Effects of Message Framing and Information Source on Consumers’ Attitudes toward an Amino Acid-Based Alternative Meat Curing System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Research Variables
2.2.1. Independent Variables
2.2.2. Dependent Variables
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Honikel, K.O. The use and control of nitrate and nitrite for the processing of meat products. Meat Sci. 2008, 78, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Boada, L.D.; Henriquez-Hernandez, L.A.; Luzardo, O.P. The impact of red and processed meat consumption on cancer and other health outcomes: Epidemiological evidences. Food Chem. Toxicol. 2016, 92, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Sindelar, J.; Milkowski, A. Human safety controversies surrounding nitrate and nitrite in the diet. Nitric Oxide 2012, 26, 259–266. [Google Scholar] [CrossRef]
- Cassens, R.G. Composition and safety of cured meats in the USA. Food Chem. 1997, 59, 561–566. [Google Scholar] [CrossRef] [Green Version]
- Deda, M.S.; Bloukas, J.G.; Fista, G.A. Effect of tomato paste and nitrite levels on processing and quality characteristics of frankfurters. Meat Sci. 2007, 76, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Haugaard, P.; Hansen, F.; Jensen, M.; Grunert, K.G. Consumer attitudes toward new techniques for preserving organic meat using herbs and berries. Meat Sci. 2014, 96, 126–135. [Google Scholar] [CrossRef]
- Osburn, W. A novel amino acid based alternative curing system. In Proceedings of the Reciprocal Meat Conference, Reno, NV, USA, 15–18 August 2021. [Google Scholar]
- Bryan, N.S. Dietary nitrite: From menace to marvel. Funct. Foods Health Dis. 2016, 6, 691–701. [Google Scholar] [CrossRef] [Green Version]
- Tengan, C.H.; Rodrigues, G.S.; Godinho, R.O. Nitric oxide in skeletal muscle: Role on mitochondrial biogenesis and fusion. Int. J. Mol. Sci. 2012, 13, 17160–17184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veneman, A.M. Testimony before the Senate Committee on Agriculture, Nutrition, and Forestry; Department of Agriculture: Washington, DC, USA, 26 September 2021. [Google Scholar]
- National Academies of Sciences, Engineering, and Medicine. Communicating Science Effectively: A Research Agenda; The National Academies Press: Cambridge, MA, USA, 2017. [Google Scholar] [CrossRef]
- Funk, C.; Rainie, L. Public and Scientists’ Views on Science and Society; Pew Research Center: Washington, DC, USA, 2015; pp. 37–58. [Google Scholar]
- Petty, R.E.; Cacioppo, J.T. Communication and Persuasion: Central and Peripheral Routes to Attitude Change; Springer: Berlin/Heidelberg, Germany, 1986. [Google Scholar]
- Hill, N.; Meyers, C.; Li, N.; Doerfert, D.L.; Mendu, V. Persuasive effects of metaphors regarding gene-editing in agriculture. J. Appl. Commun. 2022, 106, 1–22. [Google Scholar] [CrossRef]
- Petty, R.E.; Wegener, D.T. The elaboration likelihood model: Current status and controversies. In Dual-Process Theories in Psychology; Guilford: New York, NY, USA, 1999. [Google Scholar]
- Goffman, E. Frame Analysis: An essay on the Organization of Experience; Harvard University Press: Cambridge, MA, USA, 1974. [Google Scholar]
- Entman, R. Framing: Toward clarification of a fractured paradigm. J. Commun. 1993, 43, 51–58. [Google Scholar] [CrossRef]
- Scheufele, D.A. Framing as a theory of media effects. J. Commun. 1999, 49, 103–122. [Google Scholar] [CrossRef]
- Bruner, J. Actual Minds, Possible Worlds; Harvard University Press: Cambridge, MA, USA, 1986. [Google Scholar] [CrossRef]
- Dahlstrom, M.F. Using narratives and storytelling to communicate science with nonexpert audiences. In Proceedings of the National Academy of Sciences of the United States of America, Irvine, CA, USA, 17–19 November 2014; pp. 13614–13620. [Google Scholar] [CrossRef] [Green Version]
- Fisher, W.R. The narrative paradigm: In the beginning. J. Commun. 1985, 35, 221–235. [Google Scholar] [CrossRef]
- Petty, R.E.; Cacioppo, J.T. Attitudes and Persuasion: Classic and Contemporary Approaches; Brown Company Publishers: Cincinnati, OH, USA, 1981. [Google Scholar]
- Ayeh, J.K. Travelers’ acceptance of consumer-generated media: An integrated model of technology acceptance and source credibility theories. Comput. Hum. Behav. 2015, 48, 173–180. [Google Scholar] [CrossRef]
- Jin, X.L.; Cheung, C.M.K.; Lee, M.K.O.; Chen, H.P. How to keep members using the information in a computer-supported social network. Comput. Hum. Behav. 2009, 25, 1172–1181. [Google Scholar] [CrossRef]
- Kerstetter, D.; Cho, M.H. Prior knowledge, credibility, and information search. Ann. Tour. Res. 2004, 31, 961–985. [Google Scholar] [CrossRef]
- Lafferty, B.A.; Goldsmith, R.E. Corporate credibility’s role in consumers’ attitudes and purchase intentions when a high versus a low credibility endorser is used in the ad. J. Bus. Res. 1999, 44, 109–116. [Google Scholar] [CrossRef]
- Lamm, A.J.; Owens, C.T.; Telg, R.W.; Lamm, K.W. Influence of source credibility on agricultural water use communication. J. Appl. Commun. 2016, 100, 121–133. [Google Scholar] [CrossRef] [Green Version]
- Ohanian, R. Construction and validation of a scale to measure celebrity endorsers’ perceived expertise, trustworthiness, and attractiveness. J. Advert. 1990, 19, 39–52. [Google Scholar] [CrossRef]
- Ross, J.A. Influence of expert and peer upon negro mothers of low socioeconomic status. J. Soc. Psychol. 1973, 1, 79–84. [Google Scholar] [CrossRef]
- Woodside, A.G.; Davenport, J.W. Effects of price and salesman expertise on customer purchasing behavior. J. Bus. 1976, 49, 51–59. [Google Scholar] [CrossRef]
- Telg, R.; Irani, T.; Monaghan, P.; Chiarelli, C.; Scicchitano, M.; Johns, T. Preferred information channels and source trustworthiness: Assessing communication methods used in Florida’s battle against citrus greening. J. Appl. Commun. 2012, 96, 42–53. [Google Scholar] [CrossRef] [Green Version]
- McGinnies, E.; Ward, C.D. Better liked than right: Trustworthiness and expertise as factors credibility. Personal. Soc. Psychol. Bull. 1980, 6, 467–472. [Google Scholar] [CrossRef]
- Yang, Y.; Hobbs, J.E. The power of stories: Narratives and information framing effects in science communication. Am. J. Agric. Econ. 2020, 102, 1271–1296. [Google Scholar] [CrossRef]
- Taylor, P.; Keeter, S. Millennials: A Portrait of Generation Next; Pew Research Center: Washington, DC, USA, 2010. [Google Scholar]
- Schroeder, J. USFRA Nears Its 5th Anniversary! AgriMarketing 2015, 56, 40–42. [Google Scholar]
- Guo, P.J.; Kim, J.; Rubin, R. How video production affects student engagement: An empirical study of MOOC videos. In Proceedings of the Association for Computing Machinery Conference on Learning, Atlanta, GA, USA, 4–5 March 2014. [Google Scholar] [CrossRef]
- Chaney, D.; Touzani, M.; Ben Slimane, K. Marketing to the (new) generations: Summary and perspectives. J. Strateg. Mark. 2017, 25, 179–189. [Google Scholar] [CrossRef] [Green Version]
- Neuman, N.; Eli, K.; Nowicka, P. Feeding the extended family: Gender, generation, and socioeconomic disadvantages in food provision to children. Food Cult. Soc. 2019, 22, 52–62. [Google Scholar] [CrossRef] [Green Version]
- Ostrom, T. The relationship between the affective, behavioral, and cognitive components of attitude. J. Exp. Soc. Psychol. 1969, 5, 12–30. [Google Scholar] [CrossRef]
- Guar, S.S.; Tiwari, S.P.; Bathula, H. Ohanian’s celebrity endorsers’ credibility scale: Evaluation and validation in the context of an emerging economy. Int. J. Indian Cult. Bus. Manag. 2012, 5, 152–161. [Google Scholar] [CrossRef]
- Corina, S. Marketing communication in online social programs: Ohanian model of source credibility. J. Empir. Gen. Mark. 2006, 1, 778–784. [Google Scholar]
- Ho, H.Y.; Chien, P.H.C. Influence of message trust in online word-of-mouth- By the example of food blog. In Proceedings of the 2010 International Conference on Electronic and Information Engineering, Kyoto, Japan, 1–3 August 2010; Volume 1, pp. V1–V395. [Google Scholar]
- LaGrande, L.M.; Meyers, C.; Cummins, R.G.; Baker, M. A moment-to-moment analysis of trust in agricultural messages. J. Appl. Commun. 2021, 105, 1–20. [Google Scholar] [CrossRef]
- Besley, J.C.; Lee, N.M.; Pressgrove, G. Reassessing the variables used to measure public perceptions of scientists. Sci. Commun. 2021, 43, 3–32. [Google Scholar] [CrossRef]
- Hovland, C.I.; Janis, I.L.; Kelley, H.H. Communication and Persuasion; Yale University Press: New Haven, CT, USA, 1953. [Google Scholar]
- George, D.; Mallery, P. SPSS for Windows Step by Step: A Simple Guide and Reference, 4th ed.; Allyn & Bacon: Boston, MA, USA, 2003. [Google Scholar]
- Fraenkel, J.R.; Wallen, N.E. How to Design and Evaluate Research in Education, 7th ed.; McGraw-Hill: New York, NY, USA, 2008. [Google Scholar]
- Mertler, C.A.; Reinhart, R.V. Advanced and Multivariate Statistical Methods: Practical Application and Interpretation, 6th ed.; Routledge: Abingdon, UK, 2017. [Google Scholar]
- Huberty, C.J. Applied Discriminant Analysis; Wiley & Sons: New York, NY, USA, 1994. [Google Scholar]
- Field, A. Discovering Statistics Using IBM SPSS Statistics, 5th ed.; Sage: Newcastle, UK, 2018. [Google Scholar]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 7th ed.; Pearson: London, UK, 2019. [Google Scholar]
- Yu, A.H.; Chick, G. A Comparison of Two Follow-Up Analyses after Multiple Analysis of Variance, Analysis of Variance, and Descriptive Discriminant Analysis: A Case Study of the Program Effects on Education-Abroad Programs. In Proceedings of the 2009 Northeaster Recreation Research; Department of Agriculture, Forest Service, Northeastern Recreation Research Symposium, Garner, NC, USA, 29–31 March 2009. [Google Scholar]
- Cohen, J. Statistical Power Analysis for Behavioral Sciences, 2nd ed.; Lawrence Erlbaum: Mahwah, NJ, USA, 1998. [Google Scholar]
- Hair, J.F.; Anderson, R.E.; Tatham, R.L.; Black, W.C. Multivariate Data Analysis, 3rd ed.; Macmillan: New York, NY, USA, 1995. [Google Scholar]
- Pjesivac, I.; Hayslett, M.A.; Binford, M.T. To eat or not to eat: Framing of GMOs in American media and its effects on attitudes and behaviors. Sci. Commun. 2020, 42, 747–775. [Google Scholar] [CrossRef]
- Bryant, C.; Dillard, C. The impact of framing on acceptance of cultured meat. Front. Nutr. 2019, 6, 103. [Google Scholar] [CrossRef] [Green Version]
- Erdem, T.; Swait, J. Brand credibility, brand consideration, and choice. J. Consum. Res. 2004, 31, 191–198. [Google Scholar] [CrossRef]
- Vainio, A. How consumers of meat-based and plant-based diets attend to scientific and commercial information sources: Eating motives, the need for cognition and ability to evaluate information. Appetite 2019, 138, 72–79. [Google Scholar] [CrossRef] [PubMed]
Variable | Item | Standardized Factor Loadings | Cronbach’s Alpha |
---|---|---|---|
Trust | Trustworthiness | 0.89 | 0.90 |
Sincerity | 0.88 | ||
Reliability | 0.80 | ||
Dependability | 0.78 | ||
Honesty | 0.70 | ||
Source Expertise | Experience | 0.90 | 0.94 |
Knowledge | 0.90 | ||
Expertise | 0.85 | ||
Qualified | 0.84 | ||
Skill | 0.83 | ||
Competence | 0.77 | ||
Source Credibility | Goodwill | 0.94 | 0.87 |
Openness | 0.84 | ||
Integrity | 0.70 |
Test | Information Recall a | Trust b | Source Expertise b | Source Credibility b | Anticipated Consumption Behavior c | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
n | M | SD | M | SD | M | SD | M | SD | M | SD | |
Consumer | |||||||||||
Analytical | 32 | 2.13 | 1.38 | 5.63 | 0.91 | 5.36 | 1.19 | 5.95 | 0.97 | 4.28 | 0.70 |
Narrative | 35 | 2.28 | 1.22 | 5.74 | 1.23 | 5.24 | 1.43 | 5.94 | 0.98 | 4.53 | 0.87 |
Producer | |||||||||||
Analytical | 32 | 2.44 | 1.16 | 5.92 | 0.91 | 5.91 | 1.07 | 5.81 | 1.02 | 4.31 | 1.01 |
Narrative | 34 | 2.38 | 1.29 | 5.82 | 1.02 | 5.65 | 1.00 | 6.10 | 0.87 | 4.60 | 0.89 |
Reporter | |||||||||||
Analytical | 34 | 2.48 | 1.19 | 5.66 | 0.98 | 5.41 | 1.11 | 5.59 | 1.01 | 4.49 | 0.74 |
Narrative | 34 | 2.17 | 1.15 | 5.88 | 0.91 | 5.50 | 1.11 | 5.63 | 1.13 | 4.28 | 0.78 |
Meat Scientist | |||||||||||
Analytical | 33 | 2.35 | 1.00 | 5.81 | 1.03 | 6.04 | 1.00 | 5.92 | 1.05 | 4.47 | 1.03 |
Narrative | 32 | 2.52 | 1.16 | 5.96 | 1.01 | 6.13 | 0.93 | 6.15 | 0.88 | 4.34 | 1.06 |
Dependent Variable | Analytical (n = 131) | Narrative (n = 135) | ||
---|---|---|---|---|
M | SD | M | SD | |
Information Recall a | 2.35 | 1.18 | 2.33 | 1.20 |
Trust b | 5.75 | 0.96 | 5.85 | 1.05 |
Source Expertise b | 5.68 | 1.12 | 5.62 | 1.17 |
Source Credibility b | 5.82 | 1.01 | 5.95 | 0.98 |
Anticipated Consumption Behavior c | 4.39 | 0.88 | 4.44 | 0.91 |
Dependent Variable | Consumer (n = 67) | Producer (n = 66) | Reporter (n = 68) | Meat Scientist (n = 65) | ||||
---|---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | M | SD | |
Information Recall a | 2.21 | 1.29 | 2.41 | 1.22 | 2.33 | 1.17 | 2.43 | 1.08 |
Trust b | 5.69 | 1.08 | 5.87 | 0.97 | 5.77 | 0.95 | 5.89 | 1.03 |
Source Expertise b | 5.30 | 1.13 | 5.78 | 1.04 | 5.45 | 1.10 | 6.08 | 0.96 |
Source Credibility b | 5.95 | 0.97 | 5.96 | 0.95 | 5.61 | 1.06 | 6.03 | 0.97 |
Anticipated Consumption Behavior c | 4.41 | 0.80 | 4.46 | 0.96 | 4.38 | 0.77 | 4.41 | 1.04 |
Variables | Structure Matrix | Standardized Canonical Coefficient | |||||
---|---|---|---|---|---|---|---|
Information Recall | 0.21 | 0.31 | |||||
Trust | 0.22 | −0.51 | |||||
Source Expertise | 0.79 | −1.42 | |||||
Source Credibility | 0.21 | 0.33 | |||||
Anticipated Consumption Behavior | 0.01 | 0.31 | |||||
Function | λ | Χ2 | df | p | Eigenvalue | Canonical Correlation | |
1 through 3 | 0.86 | 39.45 | 15 | <0.0001 | 0.12 | 0.32 | |
2 through 3 | 0.96 | 10.61 | 8 | 0.23 | 0.04 | 0.20 | |
3 | 1.00 | 0.37 | 3 | 0.95 | 0.00 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chambers, A.V.; Baker, M.T.; Leggette, H.R.; Osburn, W.N.; Lu, P. Effects of Message Framing and Information Source on Consumers’ Attitudes toward an Amino Acid-Based Alternative Meat Curing System. Foods 2023, 12, 1535. https://doi.org/10.3390/foods12071535
Chambers AV, Baker MT, Leggette HR, Osburn WN, Lu P. Effects of Message Framing and Information Source on Consumers’ Attitudes toward an Amino Acid-Based Alternative Meat Curing System. Foods. 2023; 12(7):1535. https://doi.org/10.3390/foods12071535
Chicago/Turabian StyleChambers, Amber Vonona, Mathew T. Baker, Holli R. Leggette, Wesley N. Osburn, and Peng Lu. 2023. "Effects of Message Framing and Information Source on Consumers’ Attitudes toward an Amino Acid-Based Alternative Meat Curing System" Foods 12, no. 7: 1535. https://doi.org/10.3390/foods12071535
APA StyleChambers, A. V., Baker, M. T., Leggette, H. R., Osburn, W. N., & Lu, P. (2023). Effects of Message Framing and Information Source on Consumers’ Attitudes toward an Amino Acid-Based Alternative Meat Curing System. Foods, 12(7), 1535. https://doi.org/10.3390/foods12071535