One-Pot Self-Assembly of Core-Shell Nanoparticles within Fibers by Coaxial Electrospinning for Intestine-Targeted Delivery of Curcumin
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Electrospinning Procedure
2.3. Characterizations of NPs and Fibermats Formation
2.3.1. SEM and TEM Observation
2.3.2. Particle Size and Zeta-Potential Measurements
2.3.3. Encapsulation and Loading Efficiency
2.4. FTIR Measurement
2.5. XRD Measurement
2.6. DSC Measurement
2.7. TGA Measurement
2.8. Photostability and Thermostability Measurements
2.9. In Vitro Cur Release in NPs and Fibermats
2.10. Statistical Analysis
3. Results and Discussion
3.1. Formation of the Core-Shell Nanoparticles within Fibers
3.2. FTIR Analysis
3.3. XRD Analysis
3.4. DSC Analysis
3.5. Thermal Performance Analysis
3.6. Photostability and Thermostability Analysis
3.7. In Vitro Controlled Release of Cur in Different Carriers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Magro, M.; Campos, R.; Baratella, D.; Ferreira, M.I.; Bonaiuto, E.; Corraducci, V.; Uliana, M.R.; Lima, G.P.P.; Santagata, S.; Sambo, P.; et al. Magnetic purification of curcumin from Curcuma longa rhizome by novel naked maghemite nanoparticles. J. Agric. Food Chem. 2015, 63, 912–920. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, H.; Ninomiya, K.; Morikawa, T.; Yoshikawa, M.J.B. Inhibitory effect and action mechanism of sesquiterpenes from Zedoariae Rhizoma on D-galactosamine/lipopolysaccharide-induced liver injury. Bioorg. Med. Chem. Lett. 1998, 8, 339–344. [Google Scholar] [CrossRef]
- Qi, H.Y.; Ning, L.; Yu, Z.Y.; Dou, G.J.; Li, L. Proteomic Identification of eEF1A1 as a Molecular Target of Curcumol for Suppressing Metastasis of MDA-MB-231 Cells. J. Agric. Food Chem. 2017, 65, 3074–3082. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, L.T.; Pinzon, M.I.; Villa, C.C. Development of active edible films made from banana starch and curcumin-loaded nanoemulsions. Food Chem. 2022, 371, 131121. [Google Scholar] [CrossRef]
- Ye, Q.Y.; Ge, F.Z.; Wang, Y.; Woo, M.W.; Wu, P.; Chen, X.D.; Selomulya, C. On improving bioaccessibility and targeted release of curcumin-whey protein complex microparticles in food. Food Chem. 2021, 346, 128900. [Google Scholar] [CrossRef] [PubMed]
- Mohan, M.; Hussain, M.A.; Khan, F.A.; Anindya, R. Symmetrical and unsymmetrical curcumin analogues as selective COX-1 and COX-2 inhibitor. Eur. J. Pharm. Sci. 2021, 160, 105743. [Google Scholar] [CrossRef]
- Yang, J.; Miao, X.; Yang, F.J.; Cao, J.F.; Liu, X.; Fu, J.L.; Su, G.F. Therapeutic potential of curcumin in diabetic retinopathy (Review). Int. J. Mol. Med. 2021, 47, 75. [Google Scholar] [CrossRef]
- Li, Y.; Huang, J.L.; Wang, J.; Xia, S.M.; Ran, H.; Gao, L.Y.; Feng, C.J.; Gui, L.; Zhou, Z.H.; Yuan, J.C. Human umbilical cord-derived mesenchymal stem cell transplantation supplemented with curcumin improves the outcomes of ischemic stroke via AKT/GSK-3β/β-TrCP/Nrf2 axis. J. Neuroinflamm. 2023, 20, 49. [Google Scholar] [CrossRef]
- Tang, X.Y.; Wang, Z.M.; Meng, H.C.; Lin, J.W.; Guo, X.M.; Zhang, T.; Chen, H.L.; Lei, C.Y.; Yu, S.J. Robust W/O/W Emulsion Stabilized by Genipin-Cross-Linked Sugar Beet Pectin-Bovine Serum Albumin Nanoparticles: Co-encapsulation of Betanin and Curcumin. J. Agric. Food Chem. 2021, 69, 1318–1328. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Xiong, Y.; Wu, Y.H.; Yang, F.; Guo, Y.; Chen, Z.L.; Gao, L.Q.; Deng, W.B. Ultrashort Peptides and Hyaluronic Acid-Based Injectable Composite Hydrogels for Sustained Drug Release and Chronic Diabetic Wound Healing. ACS Appl. Mater. Interfaces 2021, 13, 58329–58339. [Google Scholar] [CrossRef]
- Sun, Q.Y.; Sheng, J.; Yang, R.D. Encapsulation of curcumin in CD-MOFs: Promoting its incorporation into water-based products and consumption. Food Funct. 2021, 12, 10795–10805. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.J.; Pan, N.; Han, Y.; Li, D.J.; Chai, J.L. Solubilization, stability and antioxidant activity of curcumin in a novel surfactant-free microemulsion system. LWT-Food Sci. Technol. 2021, 147, 111583. [Google Scholar] [CrossRef]
- Sabet, S.; Rashidinejad, A.; Melton, L.D.; McGillivray, D.J. Recent advances to improve curcumin oral bioavailability. Trends Food Sci. Technol. 2021, 110, 253–266. [Google Scholar] [CrossRef]
- Don, T.M.; Chang, W.J.; Jheng, P.R.; Huang, Y.C.; Chuang, E.Y. Curcuminladen dual-targeting fucoidan/chitosan nanocarriers for inhibiting brain inflammation via intranasal delivery. Int. J. Biol. Macromol. 2021, 181, 835–846. [Google Scholar] [CrossRef]
- Mabrouk, M.T.; Zhang, H.J.; Zidan, A.A.; Kilian, H.I.; Huang, W.C.; Jahagirdar, D.; Ortega, J.; Xia, J.; Lovell, J.F. Cross-linked Histone as a Nanocarrier for Gut Delivery of Hydrophobic Cargos. ACS Appl. Mater Interfaces 2021, 13, 26712–26720. [Google Scholar] [CrossRef]
- Liu, Y.H.; Miao, L.F.; Guo, Y.Y.; Yuan, R.B.; Li, X.J.; Wang, X.X.; Lin, X.N.; Tian, H.Q. Oral Codelivery of WR-1065 Using Curcumin-Linked ROS-Sensitive Nanoparticles for Synergistic Radioprotection. ACS Biomater. Sci. Eng. 2021, 7, 2496–2507. [Google Scholar] [CrossRef]
- Glusac, J.; Fishman, A. Enzymatic and chemical modification of zein for food application. Trends Food Sci. Technol. 2021, 112, 507–517. [Google Scholar] [CrossRef]
- Meng, R.; Wu, Z.Z.; Xie, Q.T.; Cheng, J.S.; Zhang, B. Preparation and characterization of zein/carboxymethyl dextrin nanoparticles to encapsulate curcumin: Physicochemical stability, antioxidant activity and controlled release properties. Food Chem. 2021, 340, 127893. [Google Scholar] [CrossRef]
- Wang, X.; Gu, H.; Zhang, H.; Xian, J.; Li, J.J.; Fu, C.M.; Zhang, C.; Zhang, J.M. Oral Core-Shell Nanoparticles Embedded in Hydrogel Microspheres for the Efficient Site-Specific Delivery of Magnolol and Enhanced Antiulcerative Colitis Therapy. ACS Appl. Mater Interfaces 2021, 13, 33948–33961. [Google Scholar] [CrossRef]
- Feng, S.M.; Sui, M.H.; Wang, D.; Ritzoulis, C.; Farag, M.A.; Shao, P. Pectin-zein based stigmasterol nanodispersions ameliorate dextran sulfate sodium-induced colitis in mice. Food Funct. 2021, 12, 11656–11670. [Google Scholar] [CrossRef]
- Liu, M.Y.; Wang, F.L.; Pu, C.F.; Tang, W.T.; Sun, Q.J. Nanoencapsulation of lutein within lipid-based delivery systems: Characterization and comparison of zein peptide stabilized nano-emulsion, solid lipid nanoparticle, and nano-structured lipid carrier. Food Chem. 2021, 358, 129840. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Peterson, S.C. Optimal conditions for the encapsulation of menthol into zein nanoparticles. LWT-Food Sci. Technol. 2021, 144, 111213. [Google Scholar] [CrossRef]
- Li, S.N.; Huang, L.; Zhang, B.; Chen, C.; Fu, X.; Huang, Q. Fabrication and characterization of starch/zein nanocomposites with pH-responsive emulsion behavior. Food Hydrocoll. 2021, 112, 106341. [Google Scholar] [CrossRef]
- Bukhovets, A.V.; Sitenkov, A.Y.; Moustafine, R.I. Comparative evaluation study of polycomplex carriers based on Eudragit® copolymers prepared in different media. Polym. Adv. Technol. 2021, 32, 2761–2769. [Google Scholar] [CrossRef]
- Karp, F.; Turino, L.N.; Helbling, I.M.; Islan, G.A.; Luna, J.A.; Estenoz, D.A. In situ Formed Implants, Based on PLGA and Eudragit Blends, for Novel Florfenicol Controlled Release Formulations. J. Pharm. Sci. 2021, 110, 1270–1278. [Google Scholar] [CrossRef]
- Li, H.G.; Huo, J.J.; Zhang, H.J.; Liu, Y.J.; Shi, X.W.; Zhao, Z.; Zhou, J.; Wang, X.; Zhang, C. Eudragit S100-coated halloysite nanotube/chitosan microspheres for colontargeted release of paeoniflorin. J. Drug Deliv. Sci. Technol. 2021, 61, 102258. [Google Scholar] [CrossRef]
- Turanlı, Y.; Acartürk, F. Fabrication and characterization of budesonide loaded colon-specific nanofiber drug delivery systems using anionic and cationic polymethacrylate polymers. J. Drug Deliv. Sci. Technol. 2021, 63, 102511. [Google Scholar] [CrossRef]
- Jirofti, N.; Golandi, M.; Movaffagh, J.; Ahmadi, F.S.; Kalalinia, F. Improvement of the Wound-Healing Process by Curcumin-Loaded Chitosan/Collagen Blend Electrospun Nanofibers: In Vitro and In Vivo Studies. ACS Biomater. Sci. Eng. 2021, 7, 3886–3897. [Google Scholar] [CrossRef]
- Wu, J.; Xu, S.S.; Han, C.C.; Yuan, G.C. Controlled drug release: On the evolution of physically entrapped drug inside the electrospun poly(lactic-co-glycolic acid) matrix. J. Control Release 2021, 331, 472–479. [Google Scholar] [CrossRef]
- Fahimirad, S.; Abtahi, H.; Satei, P.; Ghaznavi-Rad, E.; Moslehi, M.; Ganji, A. Wound healing performance of PCL/chitosan based electrospun nanofiber electrosprayed with curcumin loaded chitosan nanoparticles. Carbohydr. Polym. 2021, 259, 117640. [Google Scholar] [CrossRef]
- Yao, Z.C.; Zhang, C.C.; Ahmad, Z.; Huang, Z.; Li, J.S.; Chang, M.W. Designer fibers from 2D to 3D–Simultaneous and controlled engineering of morphology, shape and size. Chem. Eng. J. 2018, 334, 89–98. [Google Scholar] [CrossRef]
- Memic, A.; Abdullah, T.; Mohammed, H.; Navare, K.J.; Colombani, T.; Bencherif, S. Latest Progress in Electrospun Nanofibers for Wound Healing Applications. ACS Appl. Bio Mater. 2019, 2, 952–969. [Google Scholar] [CrossRef] [PubMed]
- Rafiee, Z.; Nejatian, M.; Daeihamed, M.; Jafari, S.M. Application of different nanocarriers for encapsulation of curcumin. Crit. Rev. Food Sci. 2019, 59, 3468–3497. [Google Scholar] [CrossRef] [PubMed]
- Alibolandi, M.; Mohammadi, M.; Taghdisi, S.M.; Abnous, K.; Ramezani, M. Synthesis and preparation of biodegradable hybrid dextran hydrogel incorporated with biodegradable curcumin nanomicelles for full thickness wound healing. Int. J. Pharm. 2017, 532, 466–477. [Google Scholar] [CrossRef] [PubMed]
- Nayak, A.; Tiyaboonchai, W.; Patankar, S.; Madhusudhan, B.; Souto, E. Curcuminoids-loaded lipid nanoparticles: Novel approach towards malaria treatment. Colloid Surface B 2010, 81, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, B. Recent developments on ultrasound-assisted one-pot multicomponent synthesis of biologically relevant heterocycles. Ultrason. Sonochem. 2017, 35, 15–35. [Google Scholar] [CrossRef]
- Zhou, X.; Che, L.; Wei, Y.L.; Dou, Y.; Chen, S.; He, H.M.; Gong, H.; Li, X.H.; Zhang, J.X. Facile route to versatile nanoplatforms for drug delivery by one-pot self-assembly. Acta Biomater. 2014, 10, 2630–2642. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.B.; Yan, T.Y.; Hou, F.R.; Chen, W.J.; Miao, S.; Liu, D.H. Formation of soy protein isolate (SPI)-citrus pectin (CP) electrostatic complexes under a high-intensity ultrasonic field: Linking the enhanced emulsifying properties to physicochemical and structural properties. Ultrason. Sonochem. 2019, 59, 104748. [Google Scholar] [CrossRef]
- Sun, C.X.; Xu, C.Q.; Mao, L.K.; Wang, D.; Yang, J.; Gao, Y.X. Preparation, characterization and stability of curcumin-loaded zein-shellac composite colloidal particles. Food Chem. 2017, 228, 656–667. [Google Scholar] [CrossRef]
- Xie, X.X.; Tao, Q.; Zou, Y.; Zhang, F.Y.; Guo, M.; Wang, Y.; Wang, H.; Zhou, Q.; Yu, S.Q. PLGA nanoparticles improve the oral bioavailability of curcumin in rats: Characterizations and mechanisms. J. Agric. Food Chem. 2011, 59, 9280–9289. [Google Scholar] [CrossRef] [PubMed]
- Kayaci, F.; Uyar, T. Electrospun zein nanofibers incorporating cyclodextrins. Carbohydr. Polym. 2012, 90, 558–568. [Google Scholar] [CrossRef] [PubMed]
- Zhan, X.Y.; Dai, L.; Zhang, L.; Gao, Y.X. Entrapment of curcumin in whey protein isolate and zein composite nanoparticles using pH-driven method. Food Hydrocoll. 2020, 106, 105839. [Google Scholar] [CrossRef]
- Li, X.M.; Wu, Z.Z.; Zhang, B.; Pan, Y.; Meng, R.; Chen, H.Q. Fabrication of chitosan hydrochloride and carboxymethyl starch complex nanogels as potential delivery vehicles for curcumin. Food Chem. 2019, 293, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Hu, Y.C.; Tiwari, J.K.; Velikov, K.P. Synthesis and characterisation of zein–curcumin colloidal particles. Soft Matter 2010, 6, 6192–6199. [Google Scholar] [CrossRef]
- Yu, X.; Afreen, S.; Kong, Q.S.; Wang, J.C. Study on Self-Assembled Morphology and Structure Regulation of alpha-Zein in Ethanol-Water Mixtures. Langmuir 2020, 36, 11975–11984. [Google Scholar] [CrossRef]
- Wang, Y.; Padua, G.W. Nanoscale characterization of zein self-assembly. Langmuir 2012, 28, 2429–2435. [Google Scholar] [CrossRef]
- Mangolim, C.S.; Moriwaki, C.; Nogueira, A.C.; Sato, F.; Baesso, M.L.; Neto, A.M.; Matioli, G. Curcumin-beta-cyclodextrin inclusion complex: Stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food Chem. 2014, 153, 361–370. [Google Scholar] [CrossRef]
- Bukhovets, A.V.; Fotaki, N.; Khutoryanskiy, V.V.; Moustafine, R.I. Interpolymer Complexes of Eudragit((R)) Copolymers as Novel Carriers for Colon-Specific Drug Delivery. Polymers 2020, 12, 1459. [Google Scholar] [CrossRef]
- Spasojević, L.; Katona, J.; Bučko, S.; Savić, S.M.; Petrović, L.; Milinković Budinčić, J.; Tasić, N.; Aidarova, S.; Sharipova, A. Edible water barrier films prepared from aqueous dispersions of zein nanoparticles. LWT-Food Sci. Technol. 2019, 109, 350–358. [Google Scholar] [CrossRef]
- Chen, S.; Han, Y.H.; Sun, C.X.; Dai, L.; Yang, S.F.; Wei, Y.; Mao, L.K.; Yuan, F.; Gao, Y.X. Effect of molecular weight of hyaluronan on zein-based nanoparticles: Fabrication, structural characterization and delivery of curcumin. Carbohydr. Polym. 2018, 201, 599–607. [Google Scholar] [CrossRef]
- Liu, Q.G.; Jing, Y.Q.; Han, C.P.; Zhang, H.; Tian, Y.M. Encapsulation of curcumin in zein/caseinate/sodium alginate nanoparticles with improved physicochemical and controlled release properties. Food Hydrocoll. 2019, 93, 432–442. [Google Scholar] [CrossRef]
- Mahmud, M.M.; Zaman, S.; Perveen, A.; Jahan, R.A.; Islam, M.F.; Arafat, M.T. Controlled release of curcumin from electrospun fiber mats with antibacterial activity. J. Drug Deliv. Sci. Technol. 2020, 55, 101386. [Google Scholar] [CrossRef]
- Aditya, N.P.; Yang, H.; Kim, S.; Ko, S. Fabrication of amorphous curcumin nanosuspensions using beta-lactoglobulin to enhance solubility, stability, and bioavailability. Colloid Surface B 2015, 127, 114–121. [Google Scholar] [CrossRef]
- Li, B.; Konecke, S.; Wegiel, L.A.; Taylor, L.S.; Edgar, K.J. Both solubility and chemical stability of curcumin are enhanced by solid dispersion in cellulose derivative matrices. Carbohydr. Polym. 2013, 98, 1108–1116. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, K.; Zia, K.M.; Aftab, W.; Zuber, M.; Tabasum, S.; Noreen, A.; Zia, F. Synthesis and characterization of chitin/curcumin blended polyurethane elastomers. Int. J. Biol. Macromol. 2018, 113, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.B.; Wu, M.Y.; Wang, C.; Wang, Z.W.; Chen, T.T.; Yan, J.K. Constructing biocompatible carboxylic curdlan-coated zein nanoparticles for curcumin encapsulation. Food Hydrocoll. 2020, 108, 106028. [Google Scholar] [CrossRef]
- Dai, L.; Sun, C.X.; Li, R.R.; Mao, L.K.; Liu, F.G.; Gao, Y.X. Structural characterization, formation mechanism and stability of curcumin in zein-lecithin composite nanoparticles fabricated by antisolvent co-precipitation. Food Chem. 2017, 237, 1163–1171. [Google Scholar] [CrossRef]
- Hao, L.; Lin, G.Q.; Chen, C.Y.; Zhou, H.J.; Chen, H.Y.; Zhou, X.H. Phosphorylated Zein as Biodegradable and Aqueous Nanocarriers for Pesticides with Sustained-Release and anti-UV Properties. J. Agric. Food Chem. 2019, 67, 9989–9999. [Google Scholar] [CrossRef]
- Liang, H.S.; Zhou, B.; He, L.; An, Y.P.; Lin, L.F.; Li, Y.; Liu, S.L.; Chen, Y.J.; Li, B. Fabrication of zein/quaternized chitosan nanoparticles for the encapsulation and protection of curcumin. RSC Adv. 2015, 5, 13891–13900. [Google Scholar] [CrossRef]
- Liu, Q.Y.; Qin, Y.; Chen, J.J.; Jiang, B.; Zhang, T. Fabrication, characterization, physicochemical stability and simulated gastrointestinal digestion of pterostilbene loaded zein-sodium caseinate-fucoidan nanoparticles using pH-driven method. Food Hydrocoll. 2021, 119, 106851. [Google Scholar] [CrossRef]
Samples/Temperature (°C) | 0–100 | 100–200 | 200–300 | 300–400 | 400–500 | 500–600 |
---|---|---|---|---|---|---|
Cur | 99.85 | 99.27 | 86.07 | 46.66 | 34.55 | 30.66 |
Zein | 97.65 | 95.15 | 76.67 | 23.08 | 17.09 | 15.47 |
Z–Cur | 97.97 | 95.59 | 77.61 | 23.94 | 17.91 | 16.29 |
ES100 | 98.03 | 96.87 | 93.57 | 60.65 | 1.95 | 1.64 |
ES100–Cur | 98.37 | 92.13 | 88.92 | 63.67 | 2.70 | 2.29 |
ES100–Z–Cur | 99.22 | 94.94 | 91.13 | 66.49 | 3.43 | 3.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, L.; Zhang, L.; Yu, C.; Chen, J.; Ye, X.; Zhang, F.; Linhardt, R.J.; Chen, S.; Pan, H. One-Pot Self-Assembly of Core-Shell Nanoparticles within Fibers by Coaxial Electrospinning for Intestine-Targeted Delivery of Curcumin. Foods 2023, 12, 1623. https://doi.org/10.3390/foods12081623
Hou L, Zhang L, Yu C, Chen J, Ye X, Zhang F, Linhardt RJ, Chen S, Pan H. One-Pot Self-Assembly of Core-Shell Nanoparticles within Fibers by Coaxial Electrospinning for Intestine-Targeted Delivery of Curcumin. Foods. 2023; 12(8):1623. https://doi.org/10.3390/foods12081623
Chicago/Turabian StyleHou, Lijuan, Laiming Zhang, Chengxiao Yu, Jianle Chen, Xingqian Ye, Fuming Zhang, Robert J. Linhardt, Shiguo Chen, and Haibo Pan. 2023. "One-Pot Self-Assembly of Core-Shell Nanoparticles within Fibers by Coaxial Electrospinning for Intestine-Targeted Delivery of Curcumin" Foods 12, no. 8: 1623. https://doi.org/10.3390/foods12081623
APA StyleHou, L., Zhang, L., Yu, C., Chen, J., Ye, X., Zhang, F., Linhardt, R. J., Chen, S., & Pan, H. (2023). One-Pot Self-Assembly of Core-Shell Nanoparticles within Fibers by Coaxial Electrospinning for Intestine-Targeted Delivery of Curcumin. Foods, 12(8), 1623. https://doi.org/10.3390/foods12081623