Preserving Ready-to-Eat Meals Using Microwave Technologies for Future Space Programs
Abstract
:1. Introduction
2. Energy and Nutritional Requirements in Space Programs
3. Thermal Processing Technologies for Shelf-Stable Ready-to-Eat Meals
3.1. Conventional Thermal Processing, Principles, and Limitations
3.2. Microwave-Assisted Thermal Sterilization (MATS) Systems
3.3. Challenges in Developing Processing Schedules for MATS
4. Pasteurized MREs for Space Programs
5. Packaging for Ready-to-Eat Meals in Space Programs
5.1. Metal Packaging
5.2. Polymer Packaging
5.3. Shelf Life of Thermostabilized MREs
6. Needs for Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmed, S. Comparison of Soviet and US Space Food and Nutrition Programs; Lyndon, B., Ed.; NASA: Washington, DC, USA, 1989.
- Smith, S.M.; Zwart, S.R. Nutritional biochemistry of spaceflight. Adv. Clin. Chem. 2008, 46, 87–130. [Google Scholar]
- Catauro, P.M.; Perchonok, M.H. Assessment of the long-term stability of retort pouch foods to support extended duration spaceflight. J. Food Sci. 2012, 77, S29–S39. [Google Scholar] [CrossRef] [PubMed]
- Olabi, A.; Lawless, H.; Hunter, J.; Levitsky, D.; Halpern, B. The effect of microgravity and space flight on the chemical senses. J. Food Sci. 2002, 67, 468–478. [Google Scholar] [CrossRef]
- Smith, S.M.; Zwart, S.R.; Heer, M. Evidence Report: Risk Factor of Inadequate Nutrition; NASA: Washington, DC, USA, 2015.
- Laurens, C.; Simon, C.; Vernikos, J.; Gauquelin-Koch, G.; Blanc, S.; Bergouignan, A. Revisiting the role of exercise countermeasure on the regulation of energy balance during space flight. Front. Physiol. 2019, 10, 321. [Google Scholar] [CrossRef] [Green Version]
- Heer, M.; Boerger, A.; Kamps, N.; Mika, C.; Korr, C.; Drummer, C. Nutrient supply during recent European missions. Pflügers Arch. 2000, 441, R8–R14. [Google Scholar] [CrossRef] [PubMed]
- Agureev, A.; Kalandarov, S.; Segal, D. Optimization of cosmonauts’ nutrition during the period of acute adaptation and at the closing stage of the mission. Aerosp. Environ. Med. 1997, 31, 47–51. [Google Scholar]
- Lane, H.W.; Gretebeck, R.J.; Smith, S.M. Nutrition, endocrinology, and body composition during space flight. Nutr. Res. 1998, 18, 1923–1934. [Google Scholar] [CrossRef]
- Smith, S.M.; Zwart, S.R.; Block, G.; Rice, B.L.; Davis-Street, J.E. The nutritional status of astronauts is altered after long-term space flight aboard the International Space Station. J. Nutr. 2005, 135, 437–443. [Google Scholar] [CrossRef] [Green Version]
- Lane, H.W.; Bourland, C.; Barrett, A.; Heer, M.; Smith, S.M. The role of nutritional research in the success of human space flight. Adv. Nutr. 2013, 4, 521–523. [Google Scholar] [CrossRef] [Green Version]
- Bychkov, A.; Reshetnikova, P.; Bychkova, E.; Podgorbunskikh, E.; Koptev, V. The current state and future trends of space nutrition from a perspective of astronauts’ physiology. Int. J. Gastron. Food Sci. 2021, 24, 100324. [Google Scholar] [CrossRef]
- Taylor, A.J.; Beauchamp, J.D.; Briand, L.; Heer, M.; Hummel, T.; Margot, C.; McGrane, S.; Pieters, S.; Pittia, P.; Spence, C. Factors affecting flavor perception in space: Does the spacecraft environment influence food intake by astronauts? Compr. Rev. Food Sci. Food Saf. 2020, 19, 3439–3475. [Google Scholar] [CrossRef]
- Douglas, G.L.; Cooper, M.; Bermudez-Aguirre, D.; Sirmons, T. Risk of Performance Decrement and Crew Illness Due to an Inadequate Food System; NASA: Washington, DC, USA, 2016.
- Douglas, G.L.; Zwart, S.R.; Smith, S.M. Space food for thought: Challenges and considerations for food and nutrition on exploration missions. J. Nutr. 2020, 150, 2242–2244. [Google Scholar] [CrossRef] [PubMed]
- Perchonok, M. Shelf-Life Considerations and Techniques. In Food Product Development: Based on Experience; Iowa State Press: Ames, IA, USA, 2002; pp. 59–73. [Google Scholar]
- Stumbo, C.R. Thermobacteriology in Food Processing; Elsevier: Amsterdam, The Netherlands, 1973. [Google Scholar]
- Downing, D.L. A Complete Course in Canning and Related Processes: Fundamental Information on Canning, 13th ed.; CTI Publications: Baltimore, MA, USA; Elsevier: Amsterdam, The Netherlands, 1996. [Google Scholar]
- Lund, D. Kinetics of physical changes in foods. In Physical and Chemical Properties of Food; Okos, M., Ed.; Mich. American Society of Agricultural Engineers: St. Joseph, MI, USA, 1986. [Google Scholar]
- Tang, J. Unlocking potentials of microwaves for food safety and quality. J. Food Sci. 2015, 80, E1776–E1793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lund, D. Design of thermal processes for maximizing nutrient retention. Food Technol. 1977, 32, 71–72 + 74 + 76–78. [Google Scholar]
- Ohlsson, T. Optimal sterilization temperatures for flat containers. J. Food Sci. 1980, 45, 848–852. [Google Scholar] [CrossRef]
- Ohlsson, T. Optimal sterilization temperatures for sensory quality in cylindrical containers. J. Food Sci. 1980, 45, 1517–1521. [Google Scholar] [CrossRef]
- Teixeira, A.A. Computer optimization of nutrient retention in the thermal processing of conduction-heated foods. Food Technol. 1969, 23, 845–850. [Google Scholar]
- Teixeira, A.A.; Zinsmeister, G.E.; Zahradnik, J.W. Computer simulation of variable retort control and container geometry as a possible means of improving thiamine retention in thermally processed foods. J. Food Sci. 1975, 40, 656–659. [Google Scholar] [CrossRef]
- Cooper, M.; Douglas, G. Functional Foods Baseline and Requirements Analysis. In Space Life & Physical Sciences Research & Applications Division Task Book; NASA: Washington, DC, USA, 2015. [Google Scholar]
- Cooper, M.R.; Douglas, G.L. Integration of Product, Package, Process, and environment: A Food System Optimization. In Space Life & Physical Sciences Research & Applications Division Task Book; NASA: Washington, DC, USA, 2015. [Google Scholar]
- Inanoglu, S.; Barbosa-Canovas, G.V.; Sablani, S.S.; Zhu, M.J.; Keener, L.; Tang, J. High-pressure pasteurization of low-acid chilled ready-to-eat food. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4939–4970. [Google Scholar] [CrossRef]
- Zhou, X.; Pedrow, P.D.; Tang, Z.; Bohnet, S.; Sablani, S.S.; Tang, J. Heating performance of microwave ovens powered by magnetron and solid-state generators. Innov. Food Sci. Emerg. Technol. 2023, 83, 103240. [Google Scholar] [CrossRef]
- Barnett, S.M.; Sablani, S.S.; Tang, J.; Ross, C.F. Utilizing herbs and microwave-assisted thermal sterilization to enhance saltiness perception in a chicken pasta meal. J. Food Sci. 2019, 84, 2313–2324. [Google Scholar] [CrossRef] [PubMed]
- Pandit, R.; Tang, J.; Liu, F.; Pitts, M. Development of a novel approach to determine heating pattern using computer vision and chemical marker (M-2) yield. J. Food Eng. 2007, 78, 522–528. [Google Scholar] [CrossRef]
- Pandit, R.B.; Tang, J.; Liu, F.; Mikhaylenko, G. A computer vision method to locate cold spots in foods in microwave sterilization processes. Pattern Recognit. 2007, 40, 3667–3676. [Google Scholar] [CrossRef]
- Luan, D.; Tang, J.; Pedrow, P.D.; Liu, F.; Tang, Z. Using mobile metallic temperature sensors in continuous microwave assisted sterilization (MATS) systems. J. Food Eng. 2013, 119, 552–560. [Google Scholar] [CrossRef]
- Luan, D.; Tang, J.; Pedrow, P.D.; Liu, F.; Tang, Z. Performance of mobile metallic temperature sensors in high power microwave heating systems. J. Food Eng. 2015, 149, 114–122. [Google Scholar] [CrossRef]
- European Chilled Food Federation (E.C.F.F.). Recommendations for the Production of Prepackaged Chilled Food; European Chilled Food Federation: Athens, Greece, 2006. [Google Scholar]
- Peng, J.; Tang, J.; Barrett, D.M.; Sablani, S.S.; Anderson, N.; Powers, J.R. Thermal pasteurization of ready-to-eat foods and vegetables: Critical factors for process design and effects on quality. Crit. Rev. Food Sci. Nutr. 2017, 57, 2970–2995. [Google Scholar] [CrossRef]
- Tang, J.; Hong, Y.-K.; Inanoglu, S.; Liu, F. Microwave pasteurization for ready-to-eat meals. Curr. Opin. Food Sci. 2018, 23, 133–141. [Google Scholar] [CrossRef]
- NASA. Space Food Packaging Facts by Food Technology Commercial Space Center; Iowa State University, College of Agriculture: Ames, IA, USA, 2003.
- Patel, J.; Al-Ghamdi, S.; Zhang, H.; Queiroz, R.; Tang, J.; Yang, T.; Sablani, S.S. Determining shelf life of ready-to-eat macaroni and cheese in high barrier and oxygen scavenger packaging sterilized via microwave-assisted thermal sterilization. Food Bioprocess Technol. 2019, 12, 1516–1526. [Google Scholar] [CrossRef]
- Zhang, H.; Patel, J.; Bhunia, K.; Al-Ghamdi, S.; Sonar, C.R.; Ross, C.F.; Tang, J.; Sablani, S.S. Color, vitamin C, β-carotene and sensory quality retention in microwave-assisted thermally sterilized sweet potato puree: Effects of polymeric package gas barrier during storage. Food Packag. Shelf Life 2019, 21, 100324. [Google Scholar] [CrossRef]
- Cooper, M.; Douglas, G.; Perchonok, M. Developing the NASA food system for long-duration missions. J. Food Sci. 2011, 76, R40–R48. [Google Scholar] [CrossRef]
- Parhi, A.; Bhunia, K.; Rasco, B.; Tang, J.; Sablani, S.S. Development of an oxygen sensitive model gel system to detect defects in metal oxide coated multilayer polymeric films. J. Food Sci. 2019, 84, 2507–2519. [Google Scholar] [CrossRef]
- Zhang, H.; Bhunia, K.; Kuang, P.; Tang, J.; Rasco, B.; Mattinson, D.S.; Sablani, S.S. Effects of oxygen and water vapor transmission rates of polymeric pouches on oxidative changes of microwave-sterilized mashed potato. Food Bioprocess Technol. 2016, 9, 341–351. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, Z.; Rasco, B.; Tang, J.; Sablani, S.S. Shelf-life modeling of microwave-assisted thermal sterilized mashed potato in polymeric pouches of different gas barrier properties. J. Food Eng. 2016, 183, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Bhunia, K.; Sablani, S.S.; Tang, J.; Rasco, B. Migration of chemical compounds from packaging polymers during microwave, conventional heat treatment, and storage. Compr. Rev. Food Sci. Food Saf. 2013, 12, 523–545. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Bhunia, K.; Munoz, N.; Li, L.; Dolgovskij, M.; Rasco, B.; Tang, J.; Sablani, S.S. Linking morphology changes to barrier properties of polymeric packaging for microwave-assisted thermal sterilized food. J. Appl. Polym. Sci. 2017, 134, 45481. [Google Scholar] [CrossRef]
- Dhawan, S.; Varney, C.; Barbosa-Cánovas, G.V.; Tang, J.; Selim, F.; Sablani, S.S. The impact of microwave-assisted thermal sterilization on the morphology, free volume, and gas barrier properties of multilayer polymeric films. J. Appl. Polym. Sci. 2014. [Google Scholar] [CrossRef]
- Bhunia, K.; Zhang, H.; Sablani, S.S. Gas Barrier Packaging. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Thellen, C.; Schirmer, S.; Ratto, J.A.; Finnigan, B.; Schmidt, D. Co-extrusion of multilayer poly (m-xylylene adipimide) nanocomposite films for high oxygen barrier packaging applications. J. Membr. Sci. 2009, 340, 45–51. [Google Scholar] [CrossRef]
- Maul, P. Barrier Enhancement Using Additives. Fillers, Pigments and Additives for Plastic in Packaging Applications. In Proceedings of the Pira International Conference, Brussels, Belgium, 5–6 December 2005. [Google Scholar]
- Al-Ghamdi, S.; Sonar, C.R.; Albahr, Z.; Alqahtani, O.; Collins, B.A.; Sablani, S.S. Pressure-assisted thermal sterilization of avocado puree in high barrier polymeric packaging. LWT 2022, 155, 112960. [Google Scholar] [CrossRef]
- Parhi, A.; Tang, J.; Sablani, S.S. Functionality of ultra-high barrier metal oxide-coated polymer films for in-package, thermally sterilized food products. Food Packag. Shelf Life 2020, 25, 100514. [Google Scholar] [CrossRef]
- Bull, M.; Steele, R.; Kelly, M.; Olivier, S.; Chapman, B. Packaging under pressure: Effects of high pressure, high temperature processing on the barrier properties of commonly available packaging materials. Innov. Food Sci. Emerg. Technol. 2010, 11, 533–537. [Google Scholar] [CrossRef]
- Ayvaz, H.; Schirmer, S.; Parulekar, Y.; Balasubramaniam, V.; Somerville, J.A.; Daryaei, H. Influence of selected packaging materials on some quality aspects of pressure-assisted thermally processed carrots during storage. LWT 2012, 46, 437–447. [Google Scholar] [CrossRef]
- Patel, J.; Parhi, A.; Al-Ghamdi, S.; Sonar, C.R.; Mattinson, D.S.; Tang, J.; Yang, T.; Sablani, S.S. Stability of vitamin C, color, and garlic aroma of garlic mashed potatoes in polymer packages processed with microwave-assisted thermal sterilization technology. J. Food Sci. 2020, 85, 2843–2851. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.; Sonar, C.R.; Al-Ghamdi, S.; Tang, Z.; Yang, T.; Tang, J.; Sablani, S.S. Influence of ultra-high barrier packaging on the shelf-life of microwave-assisted thermally sterilized chicken pasta. LWT 2021, 136, 110287. [Google Scholar] [CrossRef]
- Syamaladevi, R.M.; Tang, J.; Villa-Rojas, R.; Sablani, S.; Carter, B.; Campbell, G. Influence of water activity on thermal resistance of microorganisms in low-moisture foods: A review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 353–370. [Google Scholar] [CrossRef] [Green Version]
- Alshammari, J.; Xu, J.; Tang, J.; Sablani, S.S.; Zhu, M.J. Thermal resistance of Salmonella in low-moisture high-sugar products. Food Control 2020, 114, 107255. [Google Scholar] [CrossRef]
- Pérez-Reyes, M.E.; Jie, X.; Zhu, M.-J.; Tang, J.; Barbosa-Cánovas, G.V. Influence of low water activity on the thermal resistance of Salmonella Enteritidis PT30 and Enterococcus faecium as its surrogate in egg powders. Food Sci. Technol. Int. 2021, 27, 184–193. [Google Scholar] [CrossRef]
- Yang, R.; Wei, L.; Dai, J.; Tang, J. Thermal death kinetics of Salmonella Enteritidis PT30 in peanut butter as influenced by water activity. Food Res. Int. 2022, 157, 111288. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Xie, Y.; Lombardo, S.P.; Tang, J. Oil protects bacteria from humid heat in thermal processing. Food Control 2021, 123, 107690. [Google Scholar] [CrossRef]
- Sun, S.; Xie, Y.; Yang, R.; Zhu, M.J.; Sablani, S.; Tang, J. The influence of temperature and water activity on thermal resistance of Salmonella in milk chocolate. Food Control 2023, 143, 109292. [Google Scholar]
- Finn, S.; Condell, O.; McClure, P.; Amezquita, A.; Fanning, S. Mechanisms of survival, responses, and sources of Salmonella in low moisture environments. Front. Microbilogy 2013, 4, 331. [Google Scholar] [CrossRef] [Green Version]
- Blessington, T.; Mitchem, E.J.; Harrison, L.J. Survival of Salmonella enterica, Eschericha coli 0157:H7, and Listeria monocytogens on inoculated walnut kernels during storage. J. Food Prot. 2012, 75, 245–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Y.; Zhang, S.; Sun, S.; Zhu, M.J.; Shyam, S.S.; Tang, J. Survivability of Salmonella and Enterococcus faecium in chili, cinnamon and black pepper powders during storage and isothermal treatments. Food Control 2022, 137, 108935. [Google Scholar] [CrossRef]
- Flock, G.; Richardson, M.; Paccito, D.; Cowell, C.; Anderson, N.; Marek, P.; Senecal, A. Survival of salmonella enterica in military low-moisture food products during long-term storage at 4, 25, 40 °C. J. Food Prot. 2022, 85, 544–552. [Google Scholar] [CrossRef] [PubMed]
- Lockhart, L. Recycling in Space: Waste Handling in a Microgravity Environment Challenge; NASA: Washington, DC, USA, 2018.
Main Composition | OTR cm3 m−2 day−1 | WVTR, gm m−2 day−1 | References |
---|---|---|---|
Double layer of metal oxide-coated films as barrier layers | |||
AlOx-coated PET/AlOx-coated PET/Oriented Nylon 6/CPP | <0.01 | 0.11 ± 0.02 | [51] |
AlOx-coated PET/AlOx-coated PET/AlOx-coated PET/Oriented-Nylon 6/CPP | <0.01 | 0.10 ± 0.003 | [52] |
Metal oxide coated and metallized film as a barrier layer | |||
Coated PET/Oriented-Nylon 6/CPP | 0.04 ± 0.02 | 0.11 ± 0.01 | [52] |
SiOx-coated PET/Oriented-Nylon 6/CPP | 0.02 ± 0.01 | 0.72 ± 0.06 | [52] |
Overlayer/AlOx-Organic-coated PET/Oriented-Nylon 6/CPP | 0.02 ± 0.01 | 0.31 ± 0.02 | [53] |
Overlayer/SiOx-coated PET/Oriented-Nylon 6/CPP | 0.01 ± 0.01 | 0.11 ± 0.01 | [52] |
Hyperbranched-PET/Oriented-Nylon 6/CPP | 0.018 ± 0.001 | 0.440 ± 0.200 | [43] |
Composite coating PET/Composite coating Oriented-Nylon/PP | 0.050 ± 0.007 | 5.190 ± 0.106 | [43] |
PET/Oriented-Nylon 6/PP | 0.04 ± 0.01 | 0.38 ± 0.02 | [47] |
Coated-PET-Coated/Oriented-Nylon 6/PP | 0.03 ± 0.01 | 4.15 ± 0.02 | [47] |
PET/SiOx coated PET/PP | 0.18 ± 0.07 | 0.31 ± 0.06 | [53] |
PET-AlOx 12 µm/Oriented-Nylon 6/CPP | 0.58 ± 0.11 | 0.16 ± 0.00 | [53] |
PET-AlOx/Oriented-Nylon 6/CPP | 0.16 ± 0.05 | 0.08 ± 0.01 | [53] |
Metalized-PET/PE | 1.33 ± 0.04 | 3.5 ± 0.01 | [54] |
EVOH as a barrier layer | |||
Oriented-Nylon 6/27% EVOH/CPP | 1.120 ± 0.041 | 4.120 ± 0.092 | [43] |
PE/Oriented-Nylon 6/EVOH/Nylon 6/PE | 0.16 ± 0.07 | 3.72 ± 0.06 | [51] |
PET/EVOH/PP | 0.24 ± 0.03 | 0.73 ± 0.02 | [47] |
PET/PP/Oriented Nylon 6/EVOH/Oriented-Nylon 6/PP | 0.11 ± 0.01 | 0.61 ± 0.01 | [47] |
Oriented-Nylon 6/EVOH/EVA | 0.91 ± 0.10 | 4.51 ± 1.88 | [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ross, C.; Sablani, S.; Tang, J. Preserving Ready-to-Eat Meals Using Microwave Technologies for Future Space Programs. Foods 2023, 12, 1322. https://doi.org/10.3390/foods12061322
Ross C, Sablani S, Tang J. Preserving Ready-to-Eat Meals Using Microwave Technologies for Future Space Programs. Foods. 2023; 12(6):1322. https://doi.org/10.3390/foods12061322
Chicago/Turabian StyleRoss, Carolyn, Shyam Sablani, and Juming Tang. 2023. "Preserving Ready-to-Eat Meals Using Microwave Technologies for Future Space Programs" Foods 12, no. 6: 1322. https://doi.org/10.3390/foods12061322
APA StyleRoss, C., Sablani, S., & Tang, J. (2023). Preserving Ready-to-Eat Meals Using Microwave Technologies for Future Space Programs. Foods, 12(6), 1322. https://doi.org/10.3390/foods12061322