The Conformational Changes of Bovine Serum Albumin at the Air/Water Interface: HDX-MS and Interfacial Rheology Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Solution Preparation
2.3. Foaming Properties
2.4. Interfacial Rheology Analysis
2.5. Hydrogen–Deuterium Exchange in the Solution
2.6. System Design and Circulation Experiments
2.7. Hydrogen–Deuterium Exchange at the Air/Water Interface
2.8. Digestion, Desalting, and Storage of Samples
2.9. HPLC-Tandem MS (MS/MS) Analysis, and Data Processing
2.10. Statistical Analysis
3. Results and Discussion
3.1. Optimization of Protein Concentration Used for HDX-MS at the Air/Water Interface and Interfacial Rheology Analysis Based on Foaming Properties
3.2. Determination of the Volume of D2O Utilized for HDX-MS at the Air/Water Interface by Circulation Experiments
3.3. Structural Changes of Adsorbed BSA at the Air/Water Interface Analyzed by HDX-MS and Interfacial Rheology
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Noskov, B.A.; Mikhailovskaya, A.A.; Lin, S.Y.; Loglio, G.; Miller, R. Bovine serum albumin unfolding at the air/water interface as studied by dilational surface rheology. Langmuir 2010, 26, 17225–17231. [Google Scholar] [CrossRef]
- Dombrowski, J.; Dechau, J.; Kulozik, U. Multiscale approach to characterize bulk, surface and foaming behavior of casein micelles as a function of alkalinisation. Food Hydrocoll. 2016, 57, 92–102. [Google Scholar] [CrossRef]
- Báez, G.D.; Moro, A.; Ballerini, G.A.; Busti, P.A.; Delorenzi, N.J. Comparison between structural changes of heat-treated and transglutaminase cross-linked beta-lactoglobulin and their effects on foaming properties. Food Hydrocoll. 2011, 25, 1758–1765. [Google Scholar] [CrossRef]
- Lopez, D.N.; Boeris, V.; Spelzini, D.; Bonifacino, C.; Panizzolo, L.A.; Abirached, C. Adsorption of chia proteins at interfaces: Kinetics of foam and emulsion formation and destabilization. Colloids Surf. B Biointerfaces 2019, 180, 503–507. [Google Scholar] [CrossRef]
- Berthold, A.; Schubert, H.; Brandes, N.; Kroh, L.; Miller, R. Behaviour of BSA and of BSA-derivatives at the air/water interface. Colloids Surf. A Physicochem. Eng. Asp. 2007, 301, 16–22. [Google Scholar] [CrossRef]
- Wierenga, P.A.; Gruppen, H. New views on foams from protein solutions. Curr. Opin. Colloid Interface Sci. 2010, 15, 365–373. [Google Scholar] [CrossRef]
- Shen, Q.; Xiong, T.; Zheng, W.; Luo, Y.; Peng, W.; Dai, J.; Song, R.; Li, Y.; Liu, S.; Li, B.; et al. The effects of thermal treatment on emulsifying properties of soy protein isolates: Interfacial rheology and quantitative proteomic analysis. Food Res. Int. 2022, 157, 111326. [Google Scholar] [CrossRef]
- Xiong, T.; Ye, X.; Su, Y.; Chen, X.; Sun, H.; Li, B.; Chen, Y. Identification and quantification of proteins at adsorption layer of emulsion stabilized by pea protein isolates. Colloids Surf. B Biointerfaces 2018, 171, 1–9. [Google Scholar] [CrossRef]
- Freer, E.M.; Yim, K.S.; Fuller, G.G.; Radke, C.J. Shear and dilatational relaxation mechanisms of globular and flexible proteins at the hexadecane/water interface. Langmuir 2004, 20, 10159–10167. [Google Scholar] [CrossRef]
- Kinsella, J.E. Functional properties of proteins: Possible relationaships between structure and function in foams. Food Chem. 1981, 7, 273–288. [Google Scholar] [CrossRef]
- Joshi, M.; Adhikari, B.; Aldred, P.; Panozzo, J.F.; Kasapis, S.; Barrow, C.J. Interfacial and emulsifying properties of lentil protein isolate. Food Chem. 2012, 134, 1343–1353. [Google Scholar] [CrossRef] [PubMed]
- Lucassen-Reynders, E.H.; Benjamins, J.; Fainerman, V.B. Dilational rheology of protein films adsorbed at fluid interfaces. Curr. Opin. Colloid Interface Sci. 2010, 15, 264–270. [Google Scholar] [CrossRef]
- Sagis, L.M.C.; Fischer, P. Nonlinear rheology of complex fluid-fluid interfaces. Curr. Opin. Colloid Interface Sci. 2014, 19, 520–529. [Google Scholar] [CrossRef]
- Foegeding, E.A.; Luck, P.J.; Davis, J.P. Factors determining the physical properties of protein foams. Food Hydrocoll. 2006, 20, 284–292. [Google Scholar] [CrossRef]
- Murray, B.S. Stabilization of bubbles and foams. Curr. Opin. Colloid Interface Sci. 2007, 12, 232–241. [Google Scholar] [CrossRef]
- Damodaran, S. In situ measurement of conformational changes in proteins at liquid interfaces by circular dichroism spectroscopy. Anal. Bioanal. Chem. 2003, 376, 182–188. [Google Scholar] [CrossRef]
- Martin, A.H.; Meinders, M.B.J.; Bos, M.A.; Stuart, M.A.C.; van Vliet, T. Conformational aspects of proteins at the air/water interface studied by infrared reflection-absorption spectroscopy. Langmuir 2003, 19, 2922–2928. [Google Scholar] [CrossRef]
- Sethuraman, A.; Vedantham, G.; Imoto, T.; Przybycien, T.; Belfort, G. Protein unfolding at interfaces: Slow dynamics of alpha-helix to beta-sheet transition. Proteins 2004, 56, 669–678. [Google Scholar] [CrossRef]
- Lad, M.D.; Birembaut, F.; Matthew, J.M.; Frazier, R.A.; Green, R.J. The adsorbed conformation of globular proteins at the air/water interface. Phys. Chem. Chem. Phys. 2006, 8, 2179–2186. [Google Scholar] [CrossRef]
- Masson, G.R.; Burke, J.E.; Ahn, N.G.; Anand, G.S.; Borchers, C.; Brier, S.; Bou-Assaf, G.M.; Engen, J.R.; Englander, S.W.; Faber, J.; et al. Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments. Nat. Methods 2019, 16, 595–602. [Google Scholar] [CrossRef]
- Trabjerg, E.; Nazari, Z.E.; Rand, K.D. Conformational analysis of complex protein states by hydrogen/deuterium exchange mass spectrometry (HDX-MS): Challenges and emerging solutions. TrAC Trends Anal. Chem. 2018, 106, 125–138. [Google Scholar] [CrossRef]
- Konermann, L.; Pan, J.; Liu, Y.H. Hydrogen exchange mass spectrometry for studying protein structure and dynamics. Chem. Soc. Rev. 2011, 40, 1224–1234. [Google Scholar] [CrossRef]
- Harrison, R.A.; Engen, J.R. Conformational insight into multi-protein signaling assemblies by hydrogen-deuterium exchange mass spectrometry. Curr. Opin. Struct. Biol. 2016, 41, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Marcsisin, S.R.; Engen, J.R. Hydrogen exchange mass spectrometry: What is it and what can it tell us? Anal. Bioanal. Chem. 2010, 397, 967–972. [Google Scholar] [CrossRef] [PubMed]
- Engen, J.R. Analysis of Protein Conformation and Dynamics by Hydrogen/Deuterium Exchange MS. Anal. Chem. 2009, 81, 7870–7875. [Google Scholar] [CrossRef]
- Sayago, C.; Gonzalez Valcarcel, I.C.; Qian, Y.; Lee, J.; Alsina-Fernandez, J.; Fite, N.C.; Carrillo, J.J.; Zhang, F.F.; Chalmers, M.J.; Dodge, J.A.; et al. Deciphering Binding Interactions of IL-23R with HDX-MS: Mapping Protein and Macrocyclic Dodecapeptide Ligands. ACS Med. Chem. Lett. 2018, 9, 912–916. [Google Scholar] [CrossRef]
- Landgraf, R.R.; Goswami, D.; Rajamohan, F.; Harris, M.S.; Calabrese, M.F.; Hoth, L.R.; Magyar, R.; Pascal, B.D.; Chalmers, M.J.; Busby, S.A.; et al. Activation of AMP-Activated Protein Kinase Revealed by Hydrogen/Deuterium Exchange Mass Spectrometry. Structure 2013, 21, 1942–1953. [Google Scholar] [CrossRef]
- Pirrone, G.F.; Emert-Sedlak, L.A.; Wales, T.E.; Smithgall, T.E.; Kent, M.S.; Engen, J.R. Membrane-Associated Conformation of HIV-1 Nef Investigated with Hydrogen Exchange Mass Spectrometry at a Langmuir Monolayer. Anal. Chem. 2015, 87, 7030–7035. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Tu, Z.; Wang, H.; Huang, X.; Sha, X.; Xiao, H. Structural changes of ultrasonicated bovine serum albumin revealed by hydrogen-deuterium exchange and mass spectrometry. Anal. Bioanal. Chem. 2014, 406, 7243–7251. [Google Scholar] [CrossRef] [PubMed]
- Zhan, F.; Li, J.; Shi, M.; Wu, D.; Li, B. Foaming Properties and Linear and Nonlinear Surface Dilatational Rheology of Sodium Caseinate, Tannin Acid, and Octenyl Succinate Starch Ternary Complex. J. Agric. Food Chem. 2019, 67, 2340–2349. [Google Scholar] [CrossRef]
- Luo, Y.; Zheng, W.; Shen, Q.; Zhang, L.; Tang, C.; Song, R.; Liu, S.; Li, B.; Chen, Y. Adsorption kinetics and dilatational rheological properties of recombinant Pea Albumin-2 at the oil-water interface. Food Hydrocoll. 2021, 120, 106866. [Google Scholar] [CrossRef]
- Liu, T.; Limpikirati, P.; Vachet, R.W. Synergistic Structural Information from Covalent Labeling and Hydrogen-Deuterium Exchange Mass Spectrometry for Protein-Ligand Interactions. Anal. Chem. 2019, 91, 15248–15254. [Google Scholar] [CrossRef] [PubMed]
- Pirrone, G.F.; Vernon, B.C.; Kent, M.S.; Engen, J.R. Hydrogen Exchange Mass Spectrometry of Proteins at Langmuir Monolayers. Anal. Chem. 2015, 87, 7022–7029. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Gonzalez, J.; Ruiz-Garcia, J.; Galvez-Ruiz, M.J. Langmuir-Blodgett films of biopolymers: A method to obtain protein multilayers. J. Colloid Interface Sci. 2003, 267, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Huang, L.; Yang, B.; He, C.; Xu, B. Contrastive Study of the Foaming Properties of N-Acyl Amino Acid Surfactants with Bovine Serum Albumin and Gelatin. J. Oleo Sci. 2021, 70, 807–816. [Google Scholar] [CrossRef] [PubMed]
- Glaser, L.A.; Paulson, A.T.; Speers, R.A.; Yada, R.Y.; Rousseau, D. Foaming behavior of mixed bovine serum albumin–protamine systems. Food Hydrocoll. 2007, 21, 495–506. [Google Scholar] [CrossRef]
- Wei, X.F.; Liu, H.Z. Relationship between foaming properties and solution properties of protein/nonionic surfactant mixtures. J. Surfactants Deterg. 2000, 3, 491–495. [Google Scholar] [CrossRef]
- Zawala, J.; Todorov, R.; Olszewska, A.; Exerowa, D.; Malysa, K. Influence of pH of the BSA solutions on velocity of the rising bubbles and stability of the thin liquid films and foams. Adsorption 2010, 16, 423–435. [Google Scholar] [CrossRef]
- Wales, T.E.; Engen, J.R. Hydrogen exchange mass spectrometry for the analysis of protein dynamics. Mass Spectrom. Rev. 2006, 25, 158–170. [Google Scholar] [CrossRef]
- Pereira, L.G.C.; Theodoly, O.; Blanch, H.W.; Radke, C.J. Dilatational rheology of BSA conformers at the air/water interface. Langmuir 2003, 19, 2349–2356. [Google Scholar] [CrossRef]
- Huang, X.; Tu, Z.; Wang, H.; Zhang, Q.; Chen, Y.; Shi, Y.; Xiao, H. Probing the conformational changes of ovalbumin after glycation using HDX-MS. Food Chem. 2015, 166, 62–67. [Google Scholar] [CrossRef]
- Percy, A.J.; Rey, M.; Burns, K.M.; Schriemer, D.C. Probing protein interactions with hydrogen/deuterium exchange and mass spectrometry—A review. Anal. Chim. Acta 2012, 721, 7–21. [Google Scholar] [CrossRef] [PubMed]
- Yano, Y.F.; Arakawa, E.; Voegeli, W.; Kamezawa, C.; Matsushita, T. Initial Conformation of Adsorbed Proteins at an Air-Water Interface. J. Phys. Chem. B 2018, 122, 4662–4666. [Google Scholar] [CrossRef]
- Campana, M.; Hosking, S.L.; Petkov, J.T.; Tucker, I.M.; Webster, J.R.; Zarbakhsh, A.; Lu, J.R. Adsorption of Bovine Serum Albumin (BSA) at the Oil/Water Interface: A Neutron Reflection Study. Langmuir 2015, 31, 5614–5622. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhu, D.; Shi, H.; Zhang, X. Effect of charge on protein preferred orientation at the air-water interface in cryo-electron microscopy. J. Struct. Biol. 2021, 213, 107783. [Google Scholar] [CrossRef]
- Yano, Y.F. Kinetics of protein unfolding at interfaces. J. Phys. Condens. Matter 2012, 24, 503101. [Google Scholar] [CrossRef] [PubMed]
- Narsimhan, G.; Xiang, N. Role of Proteins on Formation, Drainage, and Stability of Liquid Food Foams. Annu. Rev. Food Sci. Technol. 2018, 9, 45–63. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, F.; Shen, Q.; Zheng, W.; Zuo, J.; Zhu, X.; Li, J.; Peng, C.; Li, B.; Chen, Y. The Conformational Changes of Bovine Serum Albumin at the Air/Water Interface: HDX-MS and Interfacial Rheology Analysis. Foods 2023, 12, 1601. https://doi.org/10.3390/foods12081601
Han F, Shen Q, Zheng W, Zuo J, Zhu X, Li J, Peng C, Li B, Chen Y. The Conformational Changes of Bovine Serum Albumin at the Air/Water Interface: HDX-MS and Interfacial Rheology Analysis. Foods. 2023; 12(8):1601. https://doi.org/10.3390/foods12081601
Chicago/Turabian StyleHan, Fei, Qian Shen, Wei Zheng, Jingnan Zuo, Xinyu Zhu, Jingwen Li, Chao Peng, Bin Li, and Yijie Chen. 2023. "The Conformational Changes of Bovine Serum Albumin at the Air/Water Interface: HDX-MS and Interfacial Rheology Analysis" Foods 12, no. 8: 1601. https://doi.org/10.3390/foods12081601
APA StyleHan, F., Shen, Q., Zheng, W., Zuo, J., Zhu, X., Li, J., Peng, C., Li, B., & Chen, Y. (2023). The Conformational Changes of Bovine Serum Albumin at the Air/Water Interface: HDX-MS and Interfacial Rheology Analysis. Foods, 12(8), 1601. https://doi.org/10.3390/foods12081601