Determination by ICP-MS of Essential and Toxic Trace Elements in Gums and Carrageenans Used as Food Additives Commercially Available in the Portuguese Market
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Samples Solubilisation
2.3. Trace Element Determination
3. Results
3.1. Essential Trace Elements Content
3.2. Toxic Trace Elements Content
3.3. Other Trace Elements Content
4. Discussion
4.1. Essential Trace Elements
4.1.1. Chromium
4.1.2. Manganese
4.1.3. Iron
4.1.4. Cobalt
4.1.5. Copper
4.1.6. Zinc
4.1.7. Selenium
4.1.8. Molybdenum
4.2. Toxic Trace Elements
4.2.1. Arsenic
4.2.2. Lead
4.2.3. Cadmium
4.2.4. Mercury
4.3. Other Trace Elements
4.3.1. Lithium
4.3.2. Aluminum
4.3.3. Rubidium
4.3.4. Strontium
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EFSA Panel on Food Additives Nutrient Sources added to Food. Re-evaluation of guar gum (E 412) as a food additive. EFSA J. 2017, 15, e04669. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Food Additives Nutrient Sources added to Food. Re-evaluation of acacia gum (E 414) as a food additive. EFSA J. 2017, 15, e04741. [Google Scholar] [CrossRef]
- EFSA Panel on Food Additives Nutrient Sources added to Food. Re-evaluation of xanthan gum (E 415) as a food additive. EFSA J. 2017, 15, e04909. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Food Additives Nutrient Sources added to Food. Re-evaluation of tara gum (E 417) as a food additive. EFSA J. 2017, 15, e04863. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Food Additives Nutrient Sources added to Food. Re-evaluation of gellan gum (E 418) as food additive. EFSA J. 2018, 16, e05296. [Google Scholar] [CrossRef]
- EFSA Panel on Food Additives Nutrient Sources added to Food. Re-evaluation of carrageenan (E 407) and processed Eucheuma seaweed (E 407a) as food additives. EFSA J. 2018, 16, e05238. [Google Scholar] [CrossRef]
- World Health Organization; International Atomic Energy Agency; Food Agriculture Organization of the United Nations. Trace Elements in Human Nutrition and Health; World Health Organization: Geneva, Switzerland, 1996. [Google Scholar]
- Environmental Protection Agency (EPA). SW-846 Test Method 3052: Microwave Assisted Acid Digestion of Siliceous and Organically Based Matrices; Environmental Protection Agency: Washington, DC, USA, 1996.
- Institute of Medicine. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; National Academies Press (US): Washington, DC, USA, 2000. [Google Scholar]
- Institute of Medicine. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; The National Academies Press: Washington, DC, USA, 2001; p. 800. [Google Scholar]
- Asbaghi, O.; Naeini, F.; Ashtary-Larky, D.; Kaviani, M.; Kelishadi, M.R.; Eslampour, E.; Moradi, S.; Mirzadeh, E.; Clark, C.C.T.; Naeini, A.A. Effects of chromium supplementation on blood pressure, body mass index, liver function enzymes and malondialdehyde in patients with type 2 diabetes: A systematic review and dose-response meta-analysis of randomized controlled trials. Complement. Ther. Med. 2021, 60, 102755. [Google Scholar] [CrossRef]
- Tian, Y.; Zhu, Q.; Yuan, J.; Kneepkens, R.; Yue, Y.; Zhang, C. Direct embryotoxicity of chromium (III) exposure during preimplantation development. J. Reprod. Dev. 2021, 67, 283–291. [Google Scholar] [CrossRef]
- Sawicka, E.; Jurkowska, K.; Piwowar, A. Chromium (III) and chromium (VI) as important players in the induction of genotoxicity—Current view. Ann. Agric. Environ. Med. 2021, 28, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, R.; Renu, K.; Eladl, M.A.; El-Sherbiny, M.; Elsherbini, D.M.A.; Mirza, A.K.; Vellingiri, B.; Iyer, M.; Dey, A.; Gopalakrishnan, A.V. Mechanism of chromium-induced toxicity in lungs, liver, and kidney and their ameliorative agents. Biomed. Pharmacother. 2022, 151, 113119. [Google Scholar] [CrossRef]
- Department for Environment Food and Rural Affairs and The Environment Agency. Contaminants in Soil: Collation of Toxicological Data and Intake Values for Humans; Environment Agency: Bristol, UK, 2022.
- United Kingdom Expert Group on Vitamins and Minerals. Risk assessment: Chromium. In Safe Upper Levels for Vitamins and Minerals. Report on the Expert Group on Vitamins and Minerals (EVM); Food Standards Agency (FSA): London, UK; Committee on Nutrition (SACN): London, UK, 2003; pp. 172–179. [Google Scholar]
- Balachandran, R.C.; Mukhopadhyay, S.; McBride, D.; Veevers, J.; Harrison, F.E.; Aschner, M.; Haynes, E.N.; Bowman, A.B. Brain manganese and the balance between essential roles and neurotoxicity. J. Biol. Chem. 2020, 295, 6312–6329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suliburska, J.; Chmurzynska, A.; Kocylowski, R.; Skrypnik, K.; Radziejewska, A.; Baralkiewicz, D. Effect of Iron and Folic Acid Supplementation on the Level of Essential and Toxic Elements in Young Women. Int. J. Environ. Res. Public Health 2021, 18, 1360. [Google Scholar] [CrossRef] [PubMed]
- Isidori, A.; Loscocco, F.; Visani, G.; Chiarucci, M.; Musto, P.; Kubasch, A.-S.; Platzbecker, U.; Vinchi, F. Iron Toxicity and Chelation Therapy in Hematopoietic Stem Cell Transplant. Transplant. Cell. Ther. 2021, 27, 371–379. [Google Scholar] [CrossRef]
- Rund, D. Intravenous iron: Do we adequately understand the short- and long-term risks in clinical practice? Br. J. Haematol. 2021, 193, 466–480. [Google Scholar] [CrossRef]
- Tarnacka, B.; Jopowicz, A.; Maślińska, M. Copper, Iron, and Manganese Toxicity in Neuropsychiatric Conditions. Int. J. Mol. Sci. 2021, 22, 7820. [Google Scholar] [CrossRef] [PubMed]
- Yuen, H.-W.; Becker, W. Iron Toxicity; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Health Canada. Canadian Nutrient File (CNF). Available online: https://food-nutrition.canada.ca/cnf-fce/index-eng.jsp (accessed on 7 February 2023).
- O’Leary, F.; Samman, S. Vitamin B12 in health and disease. Nutrients 2010, 2, 299–316. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Khan, Z.I.; Zafar, A.; Ma, J.; Nadeem, M.; Ahmad, K.; Mahpara, S.; Wajid, K.; Bashir, H.; Munir, M.; et al. Evaluation of toxicity potential of cobalt in wheat irrigated with wastewater: Health risk implications for public. Environ. Sci. Pollut. Res. 2021, 28, 21119–21131. [Google Scholar] [CrossRef]
- Leyssens, L.; Vinck, B.; Van Der Straeten, C.; Wuyts, F.; Maes, L. Cobalt toxicity in humans—A review of the potential sources and systemic health effects. Toxicology 2017, 387, 43–56. [Google Scholar] [CrossRef]
- van den Brule, S.; Ibouraadaten, S.; Brombin, L.; Lison, D. A tiered approach to investigate the inhalation toxicity of cobalt substances. Tier 2a: Grouping cobalt compounds based on their capacity to stabilize HIF-1α in human alveolar epithelial cells in vitro. Regul. Toxicol. Pharmacol. 2022, 130, 105121. [Google Scholar] [CrossRef]
- Arnich, N.; Sirot, V.; Rivière, G.; Jean, J.; Noël, L.; Guérin, T.; Leblanc, J.-C. Dietary exposure to trace elements and health risk assessment in the 2nd French Total Diet Study. Food Chem. Toxicol. 2012, 50, 2432–2449. [Google Scholar] [CrossRef]
- Agence Française de Sécurité Sanitaire des Aliments. Opinion of the French Food Safety Agency on a Request for Scientific and Technical Support Regarding the Migration of Cobalt from Porcelain Oven-Dishes Intended to Come in Contact with Food. Available online: www.anses.fr/Documents/MCDA2010sa0095EN.pdf (accessed on 24 March 2023).
- Barber, R.G.; Grenier, Z.A.; Burkhead, J.L. Copper Toxicity Is Not Just Oxidative Damage: Zinc Systems and Insight from Wilson Disease. Biomedicines 2021, 9, 316. [Google Scholar] [CrossRef] [PubMed]
- Skalny, A.V.; Aschner, M.; Tinkov, A.A. Zinc. In The Latest Research and Development of Minerals in Human Nutrition, 1st ed.; Eskin, N.A.M., Ed.; Academic Press: Cambridge, MA, USA, 2021; Volume 96, pp. 251–310. [Google Scholar]
- Kambe, T.; Tsuji, T.; Hashimoto, A.; Itsumura, N. The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiol. Rev. 2015, 95, 749–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarro-Alarcón, M.; López-Martínez, M.C. Essentiality of selenium in the human body: Relationship with different diseases. Sci. Total Environ. 2000, 249, 347–371. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P. The importance of selenium to human health. Lancet 2000, 356, 233–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaviezo, D.; Dale, N. Nutrient content of tuna meal. Poult. Sci. 1994, 73, 916–918. [Google Scholar] [CrossRef]
- Chen, L.; Yang, F.; Xu, J.; Hu, Y.; Hu, Q.; Zhang, Y.; Pan, G. Determination of selenium concentration of rice in china and effect of fertilization of selenite and selenate on selenium content of rice. J. Agric. Food Chem. 2002, 50, 5128–5130. [Google Scholar] [CrossRef]
- Novotny, J.A. Molybdenum Nutriture in Humans. J. Evid. Based Complement. Altern. Med. 2011, 16, 164–168. [Google Scholar] [CrossRef]
- Vyskocil, A.; Viau, C. Assessment of molybdenum toxicity in humans. J. Appl. Toxicol. 1999, 19, 185–192. [Google Scholar] [CrossRef]
- Commission Regulation (EU) No 231/2012 of 9 March 2012 Laying Down Specifications for Food Additives Listed in Annexes II and III to Regulation (EC) No 1333/2008 of the European Parliament and of the Council; European Commission: Brussels, Belgium, 2012.
- EFSA Panel on Contaminants in the Food Chain. Scientific Opinion on Arsenic in Food. EFSA J. 2009, 7, 1351. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain. Scientific Opinion on Lead in Food. EFSA J. 2010, 8, 1570. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain. Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA J. 2012, 10, 2985. [Google Scholar] [CrossRef]
- European Food Safety Authority. Cadmium dietary exposure in the European population. EFSA J. 2012, 10, 2551. [Google Scholar] [CrossRef]
- EFSA Panel on Food Additives, Flavourings, Processing Aids and Food Contact Materials. Safety of aluminium from dietary intake. EFSA J. 2008, 754, 1–34. [Google Scholar] [CrossRef]
- Environmental Protection Agency (EPA). Chemical Assessment Summary: Strontium (CASRN 7440-24-6); Environmental Protection Agency: Cincinnati, OH, USA, 1992.
- Environmental Protection Agency (EPA). Provisional Peer Reviewed Toxicity Values for Lithium (CASRN 7439-93-2); EPA/690/R-08/016F; Environmental Protection Agency: Cincinnati, OH, USA, 2008.
- Abdul, K.S.; Jayasinghe, S.S.; Chandana, E.P.; Jayasumana, C.; De Silva, P.M. Arsenic and human health effects: A review. Environ. Toxicol. Pharmacol. 2015, 40, 828–846. [Google Scholar] [CrossRef] [PubMed]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef] [PubMed]
- Collin, M.S.; Venkatraman, S.K.; Vijayakumar, N.; Kanimozhi, V.; Arbaaz, S.M.; Stacey, R.G.S.; Anusha, J.; Choudhary, R.; Lvov, V.; Tovar, G.I.; et al. Bioaccumulation of lead (Pb) and its effects on human: A review. J. Hazard. Mater. Adv. 2022, 7, 100094. [Google Scholar] [CrossRef]
- Wani, A.L.; Ara, A.; Usmani, J.A. Lead toxicity: A review. Interdiscip. Toxicol. 2015, 8, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The Effects of Cadmium Toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef]
- Bernard, A. Cadmium & its adverse effects on human health. Indian J. Med. Res. 2008, 128, 557–564. [Google Scholar]
- Park, J.D.; Zheng, W. Human exposure and health effects of inorganic and elemental mercury. J. Prev. Med. Public Health 2012, 45, 344–352. [Google Scholar] [CrossRef]
- World Health Organization. International Programme on Chemical Safety (IPCS): Inorganic Mercury; World Health Organization: Geneva, Switzerland, 1991. [Google Scholar]
- Björkman, L.; Lundekvam, B.F.; Laegreid, T.; Bertelsen, B.I.; Morild, I.; Lilleng, P.; Lind, B.; Palm, B.; Vahter, M. Mercury in human brain, blood, muscle and toenails in relation to exposure: An autopsy study. Environ. Health 2007, 6, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarkson, T.W.; Magos, L. The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol. 2006, 36, 609–662. [Google Scholar] [CrossRef]
- Dart, R.C.; Sullivan, J.B. Mercury. In Medical Toxicology, 3rd ed.; Dart, R.C., Ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2004; pp. 1437–1448. [Google Scholar]
- Volkmann, C.; Bschor, T.; Köhler, S. Lithium Treatment Over the Lifespan in Bipolar Disorders. Front. Psychiatry 2020, 11, 377. [Google Scholar] [CrossRef]
- Chen, S.; Underwood, B.R.; Jones, P.B.; Lewis, J.R.; Cardinal, R.N. Association between lithium use and the incidence of dementia and its subtypes: A retrospective cohort study. PLoS Med. 2022, 19, e1003941. [Google Scholar] [CrossRef] [PubMed]
- Marshall, T.M. Lithium as a nutrient. J. Am. Phys. Surg. 2015, 20, 104–109. [Google Scholar]
- Aral, H.; Vecchio-Sadus, A. Toxicity of lithium to humans and the environment--a literature review. Ecotoxicol. Environ. Saf. 2008, 70, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Exley, C. The toxicity of aluminium in humans. Morphologie 2016, 100, 51–55. [Google Scholar] [CrossRef]
- Klotz, K.; Weistenhöfer, W.; Neff, F.; Hartwig, A.; van Thriel, C.; Drexler, H. The Health Effects of Aluminum Exposure. Dtsch. Arztebl. Int. 2017, 114, 653–659. [Google Scholar] [CrossRef] [Green Version]
- Bratakos, S.M.; Lazou, A.E.; Bratakos, M.S.; Lazos, E.S. Aluminium in food and daily dietary intake estimate in Greece. Food Addit. Contam. Part B Surveill 2012, 5, 33–44. [Google Scholar] [CrossRef]
- Exley, C. Human exposure to aluminium. Environ. Sci. Process. Impacts 2013, 15, 1807–1816. [Google Scholar] [CrossRef] [Green Version]
- Anke, M.; Angelow, L. Rubidium in the food chain. Fresenius J. Anal. Chem. 1995, 352, 236–239. [Google Scholar] [CrossRef]
- Bain, S.D.; Jerome, C.; Shen, V.; Dupin-Roger, I.; Ammann, P. Strontium ranelate improves bone strength in ovariectomized rat by positively influencing bone resistance determinants. Osteoporos. Int. 2009, 20, 1417–1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabrera, W.E.; Schrooten, I.; De Broe, M.E.; D’Haese, P.C. Strontium and Bone. J. Bone Miner. Res. 1999, 14, 661–668. [Google Scholar] [CrossRef] [PubMed]
Sample | Cr | Mn | Fe | Co | Cu | Zn | Se | Mo |
---|---|---|---|---|---|---|---|---|
Carrageenans | ||||||||
1 SRC mixture κ/λ | 0.710 (0.070) | 3.31 (0.15) | 189 (11) | 0.327 (0.072) | 0.45 (0.13) | 3.03 (0.27) | 0.093 (0.028) | 0.072 (0.003) |
2 SRCκ | 1.15 (0.13) | 11.04 (0.83) | 184 (16) | 0.649 (0.066) | 1.24 (0.29) | 2.30 (0.21) | 0.247 (0.029) | 0.155 (0.016) |
3 SRCκ | 2.122 (0.064) | 7.535 (0.033) | 152 (17) | 0.845 (0.012) | 0.94 (0.10) | 6.02 (0.14) | 0.474 (0.015) | 0.045 (0.013) |
4 SRCι | 1.294 (0.077) | 4.540 (0.039) | 49.77 (0.49) | 0.149 (0.004) | 0.354 (0.079) | 0.757 (0.083) | 0.405 (0.035) | 0.068 (0.022) |
5 SRCι | 0.547 (0.129) | 23.16 (0.31) | 127.2 (6.7) | 1.795 (0.046) | 1.37 (0.11) | 10.41 (0.21) | 0.360 (0.028) | 0.039 (0.002) |
6 RCκ | 0.384 (0.045) | 13.30 (0.36) | 156.1 (5.9) | 0.739 (0.068) | 0.315 (0.006) | 5.47 (0.16) | 0.453 (0.064) | 0.033 (0.005) |
7 RCκ | 0.187 (0.010) | 0.300 (0.064) | 1.35 (0.88) | 0.082 (0.014) | 0.234 (0.022) | 0.446 (0.033) | 0.63 (0.10) | <LQ |
8 RCι | 0.455 (0.078) | 7.58 (0.21) | 63.4 (5.1) | 0.514 (0.055) | 0.425 (0.006) | 2.24 (0.12) | 0.504 (0.035) | 0.031 (0.001) |
Gums | ||||||||
9 Guar | 0.187 (0.047) | 3.73 (0.11) | 13.6 (1.9) | 0.068 (0.002) | 1.758 (0.081) | 6.061 (0.056) | 0.245 (0.005) | 2.183 (0.076) |
10 Acacia (Arabic) | 0.102 (0.036) | 4.96 (0.24) | 16.1 (1.7) | 0.086 (0.003) | 1.253 (0.056) | 0.329 (0.043) | 0.077 (0.027) | <LD |
11 Xanthan | 2.88 (0.28) | 3.58 (0.22) | 123.5 (8.9) | 0.204 (0.012) | 0.85 (0.19) | 2.86 (0.29) | 0.050 (0.031) | 0.085 (0.009) |
12 Tara | 0.188 (0.043) | 0.78 (0.02) | 5.32 (0.67) | 0.014 (0.004) | 3.18 (0.19) | 4.10 (0.45) | 0.170 (0.023) | 0.086 (0.001) |
13 Gellan | 2.55 (0.28) | 2.43 (0.16) | 24.1 (1.4) | 0.040 (0.003) | 0.220 (0.054) | 0.599 (0.086) | 0.082 (0.030) | 0.066 (0.005) |
Sample | Li | Al | As | Rb | Sr | Cd | Hg | Pb |
---|---|---|---|---|---|---|---|---|
Carrageenans | ||||||||
1 SRC mixture κ/λ | 0.090 (0.006) | 79.1 (3.1) | < LD | 18.68 (0.39) | 80.0 (5.7) | 0.022 (0.002) | <LD | 0.064 (0.013) |
2 SRCκ | 23.6 (1.4) | 188 (19) | 0.492 (0.025) | 68.2 (5.2) | 136 (10) | 0.168 (0.013) | <LD | 0.066 (0.002) |
3 SRCκ | 0.282 (0.019) | 142 (16) | 1.689 (0.018) | 16.41 (0.10) | 104.0 (1.8) | 0.604 (0.012) | <LD | 0.361 (0.035) |
4 SRCι | 1.52 (0.19) | 166 (14) | 0.208 (0.021) | 26.52 (0.48) | 58.9 (1.1) | 0.122 (0.004) | <LD | 0.041 (0.001) |
5 SRCι | 0.240 (0.008) | 138 (16) | 2.042 (0.034) | 11.43 (0.10) | 110.4 (2.2) | 1.090 (0.020) | <LD | 0.606 (0.095) |
6 RCκ | 0.131 (0.019) | 144 (22) | 0.252 (0.019) | 11.01 (0.24) | 44.7 (1.1) | 0.152 (0.003) | <LD | 0.102 (0.004) |
7 RCκ | 0.103 (0.004) | 31.6 (1.2) | 0.216 (0.033) | 14.64 (0.82) | 13.32 (0.34) | 0.012 (0.003) | <LD | 0.052 (0.001) |
8 RCι | 0.137 (0.003) | 66.4 (4.0) | 0.225 (0.019) | 8.65 (0.20) | 83.2 (1.1) | 0.233 (0.005) | <LD | 0.121 (0.002) |
Gums | ||||||||
9 Guar | <LD | <LQ | <LD | 4.26 (0.12) | 9.91 (0.28) | 0.018 (0.001) | <LD | 0.028 (0.002) |
10 Acacia (Arabic) | <LQ | <LD | <LD | 9.90 (0.49) | 67.0 (3.4) | <LD | <LD | <LQ |
11 Xanthan | 0.080 (0.005) | 118.0 (6.6) | <LD | 0.615 (0.071) | 34.2 (2.6) | <LD | 0.087 (0.006) | 0.039 (0.013) |
12 Tara | <LD | <LD | <LD | 2.921 (0.046) | 1.14 (0.10) | <LD | <LD | 0.367 (0.022) |
13 Gellan | 0.068 (0.001) | <LQ | <LD | 4.041 (0.052) | 7.74 (0.24) | <LD | <LD | 0.030 (0.002) |
Samples | Cr | Mn | Fe | Co * | Cu | Zn | Se | Mo |
---|---|---|---|---|---|---|---|---|
Carrageenans | ||||||||
1 SRC mixture κ/λ | 8 | 1 | 9 | - | 0 | 0 | 1 | 1 |
2 SRCκ | 12 | 2 | 9 | - | 1 | 0 | 2 | 1 |
3 SRCκ | 23 | 1 | 7 | - | 0 | 0 | 3 | 0 |
4 SRCι | 14 | 1 | 2 | - | 0 | 0 | 3 | 1 |
5 SRCι | 6 | 4 | 6 | - | 1 | 0 | 2 | 0 |
6 RCκ | 4 | 2 | 7 | - | 0 | 0 | 3 | 0 |
7 RCκ | 2 | 0 | 0 | - | 0 | 0 | 4 | nd |
8 RCι | 5 | 1 | 3 | - | 0 | 0 | 3 | 0 |
Gums | ||||||||
9 Guar | 7 | 2 | 2 | - | 3 | 1 | 6 | 68 |
10 Acacia | 6 | 5 | 4 | - | 3 | 0 | 3 | 4 |
11 Xanthan | 88 | 2 | 17 | - | 1 | 0 | 1 | 2 |
12 Tara ** | - | - | - | - | - | - | - | - |
13 Gellan | 78 | 1 | 3 | - | 0 | 0 | 2 | 2 |
Samples | Li | Al | As | Rb * | Sr | Cd | Hg | Pb |
---|---|---|---|---|---|---|---|---|
Carrageenans | ||||||||
1 SRC mixture κ/λ | 0 | 4 | nd | - | 1 | 1 | nd | 1 |
2 SRCκ | 89 | 10 | 12 | - | 2 | 4 | nd | 1 |
3 SRCκ | 1 | 7 | 42 | - | 1 | 13 | nd | 4 |
4 SRCι | 6 | 9 | 5 | - | 1 | 3 | nd | 0 |
5 SRCι | 1 | 7 | 51 | - | 1 | 23 | nd | 7 |
6 RCκ | 0 | 8 | 6 | - | 1 | 3 | nd | 1 |
7 RCκ | 0 | 2 | 5 | - | 0 | 0 | nd | 1 |
8 RCι | 1 | 3 | 6 | - | 1 | 5 | nd | 1 |
Gums | ||||||||
9 Guar | nd | nd | nd | - | 0 | 1 | nd | 1 |
10 Acacia | nd | nd | nd | - | 5 | nd | nd | nd |
11 Xanthan | 1 | 18 | nd | - | 1 | nd | 3 | 1 |
12 Tara ** | - | - | nd | - | - | nd | nd | - |
13 Gellan | 1 | nd | nd | - | 0 | nd | nd | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azevedo, R.; Oliveira, A.R.; Almeida, A.; Gomes, L.R. Determination by ICP-MS of Essential and Toxic Trace Elements in Gums and Carrageenans Used as Food Additives Commercially Available in the Portuguese Market. Foods 2023, 12, 1408. https://doi.org/10.3390/foods12071408
Azevedo R, Oliveira AR, Almeida A, Gomes LR. Determination by ICP-MS of Essential and Toxic Trace Elements in Gums and Carrageenans Used as Food Additives Commercially Available in the Portuguese Market. Foods. 2023; 12(7):1408. https://doi.org/10.3390/foods12071408
Chicago/Turabian StyleAzevedo, Rui, Ana Rafaela Oliveira, Agostinho Almeida, and Lígia Rebelo Gomes. 2023. "Determination by ICP-MS of Essential and Toxic Trace Elements in Gums and Carrageenans Used as Food Additives Commercially Available in the Portuguese Market" Foods 12, no. 7: 1408. https://doi.org/10.3390/foods12071408
APA StyleAzevedo, R., Oliveira, A. R., Almeida, A., & Gomes, L. R. (2023). Determination by ICP-MS of Essential and Toxic Trace Elements in Gums and Carrageenans Used as Food Additives Commercially Available in the Portuguese Market. Foods, 12(7), 1408. https://doi.org/10.3390/foods12071408