Bioaccessibility and Cellular Uptake of Lutein, Zeaxanthin and Ferulic Acid from Muffins and Breads Made from Hairless Canary Seed, Wheat and Corn Blends
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Grains and Flours
2.3. Preparation of Bread and Muffin Products
2.4. In Vitro Simulation of Gastrointestinal Digestion
2.5. Cleanup Treatments
2.6. Cellular Uptake of Lutein, Zeaxanthin and Ferulic Acid Using Caco-2 Cell Model
2.7. Analysis of Carotenoids and Phenolic Acids
2.8. Statistical Analysis
3. Results and Discussion
3.1. Treatment of Intestinal Digests
3.2. Bioaccessibility and Cellular Uptake of Carotenoids and Ferulic Acid from Muffins
3.3. Bioaccessibility and Cellular Uptake of Carotenoids and Ferulic Acid from Breads
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdel-Aal, E.-S.M.; Mats, L.; Rabalski, I. Identification of carotenoids in hairless canary seed and the effect of baking on their composition in bread and muffin products. Molecules 2022, 27, 1307. [Google Scholar] [CrossRef]
- Ragaee, S.; Seetharaman, K.; Abdel-Aal, E.-S.M. Impact of milling and thermal processing on phenolic compounds in cereal grains. Crit. Rev. Food Sci. Nutr. 2014, 54, 837–849. [Google Scholar] [CrossRef]
- Abdel-Aal, E.-S.M.; Akhtar, H.; Zaheer, K.; Ali, R. Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health. Nutrients 2013, 5, 1169–1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Abdel-Aal, E.-S.M. Dietary lutein and cognitive function in adults: A meta-analysis of randomized controlled trials. Molecules 2021, 26, 5794. [Google Scholar] [CrossRef]
- Mancuso, C.; Santangelo, R. Ferulic acid: Pharmacological and toxicological aspects. Food Chem. Toxicol. 2014, 65, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, M.; Sudheer, A.R.; Menon, V.P. Ferulic acid: Therapeutic potential through its antioxidant property. J. Clin. Biochem. Nutr. 2007, 40, 92–100. [Google Scholar] [CrossRef] [Green Version]
- Hucl, P.; Matus-Cadiz, M.; Vandenberg, A.; Sosulski, F.W.; Abdel-Aal, E.-S.M.; Hughes, G.R.; Slinkard, A.E. CDC Maria annual canarygrass. Cand. J. Plant Sci. 2001, 81, 115–116. [Google Scholar] [CrossRef]
- Health Canada. Food and Nutrition, Novel Foods. 2016. Available online: http://www.hc-sc.gc.ca/fn-an/gmf-agm/appro/canary-seed-lang-graine-alpiste-eng.php (accessed on 24 January 2023).
- US-FDA (US Food and Drug Administration). Agency Response Letter GRAS Notice No. GRN 000529. 2015. Available online: https://www.accessdata.fda.gov/scripts/fdcc/index.cfm?set=GrASNotices&id=529 (accessed on 24 January 2023).
- Abdel-Aal, E.-S.M.; Hucl, P.; Miller, S.; Patterson, C.A.; Gray, D. Microstructure and nutrient composition of hairless canary seed and its potential as a blending flour for food use. Food Chem. 2011, 125, 410–416. [Google Scholar] [CrossRef]
- Abdel-Aal, E.-S.M. Nutritional and functional attributes of hairless canary seed groats and components and their potential as functional ingredients. Trends Food Sci. Technol. 2021, 111, 680–687. [Google Scholar] [CrossRef]
- Estrada-Salas, P.A.; Montero-Moran, G.M.; Martinez-Cuevas, P.P.; Gonzalez, C.; Barba de la Rosa, A.P. Characterization of antidiabetic and antihypertensive properties of canary seed (Phalaris canariensis L.) peptides. J. Agric. Food Chem. 2014, 62, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Valverde, M.E.; Orona-Tamayo, D.; Nieto-Rendon, B.; Paredes-Lopez, O. Antioxidant and antihypertensive potential of protein fractions from flour and milk substitutes from canary seeds (Phalaris canariensis L.). Plant Food Hum. Nutr. 2017, 72, 20–25. [Google Scholar] [CrossRef]
- Boye, J.I.; Achouri, A.; Raymond, N.; Cleroux, C.; Weber, D.; Koerner, T.B.; Hucl, P.; Patterson, C.A. Analysis of glabrous canary seeds by ELISA, mass spectrometry, and western blotting for the absence of cross-reactivity with major plant food allergens. J. Agri. Food Chem. 2013, 61, 6102–6112. [Google Scholar] [CrossRef] [PubMed]
- Mason, E.; L’Hocine, L.; Achouri, A.; Pitre, M.; Karboune, S. Health promoting bioactive properties of novel hairless canary seed flour in vitro gastrointestinal digestion. Foods 2020, 9, 932. [Google Scholar] [CrossRef]
- Mason, E.; L’Hocine, L.; Achouri, A.; Karboune, S. Hairless canaryseed: A novel cereal with health promoting potential. Nutrients 2018, 10, 1327. [Google Scholar] [CrossRef] [Green Version]
- Patterson, C.A.; Malcolmson, L.; Lukie, C.; Young, G.; Hucl, P.; Abdel-Aal, E.-S.M. Glabrous canary seed: A novel food ingredient. Cereal Foods World 2018, 63, 194–200. [Google Scholar]
- Etcheverry, P.; Grusak, M.A.; Fleige, L.E. Application of in vitro bioaccessibility and bioavailability methods for calcium, carotenoids, folate, iron, magnesium, polyphenols, zinc and vitamins B6, B12, D and E. Front. Physiol. 2012, 3, 317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojtunik-Kulesza, K.; Oniszczuk, A.; Oniszczuk, T.; Combrzynski, M.; Nowakowska, D.; Matwijczuk, A. Influence of in vitro digestion on composition, bioaccessibility and antioxidant activity of food polyphenols: A non-systematic review. Nutrients 2020, 12, 1401. [Google Scholar] [CrossRef] [PubMed]
- Garrett, D.A.; Failla, M.L.; Sarama, R.J. Estimation of carotenoid bioavailability from fresh stir-fried vegetables using an in vitro digestion/Caco-2 cell culture model. J. Nutr. Biochem. 2000, 11, 574–580. [Google Scholar] [CrossRef]
- Garrett, D.A.; Failla, M.L.; Sarama, R.J. Development of an in vitro digestion method to assess carotenoid bioavailability from meals. J. Agric. Food Chem. 1999, 47, 4301–4309. [Google Scholar] [CrossRef]
- Read, A.; Wright, A.; Abdel-Aal, E.-S.M. In vitro bioaccessibility and monolayer uptake of lutein from wholegrain baked foods. Food Chem. 2015, 174, 263–269. [Google Scholar] [CrossRef]
- Podio, N.S.; Baroni, M.V.; Pérez, G.T.; Wunderlin, D.A. Assessment of bioactive compounds and their in vitro bioaccessibility in whole-wheat flour pasta. Food Chem. 2019, 293, 408–417. [Google Scholar] [CrossRef]
- Pigni, N.B.; Aranibara, C.; Masa, A.L.; Aguirrea, A.; Borneoa, R.; Wunderlina, D.; Baroni, M.V. Chemical profile and bioaccessibility of polyphenols from wheat pasta supplemented with partially-deoiled chia flour. LWT 2020, 124, 109134. [Google Scholar] [CrossRef]
- Abdel-Aal, E.-S.M.; Rabalski, I. Changes in phenolic acids and antioxidant properties during baking of bread and muffin made from blends of hairless canary seed, wheat and corn. Antioxidants 2022, 11, 1059. [Google Scholar] [CrossRef] [PubMed]
- Ellwood, K.C.; Chatzidakis, C.; Failla, M.L. Fructose utilization by the human intestinal epithelial cell line Caco-2. Proc. Soc. Exp. Biol. Med. 1993, 202, 440–446. [Google Scholar] [CrossRef]
- Bell, T.; Alamzad, R.; Graf, B.A. Effect of pH on the chemical stability of carotenoids in juice. Proc. Nutr. Soc. 2016, 75, E94. [Google Scholar] [CrossRef] [Green Version]
- Subagio, A.; Wakaki, H.; Marita, N. Stability of lutein and its myristate esters. Biosci. Biotechnol. Biochem. 1999, 63, 1784–1786. [Google Scholar] [CrossRef]
- Mahler, G.J.; Shuler, M.L.; Glahn, R.P. Characterization of Caco-2 and HT29-MTXco-cultures in an in vitro digestion/cell culture model used to predict iron bioavailability. J. Nutr. Biochem. 2009, 20, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Reszczynska, E.; Welc, R.; Grudzinski, W.; Trebacz, K.; Gruszecki, W.I. Carotenoid binding to proteins: Modeling pigment transport to lipid membranes. Arch. Biochem. Biophys. 2015, 584, 125–133. [Google Scholar] [CrossRef]
- Werner, S.; Böhm, V. Bioaccessibility of carotenoids and vitamin E from pasta: Evaluation of an in vitro digestion model. J. Agric. Food Chem. 2011, 59, 1163–1170. [Google Scholar] [CrossRef] [PubMed]
- Granado-Lorencio, F.; Herrero-Barbudo, C.; Olmedilla-Alonso1, B.; Blanco-Navarro, I.; Pérez-Sacristán, B. Lutein bioavailability from lutein ester-fortified fermented milk: In Vivo and in vitro study. J. Nutr. Biochem. 2010, 21, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Yonekura, L.; Nagao, A. Intestinal absorption of dietary carotenoids. Mol. Nutr. Food Res. 2007, 51, 107–115. [Google Scholar] [CrossRef]
- Gong, L.; Chi, J.; Zhang, Y.; Wang, J.; Sun, B. In vitro evaluation of the bioaccessibility of phenolic acids in different whole wheats as potential prebiotics. LWT 2019, 100, 435–443. [Google Scholar] [CrossRef]
- Xavier, A.A.O.; Carvajal-Lérida, I.; Garrido-Fernández, J.; Pérez-Gálvez, A. In vitro bioaccessibility of lutein from cupcakes fortified with a water-soluble lutein esters formulation. J. Food Compos. Anal. 2018, 68, 60–64. [Google Scholar] [CrossRef]
- Granado-Lorencio, F.; Olmedilla-Alonso, B.; Herrero-Barbudo, C.; Pearez-Sacristtaa, B.; Blanco-Navarro, I.; Blaazquez-Garciaa, S. Comparative in vitro bioaccessibility of carotenoids from relevant contributors to carotenoid intake. J. Agric. Food Chem. 2007, 55, 6387–6394. [Google Scholar] [CrossRef]
- Swieca, M.; Gawlik-Dziki, U.; Dziki, D.; Baraniak, B. Wheat bread enriched with green coffee—In Vitro bioaccessibility and bioavailability of phenolics and antioxidant activity. Food Chem. 2017, 221, 1451–1457. [Google Scholar] [CrossRef] [PubMed]
- Dall’Asta, M.; Bresciani, L.; Calani, L.; Cossu, M.; Martini, D.; Melegari, C.; Del Rio, D.; Pellegrini, N.; Brighenti, F.; Scazzina, F. In vitro bioaccessibility of phenolic acids from a commercial aleurone-enriched bread compared to a whole grain bread. Nutrients 2016, 8, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bresciani, L.; Scazzina, F.; Leonardi, R.; Dall’Aglio, E.; Newell, M.; Dall’Asta, M.; Melegari, C.; Ray, S.; Brighenti, F.; Del Rio, D. Bioavailability and metabolism of phenolic compounds from wholegrain wheat and aleurone-rich wheat bread. Mol. Nutr. Food Res. 2016, 60, 2343–2354. [Google Scholar] [CrossRef]
- Kern, S.M.; Bennett, R.N.; Mellon, F.A.; Kroon, P.A.; Garcia-Conesa, M.-T. Absorption of hydroxycinnamates in humans after high-bran cereal consumption. J. Agric. Food Chem. 2003, 51, 6050–6055. [Google Scholar] [CrossRef]
Treatment of Digesta | Caco-2 Cells after 4 h Incubation Time x | Lutein y | Ferulic Acid y | Conclusion z | ||
---|---|---|---|---|---|---|
Digesta | Caco-2 Cells | Digesta | Caco-2 Cells | |||
As is (untreated) | MD | D | NM | D | NM | NA |
Acid (pH 2.0) | MI | ND | ND | D | D | NA |
Cooling in ice box | MD | NM | NM | NM | NM | NA |
Liquid nitrogen | MD | NM | NM | NM | NM | NA |
Dialysis (Amicon) | MI | ND | ND | D | D | NA |
Amberlite XAD7 | MD | D | NM | D | NM | NA |
Amberlite IR120 | MD | NM | NM | D | NM | NA |
Oasis HLP | MD | D | NM | D | NM | NA |
Alumina-N | MI | D | D | D | D | A |
C18 SampliqQ | MI | D | D | D | D | A |
AEBSF enz Inhib | MD | NM | NM | NM | NM | NA |
PMSF enz Inhib | MD | NM | NM | NM | NM | NA |
C18+AEBSF | MI | D | D | D | D | A |
C18+PMSF | MI | D | D | D | D | A |
Products | Lutein | Zeaxanthin | Ferulic Acid |
---|---|---|---|
Muffins | |||
HCS (100%) | 1.15 ± 0.057 b | 0.18 ± 0.042 c | 2.02 ± 0.191 a |
HCS/C (1:1, w/w) | 1.22 ± 0.014 b | 1.10 ± 0.021 b | 1.29 ± 0.113 b |
HCS/C (1:2, w/w) | 1.41 ± 0.021 a | 1.57 ± 0.021 a | 1.18 ± 0.042 b |
Intestinal digests (as is, no cleanup) | |||
HCS (100%) | 1.09 ± 0.007 b | 0.12 ± 0.035 b | 2.10 ± 0.014 b |
HCS/C (1:1, w/w) | 1.13 ± 0.014 b | 0.87 ± 0.049 a | 2.49 ± 0.106 a |
HCS/C (1:2, w/w) | 1.29 ± 0.028 a | 1.05 ± 0.106 a | 2.70 ± 0.014 a |
Intestinal digests (after cleanup) | |||
HCS (100%) | 0.94 ± 0.035 a | 0.09 ± 0.007 b | 1.07 ± 0.071 b |
HCS/C (1:1, w/w) | 1.05 ± 0.085 a | 0.49 ± 0.042 a | 1.14 ± 0.007 b |
HCS/C (1:2, w/w) | 1.16 ± 0.007 a | 0.60 ± 0.049 a | 1.57 ± 0.035 a |
Caco-2 cell harvest | |||
HCS (100%) | 0.08 ± 0.007 a | 0.02 ± 0.002 a | 0.011 ± 0.001 b |
HCS/C (1:1, w/w) | 0.11 ± 0.014 a | 0.07 ± 0.007 a | 0.012 ± 0.001 b |
HCS/C (1:2, w/w) | 0.12 ± 0.024 a | 0.07 ± 0.007 a | 0.021 ± 0.002 a |
Products | Lutein | Zeaxanthin | Ferulic Acid |
---|---|---|---|
Breads | |||
Wheat (100%) | 0.31 ± 0.028 b | 0.10 ± 0.014 d | 5.67 ± 0.311 b |
Wheat/HCS (85/15, w/w) | 0.52 ± 0.014 a | 0.18 ± 0.014 c | 6.55 ± 0.226 a |
Wheat/HCS (75/25, w/w) | 0.62 ± 0.035 a | 0.24 ± 0.028 b | 6.61 ± 0.226 a |
Wheat/HCS (50/50, w/w) | 0.70 ± 0.049 a | 0.31 ± 0.028 a | 6.62 ± 0.156 a |
Intestinal digests (as is, no cleanup) | |||
Wheat (100%) | 0.13 ± 0.014 c | 0.06 ± 0.007 a | 5.76 ± 0.099 b |
Wheat/HCS (85/15, w/w) | 0.25 ± 0.021 bc | 0.07 ± 0.007 a | 6.53 ± 0.071 a |
Wheat/HCS (75/25, w/w) | 0.34 ± 0.014 b | 0.07 ± 0.007 a | 6.46 ± 0.141 a |
Wheat/HCS (50/50, w/w) | 0.56 ± 0.064 a | 0.09 ± 0.007 a | 6.83 ± 0.007 a |
Intestinal digests (after cleanup) | |||
Wheat (100%) | 0.11 ± 0.007 b | 0.03 ± 0.001 c | 5.09 ± 0.134 d |
Wheat/HCS (85/15, w/w) | 0.17 ± 0.014 b | 0.04 ± 0.007 bc | 5.33 ± 0.092 c |
Wheat/HCS (75/25, w/w) | 0.18 ± 0.014 b | 0.05 ± 0.007 ab | 5.56 ± 0.099 b |
Wheat/HCS (50/50, w/w) | 0.42 ± 0.035 a | 0.06 ± 0.007 a | 6.76 ± 0.071 a |
Caco-2 cell harvest | |||
Wheat (100%) | nd | nd | nd |
Wheat/HCS (85/15, w/w) | nd | nd | nd |
Wheat/HCS (75/25, w/w) | 0.02 ± 0.002 b | nd | 0.014 ± 0.001 a |
Wheat/HCS (50/50, w/w) | 0.06 ± 0.005 a | nd | 0.016 ± 0.001 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel-Aal, E.-S.M.; Rabalski, I.; Carey, C.; Gamel, T.H. Bioaccessibility and Cellular Uptake of Lutein, Zeaxanthin and Ferulic Acid from Muffins and Breads Made from Hairless Canary Seed, Wheat and Corn Blends. Foods 2023, 12, 1307. https://doi.org/10.3390/foods12061307
Abdel-Aal E-SM, Rabalski I, Carey C, Gamel TH. Bioaccessibility and Cellular Uptake of Lutein, Zeaxanthin and Ferulic Acid from Muffins and Breads Made from Hairless Canary Seed, Wheat and Corn Blends. Foods. 2023; 12(6):1307. https://doi.org/10.3390/foods12061307
Chicago/Turabian StyleAbdel-Aal, El-Sayed M., Iwona Rabalski, Christine Carey, and Tamer H. Gamel. 2023. "Bioaccessibility and Cellular Uptake of Lutein, Zeaxanthin and Ferulic Acid from Muffins and Breads Made from Hairless Canary Seed, Wheat and Corn Blends" Foods 12, no. 6: 1307. https://doi.org/10.3390/foods12061307
APA StyleAbdel-Aal, E. -S. M., Rabalski, I., Carey, C., & Gamel, T. H. (2023). Bioaccessibility and Cellular Uptake of Lutein, Zeaxanthin and Ferulic Acid from Muffins and Breads Made from Hairless Canary Seed, Wheat and Corn Blends. Foods, 12(6), 1307. https://doi.org/10.3390/foods12061307