Changes on Techno-Functional, Thermal, Rheological, and Microstructural Properties of Tef Flours Induced by Microwave Radiation—Development of New Improved Gluten-Free Ingredients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tef Flours
2.2. Microwave Treatment (MWT)
2.3. Scanning Electron Microscopy (SEM)
2.4. Particle Size Distribution
2.5. Damaged Starch and Amylose Content
2.6. Hydration Properties
2.7. Pasting Properties
2.8. Thermal Properties
2.9. Fourier Transform Infrared Spectroscopy (FTIR)
2.10. Nuclear Magnetic Resonance Spectroscopy (NMR)
2.11. Rheological Properties
2.12. Statistical Analysis
3. Results and Discussion
3.1. Morphology and Particle Size Distribution
3.2. Damaged Starch and Amylose Content (AC)
3.3. Hydration Properties
3.4. Pasting Properties
3.5. Thermal Properties
3.6. Fourier Transform Infrared Spectroscopy (FTIR)
3.7. Nuclear Magnetic Resonance (NMR)
3.8. Rheological Properties of the Gels
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Simón, E.; Larretxi, I.; Churruca, I.; Lasa, A.; Bustamante, M.Á.; Navarro, V.; del Fernández-Gil, M.P.; Miranda, J. Nutritional and Analytical Approaches of Gluten-Free Diet in Celiac Disease; SpringerBriefs in Food, Health, and Nutrition; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-53341-4. [Google Scholar]
- Statista Global Gluten-Free Food Market Size 2022–2032|Statista. Available online: https://www.statista.com/statistics/248467/global-gluten-free-food-market-size/ (accessed on 8 February 2023).
- Gallagher, E.; Gormley, T.; Arendt, E. Recent advances in the formulation of gluten-free cereal-based products. Trends Food Sci. Technol. 2003, 15, 143–152. [Google Scholar] [CrossRef]
- Lamacchia, C.; Camarca, A.; Picascia, S.; Di Luccia, A.; Gianfrani, C. Cereal-Based Gluten-Free Food: How to Reconcile Nutritional and Technological Properties of Wheat Proteins with Safety for Celiac Disease Patients. Nutrients 2014, 6, 575–590. [Google Scholar] [CrossRef] [Green Version]
- Bultosa, G.; Taylor, J.R.N. Paste and Gel Properties and In Vitro Digestibility of Tef [Eragrostis tef (Zucc.) Trotter] Starch. Starch—Stärke 2004, 56, 20–28. [Google Scholar] [CrossRef]
- Abebe, W.; Ronda, F. Rheological and textural properties of tef [Eragrostis tef (Zucc.) Trotter] grain flour gels. J. Cereal Sci. 2014, 60, 122–130. [Google Scholar] [CrossRef]
- Gebremariam, M.M.; Zarnkow, M.; Becker, T. Teff (Eragrostis tef) as a raw material for malting, brewing and manufacturing of gluten-free foods and beverages: A review. J. Food Sci. Technol. 2014, 51, 2881–2895. [Google Scholar] [CrossRef] [Green Version]
- Culetu, A.; Susman, I.; Duta, D.; Belc, N. Nutritional and Functional Properties of Gluten-Free Flours. Appl. Sci. 2021, 11, 6283. [Google Scholar] [CrossRef]
- Gebru, Y.A.; Hyun-Ii, J.; Young-Soo, K.; Myung-Kon, K.; Kwang-Pyo, K. Variations in Amino Acid and Protein Profiles in White versus Brown Teff (Eragrostis Tef) Seeds, and Effect of Extraction Methods on Protein Yields. Foods 2019, 8, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abebe, W.; Collar, C.; Ronda, F. Impact of variety type and particle size distribution on starch enzymatic hydrolysis and functional properties of tef flours. Carbohydr. Polym. 2015, 115, 260–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaleab Baye Teff: Nutrient Composition and Health Benefits: Ethiopia, Strategy Support Programme. Int. Food Policy Res. Inst. 2014, 67, 8.
- Solaesa, Á.G.; Villanueva, M.; Vela, A.J.; Ronda, F. Impact of microwave radiation on in vitro starch digestibility, structural and thermal properties of rice flour. From dry to wet treatments. Int. J. Biol. Macromol. 2022, 222, 1768–1777. [Google Scholar] [CrossRef]
- Villanueva, M.; Harasym, J.; Muñoz, J.M.; Ronda, F. Rice flour physically modified by microwave radiation improves viscoelastic behavior of doughs and its bread-making performance. Food Hydrocoll. 2019, 90, 472–481. [Google Scholar] [CrossRef] [Green Version]
- Solaesa, Á.G.; Villanueva, M.; Muñoz, J.M.; Ronda, F. Dry-heat treatment vs. heat-moisture treatment assisted by microwave radiation: Techno-functional and rheological modifications of rice flour. LWT 2021, 141, 110851. [Google Scholar] [CrossRef]
- Vicente, A.; Villanueva, M.; Caballero, P.A.; Muñoz, J.M.; Ronda, F. Buckwheat grains treated with microwave radiation: Impact on the techno-functional, thermal, structural, and rheological properties of flour. Food Hydrocoll. 2023, 137, 108328. [Google Scholar] [CrossRef]
- Palav, T.; Seetharaman, K. Impact of microwave heating on the physico-chemical properties of a starch–water model system. Carbohydr. Polym. 2007, 67, 596–604. [Google Scholar] [CrossRef]
- Villanueva, M.; Harasym, J.; Muñoz, J.M.; Ronda, F. Microwave absorption capacity of rice flour. Impact of the radiation on rice flour microstructure, thermal and viscometric properties. J. Food Eng. 2018, 224, 156–164. [Google Scholar] [CrossRef]
- Goebel, J.; Grider, E.; Davis, J.A.; Gordon, N.K. The Effects of Microwave Energy and Convection Heating on Wheat Starch Granule Transformations. Food Microstruct. 1984, 3, 73–82. [Google Scholar]
- Method 44-19.01; In Approved Methods of the AACC. American Association of Cereal Chemists: Saint Paul, MN, USA, 2000.
- Method 923.05-1923; In Official Methods of Analysis. Association of Official Analytical Chemists: Washington, DC, USA, 1996.
- Method 960.52-1961; In Official Methods of Analysis. Association of Official Analytical Chemists: Washington, DC, USA, 2010.
- Method 991.43-1994; In Official Methods of Analysis. Association of Official Analytical Chemists: Washington, DC, USA, 2000.
- Method 76-31.01; In Approved Methods of the AACC. American Association of Cereal Chemists: Saint Paul, MN, USA, 2000.
- Gibson, T.; Solah, V.; McCleary, B. A Procedure to Measure Amylose in Cereal Starches and Flours with Concanavalin A. J. Cereal Sci. 1997, 25, 111–119. [Google Scholar] [CrossRef]
- Method 76-21.02 General; In Approved Methods of the AACC. American Association of Cereal Chemists: Saint Paul, MN, USA, 2009.
- Fevzioglu, M.; Ozturk, O.K.; Hamaker, B.R.; Campanella, O.H. Quantitative approach to study secondary structure of proteins by FT-IR spectroscopy, using a model wheat gluten system. Int. J. Biol. Macromol. 2020, 164, 2753–2760. [Google Scholar] [CrossRef] [PubMed]
- Acevedo, B.A.; Villanueva, M.; Chaves, M.G.; Avanza, M.V.; Ronda, F. Modification of structural and physicochemical properties of cowpea (Vigna unguiculata) starch by hydrothermal and ultrasound treatments. Food Hydrocoll. 2022, 124, 107266. [Google Scholar] [CrossRef]
- Ronda, F.; Villanueva, M.; Collar, C. Influence of acidification on dough viscoelasticity of gluten-free rice starch-based dough matrices enriched with exogenous protein. LWT 2014, 59, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Bultosa, G.; Taylor, J.R.N. Chemical and Physical Characterisation of Grain Tef [Eragrostis tef (Zucc.) Trotter] Starch Granule Composition. Starch/Staerke 2003, 55, 304–312. [Google Scholar] [CrossRef]
- Emmambux, M.N.; Taylor, J. Morphology, physical, chemical, and functional properties of starches from cereals, legumes, and tubers cultivated in Africa: A review. Starch—Stärke 2013, 65, 715–729. [Google Scholar] [CrossRef] [Green Version]
- Zavareze, E.D.R.; Dias, A.R.G. Impact of heat-moisture treatment and annealing in starches: A review. Carbohydr. Polym. 2011, 83, 317–328. [Google Scholar] [CrossRef]
- Biliaderis, C.G. Structural Transitions and Related Physical Properties of Starch. In Starch, 3rd ed.; James, B., Miller, R.W., Eds.; Academic Press: Cambridge, MA, USA, 2009; pp. 293–372. ISBN 9780127462752. [Google Scholar]
- Deka, D.; Sit, N. Dual modification of taro starch by microwave and other heat moisture treatments. Int. J. Biol. Macromol. 2016, 92, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Khuntia, A.; Panda, B.K.; Shrivastava, S.L. Effect of pulsating microwave treatment on wheat parboiling: Comparative assessment and structural characterization. Food Chem. 2022, 367, 130694. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Huang, L.; Chen, W.; Zhu, Y.; Dun, B.; Shen, R. Effect of Heat-Moisture Treatments on Digestibility and Physicochemical Property of Whole Quinoa Flour. Foods 2021, 10, 3042. [Google Scholar] [CrossRef]
- Yang, Q.; Qi, L.; Luo, Z.; Kong, X.; Xiao, Z.; Wang, P.; Peng, X. Effect of microwave irradiation on internal molecular structure and physical properties of waxy maize starch. Food Hydrocoll. 2017, 69, 473–482. [Google Scholar] [CrossRef]
- Liu, C.; Song, M.; Liu, L.; Hong, J.; Guan, E.; Bian, K.; Zheng, X. Effect of heat-moisture treatment on the structure and physicochemical properties of ball mill damaged starches from different botanical sources. Int. J. Biol. Macromol. 2020, 156, 403–410. [Google Scholar] [CrossRef]
- Ashraf, S.; Saeed, S.M.G.; Sayeed, S.A.; Ali, R. Impact of Microwave Treatment on the Functionality of Cereals and Legumes. Int. J. Agric. Biol. 2012, 14, 365–370. [Google Scholar]
- Lavanya, J.P.; Gowthamraj, G.; Sangeetha, N. Effect of heat moisture treatment on the physicochemical, functional, and antioxidant characteristics of white sorghum (Sorghum bicolor (L.) grains and flour. J. Food Process. Preserv. 2021, 45, e16017. [Google Scholar] [CrossRef]
- Bashir, K.; Aggarwal, M. Effects of gamma irradiation on the physicochemical, thermal and functional properties of chickpea flour. LWT 2016, 69, 614–622. [Google Scholar] [CrossRef]
- Kamble, D.B.; Singh, R.; Kaur, B.P.; Rani, S.; Upadhyay, A. Effect of microwave processing on physicothermal properties, antioxidant potential, in vitro protein digestibility and microstructure of durum wheat semolina. J. Food Meas. Charact. 2020, 14, 761–769. [Google Scholar] [CrossRef]
- Na Nakorn, K.; Tongdang, T.; Sirivongpaisal, P. Crystallinity and Rheological Properties of Pregelatinized Rice Starches Differing in Amylose Content. Starch/Staerke 2009, 61, 101–108. [Google Scholar] [CrossRef]
- Lai, H.-M. Effects of hydrothermal treatment on the physicochemical properties of pregelatinized rice flour. Food Chem. 2001, 72, 455–463. [Google Scholar] [CrossRef]
- Bultosa, G.; Hall, A.N.; Taylor, J.R.N. Physico-chemical Characterization of Grain Tef [Eragrostis tef (Zucc.) Trotter] Starch. Starch—Stärke 2002, 54, 461–468. [Google Scholar] [CrossRef]
- Abebe, W.; Náthia-Neves, G.; Calix-Rivera, C.S.; Villanueva, M.; Ronda, F. Lipase Inactivation Kinetics of Tef Flour with Microwave Radiation and Impact on the Rheological Properties of the Gels Made from Treated Flour. Molecules 2023, 28, 2298. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Saleh, A.S.; Sun, Z.; Ge, X.; Shen, H.; Zhang, Q.; Yu, X.; Yuan, L.; Li, W. Modification of multi-scale structure, physicochemical properties, and digestibility of rice starch via microwave and cold plasma treatments. LWT 2022, 153, 112483. [Google Scholar] [CrossRef]
- Li, R.; Dai, L.; Peng, H.; Jiang, P.; Liu, N.; Zhang, D.; Wang, C.; Li, Z. Effects of microwave treatment on sorghum grains: Effects on the physicochemical properties and in vitro digestibility of starch. J. Food Process. Eng. 2021, 44, e13804. [Google Scholar] [CrossRef]
- Calix-Rivera, C.S.; Pérez-Quirce, S.; Ronda, F. Effect of rice flour ultrafine particle size on β-glucanase inactivation by microwave treatments and pasting properties in treated flours. Bionatura 2022, 7, 1–9. [Google Scholar] [CrossRef]
- Qin, W.; Lin, Z.; Wang, A.; Chen, Z.; He, Y.; Wang, L.; Liu, L.; Wang, F.; Tong, L.-T. Influence of particle size on the properties of rice flour and quality of gluten-free rice bread. LWT 2021, 151, 112236. [Google Scholar] [CrossRef]
- Sharanagat, V.S.; Suhag, R.; Anand, P.; Deswal, G.; Kumar, R.; Chaudhary, A.; Singh, L.; Kushwah, O.S.; Mani, S.; Kumar, Y.; et al. Physico-functional, thermo-pasting and antioxidant properties of microwave roasted sorghum [Sorghum bicolor (L.) Moench]. J. Cereal Sci. 2019, 85, 111–119. [Google Scholar] [CrossRef]
- Abebe, W.; Ronda, F. Flowability, moisture sorption and thermal properties of tef [Eragrostis tef (Zucc.) Trotter] grain flours. J. Cereal Sci. 2015, 63, 14–20. [Google Scholar] [CrossRef]
- Li, Y.; Hu, A.; Zheng, J.; Wang, X. Comparative studies on structure and physiochemical changes of millet starch under microwave and ultrasound at the same power. Int. J. Biol. Macromol. 2019, 141, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hu, A.; Wang, X.; Zheng, J. Physicochemical and in vitro digestion of millet starch: Effect of moisture content in microwave. Int. J. Biol. Macromol. 2019, 134, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Vela, A.J.; Villanueva, M.; Ronda, F. Low-frequency ultrasonication modulates the impact of annealing on physicochemical and functional properties of rice flour. Food Hydrocoll. 2021, 120, 106933. [Google Scholar] [CrossRef]
- Eliasson, A.-C. Interactions between starch and lipids studied by DSC. Thermochim. Acta 1994, 246, 343–356. [Google Scholar] [CrossRef]
- Li, M.-J.; Wang, H.-R.; Tong, L.-T.; Fan, B.; Yang, X.-J.; Sun, R.-Q.; Liu, L.-Y.; Wang, F.-Z.; Wang, L.-L. A comparison study of three heating assisted enzyme inactivation pretreatments on the physicochemical properties and edible quality of highland barley grain and flour. J. Cereal Sci. 2022, 104, 103404. [Google Scholar] [CrossRef]
- Monroy, Y.; Rivero, S.; García, M.A. Microstructural and techno-functional properties of cassava starch modified by ultrasound. Ultrason. Sonochemistry 2018, 42, 795–804. [Google Scholar] [CrossRef] [PubMed]
- Vela, A.J.; Villanueva, M.; Solaesa, Á.G.; Ronda, F. Impact of high-intensity ultrasound waves on structural, functional, thermal and rheological properties of rice flour and its biopolymers structural features. Food Hydrocoll. 2020, 113, 106480. [Google Scholar] [CrossRef]
- Sun, X.; Ohanenye, I.C.; Ahmed, T.; Udenigwe, C.C. Microwave treatment increased protein digestibility of pigeon pea (Cajanus cajan) flour: Elucidation of underlying mechanisms. Food Chem. 2020, 329, 127196. [Google Scholar] [CrossRef]
- Vanga, S.K.; Singh, A.; Kalkan, F.; Gariepy, Y.; Orsat, V.; Raghavan, V. Effect of Thermal and High Electric Fields on Secondary Structure of Peanut Protein. Int. J. Food Prop. 2016, 19, 1259–1271. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Chen, Y.; Luo, Z.; Lu, X. Different variations in structures of A- and B-type starches subjected to microwave treatment and their relationships with digestibility. LWT 2019, 99, 179–187. [Google Scholar] [CrossRef]
- Tizzotti, M.J.; Sweedman, M.C.; Tang, D.; Schaefer, C.; Gilbert, R.G. New 1H NMR Procedure for the Characterization of Native and Modified Food-Grade Starches. J. Agric. Food Chem. 2011, 59, 6913–6919. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, Y.; Xu, Z.; Zhang, C.; Liu, X.; Sui, Z.; Corke, H. Microwave irradiation alters the rheological properties and molecular structure of hull-less barley starch. Food Hydrocoll. 2021, 120, 106821. [Google Scholar] [CrossRef]
- Sandhu, K.S.; Siroha, A.K.; Punia, S.; Nehra, M. Effect of heat moisture treatment on rheological and in vitro digestibility properties of pearl millet starches. Carbohydr. Polym. Technol. Appl. 2020, 1, 100002. [Google Scholar] [CrossRef]
- Jyothi, A.N.; Sajeev, M.S.; Sreekumar, J.N. Hydrothermal Modifications of Tropical Tuber Starches. 1. Effect of Heat-Moisture Treatment on the Physicochemical, Rheological and Gelatinization Characteristics. Starch/Staerke 2010, 62, 28–40. [Google Scholar] [CrossRef]
- Molavi, H.; Razavi, S.M.A. Dynamic Rheological and Textural Properties of Acorn (Quercus brantii Lindle.) Starch: Effect of Single and Dual Hydrothermal Modifications. Starch/Staerke 2018, 70, 1800086. [Google Scholar] [CrossRef]
- Villanueva, M.; De Lamo, B.; Harasym, J.; Ronda, F. Microwave radiation and protein addition modulate hydration, pasting and gel rheological characteristics of rice and potato starches. Carbohydr. Polym. 2018, 201, 374–381. [Google Scholar] [CrossRef] [PubMed]
Samples | D50 (μm) | (D90 − D10)/D50 | Damaged Starch (g/100 g) | AC (g/100 g) | WAC (g/g) | WAI (g/g) | WSI (g/100 g) | SP (g/g) |
---|---|---|---|---|---|---|---|---|
WTF-Untreated | 158 aA | 2.03 dA | 2.28 cA | 17.5 aA | 1.04 aA | 5.50 aA | 5.08 aB | 5.79 aA |
WTF-15 | 198 bB | 1.70 cA | 1.80 aB | 19.4 bA | 1.17 bA | 6.50 bA | 5.40 bA | 6.87 bA |
WTF-20 | 205 cB | 1.61 bA | 1.99 bB | 19.7 bA | 1.61 cA | 7.63 cA | 8.66 dB | 8.15 cA |
WTF-25 | 229 dB | 1.44 aA | 1.93 bB | 21.3 cA | 1.76 dB | 7.57 cB | 7.79 cA | 8.19 cB |
SE | 2 | 0.02 | 0.03 | 0.2 | 0.01 | 0.06 | 0.08 | 0.06 |
BTF- Untreated | 151 aA | 2.22 cB | 2.30 cA | 18.7 aA | 1.07 aB | 5.83 aB | 4.46 aA | 6.10 aB |
BTF-15 | 170 bA | 1.96 bB | 1.54 aA | 23.2 bB | 1.37 bB | 7.59 cB | 5.35 bA | 8.01 cB |
BTF-20 | 176 bA | 1.85 aB | 1.56 aA | 24.2 bcB | 1.58 cA | 7.58 cA | 6.91 cA | 8.16 cA |
BTF-25 | 168 bA | 1.96 bB | 1.80 bA | 25.4 cB | 1.71 dA | 6.19 bA | 11.90 dB | 7.03 bA |
SE | 3 | 0.03 | 0.04 | 0.4 | 0.01 | 0.04 | 0.2 | 0.05 |
Analysis of variance and significance (p-values) | ||||||||
F1 | *** | *** | ns | ** | ns | ns | ns | ns |
F2 | ** | ** | *** | * | *** | *** | *** | *** |
F1 × F2 | *** | *** | *** | ** | *** | *** | *** | *** |
Samples | PT | PV | TV | BV | FV | SV |
---|---|---|---|---|---|---|
(°C) | (Pa·s) | (Pa·s) | (Pa·s) | (Pa·s) | (Pa·s) | |
WTF-Untreated | 76.43 aA | 2.004 dA | 1.352 bA | 0.652 dA | 2.50 cA | 1.15 bA |
WTF-15 | 76.38 aA | 1.793 cB | 1.399 cB | 0.395 cB | 2.53 cB | 1.13 bA |
WTF-20 | 78.77 bA | 1.524 bA | 1.252 aA | 0.272 bB | 2.37 bB | 1.12 bB |
WTF-25 | 80.63 cA | 1.476 aB | 1.448 dB | 0.028 aA | 2.24 aB | 0.79 aB |
SE | 0.04 | 0.007 | 0.006 | 0.007 | 0.01 | 0.01 |
BTF-Untreated | 79.01 aB | 2.030 dB | 1.329 dA | 0.701 dA | 2.63 dB | 1.30 dB |
BTF-15 | 81.46 bB | 1.537 cA | 1.242 bA | 0.296 cA | 2.37 cA | 1.13 cA |
BTF-20 | 83.77 cB | 1.467 bA | 1.290 cB | 0.177 bA | 2.16 bA | 0.87 bA |
BTF-25 | 85.15 dB | 1.120 aA | 1.053 aA | 0.067 aB | 1.48 aA | 0.43 aA |
SE | 0.05 | 0.008 | 0.003 | 0.006 | 0.01 | 0.01 |
Analysis of variance and significance (p-values) | ||||||
F1 | ** | ns | ** | ns | ns | ns |
F2 | ns | *** | ns | *** | ** | *** |
F1 × F2 | *** | *** | *** | *** | *** | *** |
Samples | First Scan (Gelatinization) | Second Scan (Retrogradation) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ΔHgel (J/g) | TO-Gel (°C) | TP-Gel (°C) | TE-Gel (°C) | ΔT (°C) | ΔHam-Lip (J/g) | TP-am-Lip (°C) | ΔHret (J/g) | TO-Ret (°C) | TP-Ret (°C) | TE-Ret (°C) | ΔHam-Lip (J/g) | TP-am-Lip (°C) | ||
WTF- Untreated | 10.6 aA | 61.9 aA | 68.9 aA | 76.7 aA | 14.8 aA | 1.1 aA | 96 aA | 4.4 aA | 34.4 bA | 51.8 aA | 61.3 aA | 1.3 aA | 96.7 bB | |
WTF-15 | 10.9 aB | 62.4 bA | 69.2 aA | 77.6 bA | 15.3 aA | 1.0 aA | 95 aA | 4.4 aA | 37.6 cA | 50.7 aA | 61.7 aA | 1.4 aA | 94.8 aA | |
WTF-20 | 10.5 aA | 63.4 cA | 71.0 bA | 81.9 cA | 18.5 cA | 0.8 aA | 95 aA | 4.5 aA | 33.5 aA | 50.2 aA | 62.4 bA | 1.3 aA | 94.5 aA | |
WTF-25 | 9.9 aA | 66.1 dA | 72.2 cA | 82.6 cA | 16.5 bA | 0.8 aA | 97 aA | 4.8 aA | 37.6 cB | 49.7 aA | 62.4 bA | 1.0 aA | 95.2 aB | |
SE | 0.3 | 0.1 | 0.3 | 0.2 | 0.2 | 0.2 | 1 | 0.1 | 0.2 | 0.6 | 0.1 | 0.3 | 0.3 | |
BTF- Untreated | 9.2 aA | 64.51 aB | 71.06 aB | 78.7 aB | 14.2 aA | 1.0 abA | 95.3 aA | 4.2 aA | 36.6 bB | 50.3 aA | 61.9 aB | 2.2 cB | 95.9 aA | |
BTF-15 | 9.6 aA | 64.51 aB | 71.66 bB | 81.5 bB | 17.0 bB | 1.3 bA | 94.9 aA | 4.3 aA | 38.6 cA | 50.3 aA | 61.8 aA | 2.1 bcA | 95.6 aA | |
BTF-20 | 9.4 aA | 65.97 bB | 73.07 cB | 83.1 cA | 17.1 bA | 1.0 abA | 96.8 aB | 4.7 aA | 38.4 cB | 51.5 aA | 62.1 abA | 1.7 bA | 94.4 aA | |
BTF-25 | 9.0 aA | 67.20 cB | 74.08 dB | 84.4 dB | 17.2 bA | 0.7 aA | 97.3 aA | 5.0 aA | 34.0 aA | 49.6 aA | 62.6 bA | 1.1 aA | 95.0 aA | |
SE | 0.2 | 0.06 | 0.02 | 0.3 | 0.3 | 0.1 | 0.8 | 0.3 | 0.3 | 0.7 | 0.1 | 0.1 | 0.8 | |
Analysis of variance and significance (p-values) | ||||||||||||||
F1 | *** | * | ** | ns | ns | ns | ns | ns | ns | ns | ns | * | ns | |
F2 | ns | ** | * | *** | *** | ns | ns | * | ns | ns | *** | ns | * | |
F1 × F2 | ns | *** | ns | ** | ** | ns | ns | ns | *** | ns | ns | ns | *** |
Samples | Starch Bands | Secondary Protein Structures in Amide I Region (cm−1) (%) | |||||
---|---|---|---|---|---|---|---|
IR 1047/1022 | IR 1022/995 | LF β-Sheet | Random Structure & α-Helix | β-Turn | HF β-Sheet | ||
WTF- Untreated | 0.818 cB | 0.911 aA | 38.1 cA | 40.4 aA | 20.5 abA | 0.95 aA | |
WTF-15 | 0.803 bB | 0.921 aB | 30.0 aA | 47.4 dA | 20.7 bA | 1.87 bB | |
WTF-20 | 0.786 aA | 0.916 aA | 33.1 bA | 45.3 cA | 19.7 aA | 1.87 bA | |
WTF-25 | 0.793 aB | 0.932 bB | 35.1 bA | 43.2 bA | 20.1 abA | 1.63 bA | |
SE | 0.003 | 0.003 | 0.7 | 0.6 | 0.3 | 0.09 | |
BTF- Untreated | 0.800 dA | 0.901 abA | 38.8 cA | 40.1 aA | 20.2 aA | 0.85 aA | |
BTF-15 | 0.773 bA | 0.892 aA | 30.1 aA | 49.1 cA | 19.5 aA | 1.31 bA | |
BTF-20 | 0.785 cA | 0.918 cA | 35.3 bA | 43.7 bA | 19.4 aA | 1.54 bcA | |
BTF-25 | 0.764 aA | 0.905 bA | 36.4 bcB | 42.7 abA | 19.1 aA | 1.79 cA | |
SE | 0.001 | 0.003 | 0.9 | 0.9 | 0.4 | 0.08 | |
Analysis of variance and significance (p-values) | |||||||
F1 | ** | *** | ns | ns | * | ns | |
F2 | ** | ns | *** | *** | ns | *** | |
F1 × F2 | *** | *** | ns | ns | ns | ** |
Samples | G1′ (Pa) | a | G1′″ (Pa) | b | (tan δ)1 | c | τmax (Pa) | Crossover (Pa) |
---|---|---|---|---|---|---|---|---|
WTF-Untreated | 422 aB | 0.019 cA | 59.6 aB | 0.293 bA | 0.141 cA | 0.2736 aB | 615 cB | 657 bB |
WTF-15 | 453 bB | 0.017 cA | 61.1 bA | 0.300 cA | 0.135 bA | 0.2799 bB | 647dB | 673 bB |
WTF-20 | 503 cB | 0.006 bA | 65.0 cA | 0.299 cB | 0.129 aA | 0.2924 cB | 546 aB | 572 aB |
WTF-25 | 546 dB | −0.014 aA | 69.2 dB | 0.287 aB | 0.127 aA | 0.3008 dB | 578 bB | 592 aB |
SE | 3 | 0.002 | 0.3 | 0.001 | 0.001 | 0.0007 | 4 | 7 |
BTF-Untreated | 332 aA | 0.089 dB | 51.5 aA | 0.305 dB | 0.155 bB | 0.2161 cA | 222 cA | 256 cA |
BTF-15 | 420 cA | 0.062 aB | 60.3 bA | 0.298 cA | 0.144 aB | 0.2367 dA | 283 dA | 331 dA |
BTF-20 | 445 dA | 0.069 bB | 64.3 cA | 0.281 bA | 0.145 aB | 0.2119 bA | 207 bA | 230 bA |
BTF-25 | 371 bA | 0.078 cB | 60.6 bA | 0.276 aA | 0.164 cB | 0.1978 aA | 90 aA | 121 aA |
SE | 2 | 0.001 | 1 | 0.001 | 0.001 | 0.0008 | 1 | 6 |
Analysis of variance and significance (p-values) | ||||||||
F1 | ** | *** | ns | ns | *** | *** | *** | *** |
F2 | ns | ns | ** | * | ns | ns | ns | ns |
F1 × F2 | *** | *** | *** | *** | *** | *** | *** | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calix-Rivera, C.S.; Villanueva, M.; Náthia-Neves, G.; Ronda, F. Changes on Techno-Functional, Thermal, Rheological, and Microstructural Properties of Tef Flours Induced by Microwave Radiation—Development of New Improved Gluten-Free Ingredients. Foods 2023, 12, 1345. https://doi.org/10.3390/foods12061345
Calix-Rivera CS, Villanueva M, Náthia-Neves G, Ronda F. Changes on Techno-Functional, Thermal, Rheological, and Microstructural Properties of Tef Flours Induced by Microwave Radiation—Development of New Improved Gluten-Free Ingredients. Foods. 2023; 12(6):1345. https://doi.org/10.3390/foods12061345
Chicago/Turabian StyleCalix-Rivera, Caleb S., Marina Villanueva, Grazielle Náthia-Neves, and Felicidad Ronda. 2023. "Changes on Techno-Functional, Thermal, Rheological, and Microstructural Properties of Tef Flours Induced by Microwave Radiation—Development of New Improved Gluten-Free Ingredients" Foods 12, no. 6: 1345. https://doi.org/10.3390/foods12061345
APA StyleCalix-Rivera, C. S., Villanueva, M., Náthia-Neves, G., & Ronda, F. (2023). Changes on Techno-Functional, Thermal, Rheological, and Microstructural Properties of Tef Flours Induced by Microwave Radiation—Development of New Improved Gluten-Free Ingredients. Foods, 12(6), 1345. https://doi.org/10.3390/foods12061345