Improving γ-Oryzanol and γ-Aminobutyric Acid Contents in Rice Beverage Amazake Produced with Brown, Milled and Germinated Rices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Selection
2.1.1. GABA Extraction and Quantification
2.1.2. GO Extraction and Quantification
2.2. Rice Cooking and Inoculation
2.3. Koji Preparation and Optimisation
2.3.1. α-Amylase Activity Assessment
2.3.2. Starch Measurement
2.4. Amazake Selection and Preparation Processes
2.4.1. Starch Hydrolysis and Viscosity Measurement
2.4.2. Brix Measurement
2.5. Consumer Evaluation
2.6. Statistical Analysis
3. Results and Discussion
3.1. Sample Selection
3.2. Rice Preparation
3.3. Optimisation of Koji According to GABA and α-Amylase Activity
3.4. Amazake Preparation
3.5. Effect of Germination and Rice Koji Fermentation on GO and GABA of Rice after Cooking
3.6. Consumer Evaluations
4. Conclusions and Future Work
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Castanho, A.; Lageiro, M.; Calhelha, R.C.; Ferreira, I.C.F.R.; Sokovic, M.; Cunha, L.M.; Brites, C. Exploiting the bioactive properties of γ-oryzanol from bran of different exotic rice varieties. Food Funct. 2019, 10, 2382–2389. [Google Scholar] [CrossRef]
- Goufo, P.; Trindade, H. Rice antioxidants: Phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. Food Sci. Nutr. 2014, 2, 75–104. [Google Scholar] [CrossRef]
- Yu, S.G.; Nehus, Z.T.; Badger, T.M.; Fang, N.B. Quantification of vitamin E and gamma-oryzanol components in rice germ and bran. J. Agric. Food Chem. 2007, 55, 7308–7313. [Google Scholar] [CrossRef]
- Shinomiya, M.; Morisaki, N.; Matsuoka, N.; Izumi, S.; Saito, Y.; Kumagai, A.; Mitani, K.; Morita, S. Effects of γ-Oryzanol on Lipid Metabolism in Rats Fed High-Cholesterol Diet. Tohoku J. Exp. Med. 1983, 141, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, K.; Tabata, T.; Shirasaki, K.; Inagaki, T.; Nakayama, S. Effects of gamma-oryzanol and cycloartenol ferulic acid ester on cholesterol diet induced hyperlipidemia in rats. Jpn. J. Pharmacol. 1987, 45, 559–565. [Google Scholar] [CrossRef]
- Jolfaie, N.R.; Rouhani, M.H.; Surkan, P.J.; Siassi, F.; Azadbakht, L. Rice Bran Oil Decreases Total and LDL Cholesterol in Humans: A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. Horm. Metab. Res. 2016, 48, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Bumrungpert, A.; Chongsuwat, R.; Phosat, C.; Butacnum, A. Rice Bran Oil Containing Gamma-Oryzanol Improves Lipid Profiles and Antioxidant Status in Hyperlipidemic Subjects: A Randomized Double-Blind Controlled Trial. J. Altern. Complement. Med. 2019, 25, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Lageiro, M.M.; Castanho, A.; Pereira, C.; Calhelha, R.C.; Ferreira, I.C.F.R.; Brites, C. Assessment of gamma oryzanol variability, an attractive rice bran bioactive compound. Emir. J. Food Agric. 2020, 32, 38–46. [Google Scholar] [CrossRef]
- Kumar, S.S.; Iruthayarajan, M.W.; Bakrutheen, M. Investigations on the suitability of rice bran oil and corn oil as alternative insulating liquids for transformers. IEEJ Trans. Electr. Electron. Eng. 2016, 11, 10–14. [Google Scholar] [CrossRef]
- Valitova, J.N.; Sulkarnayeva, A.G.; Minibayeva, F.V. Plant sterols: Diversity, biosynthesis, and physiological functions. Biochemistry 2016, 81, 819–834. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, M.; Yoshida, S.; Haramoto, M.; Mizuno, H.; Fukuda, T.; Kagami-Katsuyama, H.; Tanaka, A.; Ohkawara, T.; Sato, Y.; Nishihira, J. Effects of white rice containing enriched gamma-aminobutyric acid on blood pressure. J. Tradit. Complement. Med. 2016, 6, 66–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Yao, H.-y.; Chen, F.; Wang, X. Purification and characterization of glutamate decarboxylase from rice germ. Food Chem. 2007, 101, 1670–1676. [Google Scholar] [CrossRef]
- Tsuchiya, K.; Nishimura, K.; Iwahara, M. Purification and Characterization of Glutamate Decarboxylase from Aspergillus oryzae. Food Sci. Technol. Res. 2003, 9, 283–287. [Google Scholar] [CrossRef] [Green Version]
- Abdou, A.M.; Higashiguchi, S.; Horie, K.; Kim, M.; Hatta, H.; Yokogoshi, H. Relaxation and immunity enhancement effects of gamma-aminobutyric acid (GABA) administration in humans. Biofactors 2006, 26, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Treiman, D.M. GABAergic mechanisms in epilepsy. Epilepsia 2001, 42 (Suppl. S3), 8–12. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.-J.; Kim, H.S.; Lim, S.-T.; Reddy, C.K. Enhanced accumulation of gamma-aminobutyric acid in rice bran using anaerobic incubation with various additives. Food Chem. 2019, 271, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Gomi, K. Aspergillus oryzae. In Encyclopedia of Food Microbiology; Elsevier Inc.: Amsterdam, The Netherlands, 2014; pp. 92–96. [Google Scholar] [CrossRef]
- Chang, P.K.; Horn, B.W.; Abe, K.; Gomi, K. Introduction. In Encyclopedia of Food Microbiology; Elsevier Inc.: Amsterdam, The Netherlands, 2014; pp. 77–82. [Google Scholar] [CrossRef]
- Soccol, C.R.; Costa, E.S.F.d.; Letti, L.A.J.; Karp, S.G.; Woiciechowski, A.L.; Vandenberghe, L.P.d.S. Recent developments and innovations in solid state fermentation. Biotechnol. Res. Innov. 2017, 1, 52–71. [Google Scholar] [CrossRef]
- Allwood, J.G.; Wakeling, L.T.; Bean, D.C. Fermentation and the microbial community of Japanese Koji and miso: A review. J. Food Sci. 2021, 86, 2194–2207. [Google Scholar] [CrossRef] [PubMed]
- Okuda, M.; Iizuka, S.; Xu, Y.; Wang, D. Rice in brewing. In Rice, 4th ed.; Bao, J., Ed.; AACC International Press: Washington, DC, USA, 2019; pp. 589–626. [Google Scholar]
- Kusumoto, K.-I.; Yamagata, Y.; Tazawa, R.; Kitagawa, M.; Kato, T.; Isobe, K.; Kashiwagi, Y. Japanese Traditional Miso and Koji Making. J. Fungi 2021, 7, 579. [Google Scholar] [CrossRef]
- Kurahashi, A.; Yonei, Y. Effects and safety of Koji Amazake: An excessive intake test. J. Brew. Soc. Jpn. 2019, 114, 654–662. [Google Scholar]
- Kurahashi, A.; Enomoto, T.; Oguro, Y.; Kojima-Nakamura, A.; Kodaira, K.; Watanabe, K.; Ozaki, N.; Goto, H.; Hirayama, M. Intake of Koji Amazake improves defecation frequency in healthy adults. J. Fungi 2021, 7, 782. [Google Scholar] [CrossRef]
- Nagao, Y.; Takahashi, H.; Kawaguchi, A.; Kitagaki, H. Effect of Fermented Rice Drink “Amazake” on Patients with Nonalcoholic Fatty Liver Disease and Periodontal Disease: A Pilot Study. Reports 2021, 4, 36. [Google Scholar] [CrossRef]
- WHO. Toxicological evaluation of certain food additives. In Proceedings of the 31st Meeting of the joint FAO/WHO Expert Committee on Food Additives, Geneva, Switzerland, 16–25 February 1987. [Google Scholar]
- Lee, I.H.; Chou, C.C. Distribution profiles of isoflavone isomers in black bean Kojis prepared with various filamentous fungi. J. Agric. Food Chem. 2006, 54, 1309–1314. [Google Scholar] [CrossRef] [PubMed]
- Kikushima, K.; Nakagawa, T.; Shimizu, K.; Ohnuki, K. Regular Intake of Japanese Traditional Rice Fermented Beverage, Koji Amazake for 4 weeks Decreases Systolic Blood Pressure A Randomized, Double-blind, Placebo-controlled, Parallel-group Comparative Study. Jpn. Pharmacol. Ther. 2020, 48, 305–312. [Google Scholar]
- Kurahashi, A.; Nakamura, A.; Oguro, Y.; Yonei, Y. Safety evaluation of a long-term intake of Koji Amazake. J. Brew. Soc. Jpn. 2020, 115, 159–172. [Google Scholar]
- Jannoey, P.; Niamsup, H.; Lumyong, S.; Suzuki, T.; Katayama, T.; Chairote, G. Comparison of gamma-aminobutyric acid production in Thai rice grains. World J. Microbiol. Biotechnol. 2010, 26, 257–263. [Google Scholar] [CrossRef]
- Saigusa, N.; Ohba, R. Effects of Koji production and saccharification time on the antioxidant activity of Amazake. Food Sci. Technol. Res. 2007, 13, 162–165. [Google Scholar] [CrossRef] [Green Version]
- Box, G.E.P.; Hunter, W.H.; Hunter, S. Statistics for Experimenters; John Wiley and Sons: New York, NY, USA, 1978; Volume 664. [Google Scholar]
- Narahara, H. Growth and Enzyme Production in a Solid-State Culture of Aspergillus oryzae. J. Ferment. Technol. 1982, 60, 311–319. [Google Scholar]
- Hong, H.H.; Kim, M.K. Physiochemical Quality and Sensory Characteristics of Koji Made with Soybean, Rice, and Wheat for Commercial doenjang Production. Foods 2020, 9, 975. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, P.S.; Soares, A.; Castanho, A.; Almeida, A.S.; Oliveira, J.; Brites, C. Optimization of rice amylose determination by NIR-spectroscopy using PLS chemometrics algorithms. Food Chem. 2018, 242, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Peryam, D.R.; Pilgrim, F.J. Hedonic scale method of measuring food preferences. Food Technol. 1957, 11 (Suppl. S1), 9–14. [Google Scholar]
- Schutz, H.G. Food action rating scale for measuring food acceptance. J. Food Sci. 1965, 30, 365–374. [Google Scholar] [CrossRef]
- Ribeiro, J.C.; Lima, R.C.; Maia, M.R.; Almeida, A.A.; Fonseca, A.J.; Cabrita, A.R.J.; Cunha, L.M. Impact of defatting freeze-dried edible crickets (Acheta domesticus and Gryllodes sigillatus) on the nutritive value, overall liking and sensory profile of cereal bars. LWT 2019, 113, 108335. [Google Scholar] [CrossRef]
- Rojas-Rivas, E.; Rendón-Domínguez, A.; Felipe-Salinas, J.A.; Cuffia, F. What is gastronomy? An exploratory study of social representation of gastronomy and Mexican cuisine among experts and consumers using a qualitative approach. Food Qual. Prefer. 2020, 83, 103930. [Google Scholar] [CrossRef]
- Carter, N.; Bryant-Lukosius, D.; DiCenso, A.; Blythe, J.; Neville, A.J. The Use of Triangulation in Qualitative Research. Oncol. Nurs. Forum 2014, 41, 545–547. [Google Scholar] [CrossRef] [PubMed]
- Akaike, H. Information Theory and an Extension of the Maximum Likelihood Principle. In Selected Papers of Hirotugu Akaike; Parzen, E., Tanabe, K., Kitagawa, G., Eds.; Springer: New York, NY, USA, 1998; pp. 199–213. [Google Scholar] [CrossRef]
- Wu, N.N.; Li, R.; Li, Z.J.; Tan, B. Effect of germination in the form of paddy rice and brown rice on their phytic acid, GABA, gamma-oryzanol, phenolics, flavonoids and antioxidant capacity. Food Res. Int. 2022, 159, 111603. [Google Scholar] [CrossRef] [PubMed]
- Munarko, H.; Sitanggang, A.B.; Kusnandar, F.; Budijanto, S. Germination of five Indonesian brown rice: Evaluation of antioxidant, bioactive compounds, fatty acids and pasting properties. Food Sci. Technol. 2022, 42. [Google Scholar] [CrossRef]
- Summpunn, P.; Panpipat, W.; Manurakchinakorn, S.; Bhoopong, P.; Cheong, L.Z.; Chaijan, M. Comparative Analysis of Antioxidant Compounds and Antioxidative Properties of Thai Indigenous Rice: Effects of Rice Variety and Processing Condition. Molecules 2022, 27, 5180. [Google Scholar] [CrossRef]
- Nonogaki, H.; Bassel, G.W.; Bewley, J.D. Germination—Still a mystery. Plant Sci. 2010, 179, 574–581. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, H.; Guo, X.; Qian, H. The impact of germination on the characteristics of brown rice flour and starch. J. Sci. Food Agric. 2012, 92, 380–387. [Google Scholar] [CrossRef]
- Elkhalifa, A.E.O.; Bernhardt, R. Influence of grain germination on functional properties of sorghum flour. Food Chem. 2010, 121, 387–392. [Google Scholar] [CrossRef]
- Tomasik, P.; Horton, D. Enzymatic conversions of starch. In Advances in Carbohydrate Chemistry and Biochemistry; Horton, D., Ed.; Academic Press: Cambridge, MA, USA, 2012; Volume 68, pp. 59–436. [Google Scholar]
- Azmi, A.S.; Malek, M.I.A.; Puad, N.I.M. A review on acid and enzymatic hydrolyses of sago starch. Int. Food Res. J. 2017, 24, 265–273. [Google Scholar]
- Feng, Y.; Cai, Y.; Su, G.; Zhao, H.; Wang, C.; Zhao, M. Evaluation of aroma differences between high-salt liquid-state fermentation and low-salt solid-state fermentation soy sauces from China. Food Chem. 2014, 145, 126–134. [Google Scholar] [CrossRef]
- Srisang, N.; Chungcharoen, T. Quality attributes of parboiled rice prepared with a parboiling process using a rotating sieve system. J. Cereal Sci. 2019, 85, 286–294. [Google Scholar] [CrossRef]
- Srisaipet, A.; Nuddagul, M. Influence of Temperature on Gamma-Oryzanol Stability of Edible Rice Bran Oil during Heating. Int. J. Chem. Eng. Appl. 2014, 5, 303–306. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.J.; Chang, L.; Lin, Y.S. Changes in Functionality of Germinated and Non-Germinated Brown Rice Fermented by Bacillus natto. Foods 2021, 10, 2779. [Google Scholar] [CrossRef] [PubMed]
- Montanari, F.; Moura, A.P.D.; Cunha, L.M. Manual de Rotulagem Alimentar, Abordagem Integrada Desde os Operadores Económicos ao Consumidor; Edições Afrontamento: Porto, Portugal, 2022. [Google Scholar]
- Cabral, D.; Fonseca, S.C.; Moura, A.P.; Oliveira, J.C.; Cunha, L.M. Conceptualization of Rice with Low Glycaemic Index: Perspectives from the Major European Consumers. Foods 2022, 11, 2172. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.H.; Yoon, E.K.; Chung, S.J.; Chung, L.; Cha, S.M.; O’Mahony, M.; Vickers, Z.; Kim, K.O. Sensory characteristics and cross-cultural consumer acceptability of Bulgogi (Korean traditional barbecued beef). J. Food Sci. 2011, 76, S306–S313. [Google Scholar] [CrossRef] [PubMed]
- Laureati, M.; Pagliarini, E.; Bassoli, A.; Borgonovo, G. Sensory and hedonic perceptions of italian and korean subjects: A Cross-Cultural study of Perilla Frutescens. Food Sci. Biotechnol. 2014, 23, 1111–1120. [Google Scholar] [CrossRef]
- Moskowitz, H.W.; Kumaraiah, V.; Sharma, K.N.; Jacobs, H.L.; Sharma, S.D. Cross-cultural differences in simple taste preferences. Science 1975, 190, 1217–1218. [Google Scholar] [CrossRef]
- Zellner, D.A.; Garriga-Trillo, A.; Rohm, E.; Centeno, S.; Parker, S. Food Liking and Craving: A Cross-cultural Approach. Appetite 1999, 33, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Prescott, J.; Laing, D.; Bell, G.; Yoshida, M.; Gillmore, R.; Allen, S.; Yamazaki, K.; Ishii, R. Hedonic responses to taste solutions: A cross-cultural study of Japanese and Australians. Chem. Senses 1992, 17, 801–809. [Google Scholar] [CrossRef]
- Pliner, P. The Effects of Mere Exposure on Liking for Edible Substances. Appetite 1982, 3, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Miraballes, M.; Fiszman, S.; Gámbaro, A.; Varela, P. Consumer perceptions of satiating and meal replacement bars, built up from cues in packaging information, health claims and nutritional claims. Food Res. Int. 2014, 64, 456–464. [Google Scholar] [CrossRef]
- Cunha, L.M.; Cabral, D.; Moura, A.P.; de Almeida, M.D.V. Application of the Food Choice Questionnaire across cultures: Systematic review of cross-cultural and single country studies. Food Qual. Prefer. 2018, 64, 21–36. [Google Scholar] [CrossRef]
Time (h) | Temperature (°C) | |
---|---|---|
Min (−α) | 20 | 32 |
Max (+α) | 60 | 42 |
Centre (0) | 40 | 37 |
Factorial (−1) | 26 | 34 |
Factorial (+1) | 54 | 41 |
b0 | b1 | b2 | b3 | b4 | b5 | AIC | R2adj | |
---|---|---|---|---|---|---|---|---|
GABA (mg/100 g) | ||||||||
Brown Rice | −3120 ± 777 | 171 ± 39.5 | n.s. | −2.47 ± 0.524 | 0.307 ± 0.143 | −0.255 ± 0.033 | 197 | 0.679 |
Milled Rice | −1811 ± 387 | 96.7 ± 20.2 | 8.92 ± 1.38 | −1.27 ± 0.271 | n.s. | −0.102 ± 0.017 | 151 | 0.681 |
Germinated Rice | 1900 ± 971 | −98.1 ± 50.8 | 9.12 ± 3.48 | 1.21 ± 0.681 | n.s. | −0.073 ± 0.043 | 212 | 0.715 |
α-amylase activity (CU/g) | ||||||||
Brown Rice | −3061 ± 221 | 153 ± 11.6 | 13.1 ± 0.815 | −2.06 ± 0.155 | n.s. | −0.159 ± 0.01 | 115 | 0.922 |
Milled Rice | −3490 ± 237 | 173 ± 12.5 | 16.2 ± 0.88 | −2.33 ± 0.168 | n.s. | −0.199 ± 0.01 | 114 | 0.939 |
Germinated Rice | 44.0 ± 15.2 | −2.31 ± 0.826 | 0.049 ± 0.008 | 0.03 ± 0.011 | n.s. | n.s. | −29.3 | 0.618 |
Starch (g/100 g) | ||||||||
Brown Rice | 350 ± 105 | −11.9 ± 5.3 | −3.66 ± 0.80 | n.s. | 0.048 ± 0.019 | 0.021 ± 0.004 | 74.4 | 0.577 |
Milled Rice | 360 ± 75.9 | −14.7 ± 3.97 | −1.76 ± 0.273 | 0.202 ± 0.053 | n.s. | 0.021 ± 0.003 | 57.3 | 0.622 |
Germinated Rice | 153 ± 16.8 | −1.75 ± 0.442 | −2.38 ± 0.441 | n.s. | 0.038 ± 0.01 | 0.007 ± 0.002 | 38.1 | 0.876 |
Temperature (°C) | Time (h) | GABA (mg/100 g) | α-Amylase Activity (CU/g) | |
---|---|---|---|---|
Brown rice | 37.2 | 40.3 | 251.6 | 70.4 |
Milled Rice | 37.5 | 41.8 | 221.6 | 79.0 |
Germinated rice | 32.0 * | 60.0 * | 290.5 | 4.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castanho, A.; Pereira, C.; Lageiro, M.; Oliveira, J.C.; Cunha, L.M.; Brites, C. Improving γ-Oryzanol and γ-Aminobutyric Acid Contents in Rice Beverage Amazake Produced with Brown, Milled and Germinated Rices. Foods 2023, 12, 1476. https://doi.org/10.3390/foods12071476
Castanho A, Pereira C, Lageiro M, Oliveira JC, Cunha LM, Brites C. Improving γ-Oryzanol and γ-Aminobutyric Acid Contents in Rice Beverage Amazake Produced with Brown, Milled and Germinated Rices. Foods. 2023; 12(7):1476. https://doi.org/10.3390/foods12071476
Chicago/Turabian StyleCastanho, Ana, Cristiana Pereira, Manuela Lageiro, Jorge C. Oliveira, Luís M. Cunha, and Carla Brites. 2023. "Improving γ-Oryzanol and γ-Aminobutyric Acid Contents in Rice Beverage Amazake Produced with Brown, Milled and Germinated Rices" Foods 12, no. 7: 1476. https://doi.org/10.3390/foods12071476
APA StyleCastanho, A., Pereira, C., Lageiro, M., Oliveira, J. C., Cunha, L. M., & Brites, C. (2023). Improving γ-Oryzanol and γ-Aminobutyric Acid Contents in Rice Beverage Amazake Produced with Brown, Milled and Germinated Rices. Foods, 12(7), 1476. https://doi.org/10.3390/foods12071476