activity A | |||
Groups | Concentration (mg/Kg) | Number of Writhes | Inhibition of Writhing (%) |
Control (saline solution) | - | 76.50 ± 0.39 | - |
RLC (Control) | 250 | 52.66 ± 3.51 * | 28.82 |
500 | 47.16 ± 4.37 * | 36.26 | |
1000 | 35.00 ± 5.55 ** | 52.70 | |
OC (Control) | 250 | 53.66 ± 3.79 * | 27.48 |
500 | 47.50 ± 4.44 * | 35.81 | |
1000 | 35.60 ± 5.68 ** | 51.89 | |
EVOO + O | 250 | 47.16 ± 5.45 * | 36.26 |
500 | 33.66 ± 6.06 ** | 54.50 | |
1000 | 27.33 ± 4.73 ** | 63.06 | |
O + O | 250 | 49.50 ± 5.45 * | 33.10 |
500 | 37.50 ± 5.82 * | 49.32 | |
1000 | 30.50 ± 4.99 ** | 58.78 | |
EVOO + R | 250 | 37.50 ± 5.53 * | 49.32 |
500 | 23.33 ± 3.95 ** | 68.47 | |
1000 | 16.50 ± 3.11 ** | 77.70 | |
O + R | 250 | 43.83 ± 5.72 * | 40.76 |
500 | 36.66 ± 5.67 ** | 50.45 | |
1000 | 30.16 ± 5.00 ** | 59.23 | |
EVOO + L | 250 | 56.33 ± 3.97 * | 23.87 |
500 | 32.65 ± 0.56 * | 32.65 | |
1000 | 37.40 ± 5.18 * | 49.46 | |
O + L | 250 | 58.50 ± 4.57 * | 20.94 |
500 | 52.83 ± 4.38 * | 28.60 | |
1000 | 40.80 ± 5.07 * | 44.86 | |
Reference drug (ASL) | 200 | 27.66 ± 2.83 ** | 63.83 |
Gastroprotective Activity | |||
Groups | Concentration (mg/Kg) | Ulcer Index (mm) | Ulcer Inhibition (%) |
Control (Vehicle; 0.9% NaCl) | - | 58.16 ± 2.14 | - |
RLC (Control) | 500 | 40.00 ± 1.45 * | 31.23 |
1000 | 26.08 ± 1.74 ** | 55.15 | |
OC (Control) | 500 | 40.42 ± 1.12 * | 30.51 |
1000 | 26.33 ± 1.57 ** | 54.72 | |
EVOO + O | 500 | 37.5 ± 1.97 * | 35.53 |
1000 | 10.53 ± 0.66 ** | 81.89 | |
O + O | 500 | 38.83 ± 1.83 * | 33.24 |
1000 | 12.61 ± 1.94 ** | 78.31 | |
EVOO + R | 500 | 34.83 ± 0.75 * | 40.11 |
1000 | 1.98 ± 3.93 ** | 96.59 | |
O + R | 500 | 36.5 ± 1.87 * | 37.25 |
1000 | 5.58 ± 4.84 ** | 90.40 | |
EVOO + L | 500 | 41.42 ± 1.96 * | 28.79 |
1000 | 28.00 ± 1.67 ** | 51.86 | |
O + L | 500 | 42.67 ± 1.32 * | 26.64 |
1000 | 28.58 ± 2.35 ** | 50.86 | |
Standard (Ranitidine) | 50 | 19.91 ± 0.97 ** | 65.76 |
Standard (Omeprazole) | 30 | 4.75 ± 0.76 ** | 91.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chahdoura, H.; Mzoughi, Z.; Ziani, B.E.C.; Chakroun, Y.; Boujbiha, M.A.; Bok, S.E.; M’hadheb, M.B.; Majdoub, H.; Mnif, W.; Flamini, G.; et al. Effect of Flavoring with Rosemary, Lemon and Orange on the Quality, Composition and Biological Properties of Olive Oil: Comparative Study of Extraction Processes. Foods 2023, 12, 1301. https://doi.org/10.3390/foods12061301
Chahdoura H, Mzoughi Z, Ziani BEC, Chakroun Y, Boujbiha MA, Bok SE, M’hadheb MB, Majdoub H, Mnif W, Flamini G, et al. Effect of Flavoring with Rosemary, Lemon and Orange on the Quality, Composition and Biological Properties of Olive Oil: Comparative Study of Extraction Processes. Foods. 2023; 12(6):1301. https://doi.org/10.3390/foods12061301
Chicago/Turabian StyleChahdoura, Hassiba, Zeineb Mzoughi, Borhane E. C. Ziani, Yasmine Chakroun, Mohamed Ali Boujbiha, Safia El Bok, Manel Ben M’hadheb, Hatem Majdoub, Wissem Mnif, Guido Flamini, and et al. 2023. "Effect of Flavoring with Rosemary, Lemon and Orange on the Quality, Composition and Biological Properties of Olive Oil: Comparative Study of Extraction Processes" Foods 12, no. 6: 1301. https://doi.org/10.3390/foods12061301
APA StyleChahdoura, H., Mzoughi, Z., Ziani, B. E. C., Chakroun, Y., Boujbiha, M. A., Bok, S. E., M’hadheb, M. B., Majdoub, H., Mnif, W., Flamini, G., & Mosbah, H. (2023). Effect of Flavoring with Rosemary, Lemon and Orange on the Quality, Composition and Biological Properties of Olive Oil: Comparative Study of Extraction Processes. Foods, 12(6), 1301. https://doi.org/10.3390/foods12061301