Recent Advances in the Incorporation of Polysaccharides with Antioxidant and Antibacterial Functions to Preserve the Quality and Shelf Life of Meat Products
Abstract
:1. Introduction
2. The Structure of Polysaccharides
3. Sources and Characteristics of Polysaccharides
4. Antioxidant and Antimicrobial Activities of Polysaccharides
4.1. Plant Polysaccharides
4.2. Fungal Polysaccharides
4.3. Algal Polysaccharides
4.4. Animal Polysaccharides
4.5. Microbial Polysaccharides
5. Application of Polysaccharides as Natural Preservatives in Meat and Meat Products
5.1. Beef
5.2. Beef and Turkey Sausages
5.3. Poultry Sausage, Chicken Breast, and Pork Patties
6. Final Considerations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ben Akacha, B.; Švarc-Gajić, J.; Elhadef, K.; Ben Saad, R.; Brini, F.; Mnif, W.; Smaoui, S.; Ben Hsouna, A. The Essential Oil of Tunisian Halophyte Lobularia Maritima: A Natural Food Preservative Agent of Ground Beef Meat. Life 2022, 12, 1571. [Google Scholar] [CrossRef] [PubMed]
- Ben Hsouna, A.; Boye, A.; Akacha, B.; Dhifi, W.; Ben Saad, R.; Brini, F.; Mnif, W.; Kacaniova, M. Thiamine Demonstrates Bio-Preservative and Anti-Microbial Effects in Minced Beef Meat Storage and Lipopolysaccharide (LPS)-Stimulated RAW 264.7 Macrophages. Animals 2022, 12, 1646. [Google Scholar] [CrossRef] [PubMed]
- Dave, D.; Ghaly, A.E. Meat Spoilage Mechanisms and Preservation Techniques: A Critical Review. Am. J. Agric. Biol. Sci. 2011, 6, 486–510. [Google Scholar] [CrossRef]
- Bekhit, A.E.-D.A.; Geesink, G.H.; Ilian, M.A.; Morton, J.D.; Sedcole, R.; Bickerstaffe, R. Particulate Metmyoglobin Reducing Activity and Its Relationship with Meat Color. J. Agric. Food Chem. 2003, 51, 6026–6035. [Google Scholar] [CrossRef] [PubMed]
- Ben Hsouna, A.; Trigui, M.; Ben Mansour, R.; Jarraya, R.; Mohamed, D.; Jaoua, S. Chemical Composition, Cytotoxicity Effect and Antimicrobial Activity of Ceratonia Siliqua Essential Oil with Preservative Effects against Listeria Inoculated in Minced Beef Meat. Int. J. Food Microbiol. 2011, 148, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Pando, G.; Ekonomou, S.I.; Stratakos, A.C.; Pintado, T. Clean Label Alternatives in Meat Products. Foods 2021, 10, 1615. [Google Scholar] [CrossRef]
- den Braver-Sewradj, S.P.; van Spronsen, R.; Hessel, E.V.S. Substitution of Bisphenol A: A Review of the Carcinogenicity, Reproductive Toxicity, and Endocrine Disruption Potential of Alternative Substances. Crit. Rev. Toxicol. 2020, 50, 128–147. [Google Scholar] [CrossRef]
- Ben Hsouna, A.; Ben Halima, N.; Smaoui, S.; Hamdi, N. Citrus Lemon Essential Oil: Chemical Composition, Antioxidant and Antimicrobial Activities with Its Preservative Effect against Listeria Monocytogenes Inoculated in Minced Beef Meat. Lipids Health Dis. 2017, 16, 146. [Google Scholar] [CrossRef]
- Ben Hsouna, A.; Hfaiedh, M.; Ben Slima, S.; Romdhane, W.B.; Akacha, B.B.; Bouterra, M.T.; Dhifi, W.; Mnif, W.; Brini, F.; Ben Saad, R.; et al. Antioxidant and Hepatoprotective Effects of Novel Heteropolysaccharide Isolated from Lobularia Maritima on CCl4-Induced Liver Injury in Rats. Food Sci. Nutr. 2022, 10, 2271–2284. [Google Scholar] [CrossRef]
- Ben Akacha, B.; Garzoli, S.; Ben Saad, R.; Brini, F.; Mnif, W.; Kačániová, M.; Ben Hsouna, A. Biopreservative Effect of the Tunisian Halophyte Lobularia Maritima Flavonoid Fraction, Used Alone and in Combination with Linalool in Stored Minced Beef Meat. Metabolites 2023, 13, 371. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, Z.; Cheng, L.; Zhang, X.; Liu, Y.; Zhang, R.; Weng, P.; Wu, Z. Polysaccharides Confer Benefits in Immune Regulation and Multiple Sclerosis by Interacting with Gut Microbiota. Food Res. Int. 2021, 149, 110675. [Google Scholar] [CrossRef] [PubMed]
- Partain, E.M. Industrially Important Polysaccharides. In Applied Polymer Science: 21st Century; Elsevier: Amsterdam, The Netherlands, 2000; pp. 303–323. [Google Scholar] [CrossRef]
- Xie, J.-H.; Jin, M.-L.; Morris, G.A.; Zha, X.-Q.; Chen, H.-Q.; Yi, Y.; Li, J.-E.; Wang, Z.-J.; Gao, J.; Nie, S.-P.; et al. Advances on Bioactive Polysaccharides from Medicinal Plants. Crit. Rev. Food Sci. Nutr. 2016, 56 (Suppl. 1), S60–S84. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Gul, I.; Basharat, A.; Qamar, S.A. Polysaccharides-based bio-nanostructures and their potential food applications. Int. J. Biol. Macromol. 2021, 176, 540–557. [Google Scholar] [CrossRef] [PubMed]
- Nešić, A.; Cabrera-Barjas, G.; Dimitrijević-Branković, S.; Davidović, S.; Radovanović, N.; Delattre, C. Prospect of Polysaccharide-Based Materials as Advanced Food Packaging. Molecules 2020, 25, 135. [Google Scholar] [CrossRef] [PubMed]
- Morganti, P.; Gianluca, M.; Coltelli, M.; Yudin, W.; Chen, H.-D.; Gagliardini, A. Non-Woven Tissues as Novel Cosmetic Carriers for a Green Beauty. Adv. Environ. Eng. Res. 2022, 3, 1–19. [Google Scholar] [CrossRef]
- D’Ayala, G.; Malinconico, M.; Laurienzo, P. Marine Derived Polysaccharides for Biomedical Applications: Chemical Modification Approaches. Molecules 2008, 13, 2069–2106. [Google Scholar] [CrossRef]
- Chen, Y.; Yao, F.; Ming, K.; Wang, D.; Hu, Y.; Liu, J. Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity. Molecules 2016, 21, 1705. [Google Scholar] [CrossRef] [PubMed]
- Miller-Chou, B.A.; Koenig, J.L. A Review of Polymer Dissolution. Prog. Polym. Sci. 2003, 28, 1223–1270. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, Q.; Cui, S.W.; Kang, J.; Hu, X.; Xing, X.; Yada, R.Y. Conformational Properties of High Molecular Weight Heteropolysaccharide Isolated from Seeds of Artemisia Sphaerocephala Krasch. Food Hydrocoll. 2013, 32, 155–161. [Google Scholar] [CrossRef]
- Xing, X.; Cui, S.W.; Nie, S.; Phillips, G.O.; Douglas Goff, H.; Wang, Q. A Review of Isolation Process, Structural Characteristics, and Bioactivities of Water-Soluble Polysaccharides from Dendrobium Plants. Bioact. Carbohydr. Diet. Fibre 2013, 1, 131–147. [Google Scholar] [CrossRef]
- Han, Q.; Wu, Z.; Huang, B.; Sun, L.; Ding, C.; Yuan, S.; Zhang, Z.; Chen, Y.; Hu, C.; Zhou, L.; et al. Extraction, Antioxidant and Antibacterial Activities of Broussonetia Papyrifera Fruits Polysaccharides. Int. J. Biol. Macromol. 2016, 92, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Li, Y.; Xiao, T.; Zhang, L.; Xu, D. Antioxidant and Antibacterial Activities of Polysaccharides Isolated and Purified from Diaphragma Juglandis Fructus. Int. J. Biol. Macromol. 2017, 105, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Lattimer, J.M.; Haub, M.D. Effects of Dietary Fiber and Its Components on Metabolic Health. Nutrients 2010, 2, 1266–1289. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Liu, W.; Li, J.; Lin, X.; Wang, Y. Preparation of Animal Polysaccharides Nanofibers by Electrospinning and Their Potential Biomedical Applications. J. Biomed. Mater. Res. A 2015, 103, 807–818. [Google Scholar] [CrossRef] [PubMed]
- Pereira, H.; Sousa, D.A.; Cunha, A.; Andrade, R.; Espregueira-Mendes, J.; Oliveira, J.M.; Reis, R.L. Hyaluronic Acid. In Osteochondral Tissue Engineering; Oliveira, J.M., Pina, S., Reis, R.L., San Roman, J., Eds.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2018; Volume 1059, pp. 137–153. [Google Scholar] [CrossRef]
- Kraan, S. Algal Polysaccharides, Novel Applications and Outlook. In Carbohydrates-Comprehensive Studies on Glycobiology and Glycotechnology, 1st ed.; Chang, C.-F., Ed.; Intech: London, UK, 2012; Volume 22, pp. 489–532. [Google Scholar] [CrossRef]
- Lin, J.; Jiao, G.; Kermanshahi-pour, A. Algal Polysaccharides-Based Hydrogels: Extraction, Synthesis, Characterization, and Applications. Mar. Drugs 2022, 20, 306. [Google Scholar] [CrossRef]
- Angelin, J.; Kavitha, M. Exopolysaccharides from Probiotic Bacteria and Their Health Potential. Int. J. Biol. Macromol. 2020, 162, 853–865. [Google Scholar] [CrossRef]
- Kaur, R.; Panwar, D.; Panesar, P.S. Biotechnological Approach for Valorization of Whey for Value-Added Products. In Food Industry Wastes; Elsevier: Amsterdam, The Netherlands, 2020; pp. 275–302. [Google Scholar] [CrossRef]
- Wang, J.; Tavakoli, J.; Tang, Y. Bacterial Cellulose Production, Properties and Applications with Different Culture Methods—A Review. Carbohydr. Polym. 2019, 219, 63–76. [Google Scholar] [CrossRef]
- Zhao, L.; Ma, Z.; Yin, J.; Shi, G.; Ding, Z. Biological strategies for oligo/polysaccharide synthesis: Biocatalyst and microbial cell factory. Carbohydr. Polym. 2021, 258, 117695. [Google Scholar] [CrossRef]
- Kumar, M.; Prakash, S.; Radha; Kumari, N.; Pundir, A.; Punia, S.; Saurabh, V.; Choudhary, P.; Changan, S.; Dhumal, S.; et al. Beneficial Role of Antioxidant Secondary Metabolites from Medicinal Plants in Maintaining Oral Health. Antioxidants 2021, 10, 1061. [Google Scholar] [CrossRef]
- Arulselvan, P.; Ghofar, H.A.A.; Karthivashan, G.; Halim, M.F.A.; Ghafar, M.S.A.; Fakurazi, S. Antidiabetic Therapeutics from Natural Source: A Systematic Review. Biomed. Prev. Nutr. 2014, 4, 607–617. [Google Scholar] [CrossRef]
- Ben Hsouna, A.; Sadaka, C.; Generalić Mekinić, I.; Garzoli, S.; Švarc-Gajić, J.; Rodrigues, F.; Morais, S.; Moreira, M.M.; Ferreira, E.; Spigno, G.; et al. The Chemical Variability, Nutraceutical Value, and Food-Industry and Cosmetic Applications of Citrus Plants: A Critical Review. Antioxidants 2023, 12, 481. [Google Scholar] [CrossRef] [PubMed]
- Addi, M.; Elbouzidi, A.; Abid, M.; Tungmunnithum, D.; Elamrani, A.; Hano, C. An Overview of Bioactive Flavonoids from Citrus Fruits. Appl. Sci. 2022, 12, 29. [Google Scholar] [CrossRef]
- Ben Hsouna, A.; Michalak, M.; Kukula-Koch, W.; Ben Saad, R.; ben Romdhane, W.; Zeljković, S.Ć.; Mnif, W. Evaluation of Halophyte Biopotential as an Unused Natural Resource: The Case of Lobularia Maritima. Biomolecules 2022, 12, 1583. [Google Scholar] [CrossRef] [PubMed]
- Badr, H.M. Antioxidative Activity of Carnosine in Gamma Irradiated Ground Beef and Beef Patties. Food Chem. 2007, 104, 665–679. [Google Scholar] [CrossRef]
- Li, Q.; Niu, Y.; Xing, P.; Wang, C. Bioactive Polysaccharides from Natural Resources Including Chinese Medicinal Herbs on Tissue Repair. Chin. Med. 2018, 13, 7. [Google Scholar] [CrossRef]
- Schepetkin, I.A.; Quinn, M.T. Botanical Polysaccharides: Macrophage Immunomodulation and Therapeutic Potential. Int. Immunopharmacol. 2006, 6, 317–333. [Google Scholar] [CrossRef] [PubMed]
- Wijesekara, I.; Pangestuti, R.; Kim, S.-K. Biological Activities and Potential Health Benefits of Sulfated Polysaccharides Derived from Marine Algae. Carbohydr. Polym. 2011, 84, 14–21. [Google Scholar] [CrossRef]
- Jin, M.; Huang, Q.; Zhao, K.; Shang, P. Biological Activities and Potential Health Benefit Effects of Polysaccharides Isolated from Lycium Barbarum L. Int. J. Biol. Macromol. 2013, 54, 16–23. [Google Scholar] [CrossRef]
- Gulcin, İ. Antioxidants and Antioxidant Methods: An Updated Overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar] [CrossRef]
- Akacha, B.B.; Najar, B.; Venturi, F.; Quartacci, M.F.; Saad, R.B.; Brini, F.; Mnif, W.; Kačániová, M.; Ben Hsouna, A. A New Approach in Meat Bio-Preservation through the Incorporation of a Heteropolysaccharide Isolated from Lobularia Maritima L. Foods 2022, 11, 3935. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, X.; Chen, T.; Chen, X. A Review of the Antibacterial Activity and Mechanisms of Plant Polysaccharides. Trends Food Sci. Technol. 2022, 123, 264–280. [Google Scholar] [CrossRef]
- Khemakhem, I.; Abdelhedi, O.; Trigui, I.; Ayadi, M.A.; Bouaziz, M. Structural, Antioxidant and Antibacterial Activities of Polysaccharides Extracted from Olive Leaves. Int. J. Biol. Macromol. 2018, 106, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Fakhfakh, N.; Abdelhedi, O.; Jdir, H.; Nasri, M.; Zouari, N. Isolation of Polysaccharides from Malva Aegyptiaca and Evaluation of Their Antioxidant and Antibacterial Properties. Int. J. Biol. Macromol. 2017, 105, 1519–1525. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; You, Y.; Li, Y.; Zhang, L.; Tang, T.; Duan, X.; Li, C.; Liu, A.; Hu, B.; Chen, D. Characterization of Carboxymethylated Polysaccharides from Catathelasma Ventricosum and Their Antioxidant and Antibacterial Activities. J. Funct. Foods 2017, 38, 355–362. [Google Scholar] [CrossRef]
- Zhang, C.; Gao, Z.; Hu, C.; Zhang, J.; Sun, X.; Rong, C.; Jia, L. Antioxidant, Antibacterial and Anti-Aging Activities of Intracellular Zinc Polysaccharides from Grifola Frondosa SH-05. Int. J. Biol. Macromol. 2017, 95, 778–787. [Google Scholar] [CrossRef] [PubMed]
- Palanisamy, S.; Vinosha, M.; Marudhupandi, T.; Rajasekar, P.; Prabhu, N.M. In Vitro Antioxidant and Antibacterial Activity of Sulfated Polysaccharides Isolated from Spatoglossum Asperum. Carbohydr. Polym. 2017, 170, 296–304. [Google Scholar] [CrossRef]
- Fleita, D.; El-Sayed, M.; Rifaat, D. Evaluation of the Antioxidant Activity of Enzymatically-Hydrolyzed Sulfated Polysaccharides Extracted from Red Algae; Pterocladia Capillacea. LWT-Food Sci. Technol. 2015, 63, 1236–1244. [Google Scholar] [CrossRef]
- Sellimi, S.; Benslima, A.; Barragan-Montero, V.; Hajji, M.; Nasri, M. Polyphenolic-Protein-Polysaccharide Ternary Conjugates from Cystoseira Barbata Tunisian Seaweed as Potential Biopreservatives: Chemical, Antioxidant and Antimicrobial Properties. Int. J. Biol. Macromol. 2017, 105, 1375–1383. [Google Scholar] [CrossRef]
- Jridi, M.; Nasri, R.; Marzougui, Z.; Abdelhedi, O.; Hamdi, M.; Nasri, M. Characterization and Assessment of Antioxidant and Antibacterial Activities of Sulfated Polysaccharides Extracted from Cuttlefish Skin and Muscle. Int. J. Biol. Macromol. 2019, 123, 1221–1228. [Google Scholar] [CrossRef]
- Abdelhedi, O.; Nasri, R.; Souissi, N.; Nasri, M.; Jridi, M. Sulfated Polysaccharides from Common Smooth Hound: Extraction and Assessment of Anti-ACE, Antioxidant and Antibacterial Activities. Carbohydr. Polym. 2016, 152, 605–614. [Google Scholar] [CrossRef]
- Mahdhi, A.; Leban, N.; Chakroun, I.; Chaouch, M.A.; Hafsa, J.; Fdhila, K.; Mahdouani, K.; Majdoub, H. Extracellular Polysaccharide Derived from Potential Probiotic Strain with Antioxidant and Antibacterial Activities as a Prebiotic Agent to Control Pathogenic Bacterial Biofilm Formation. Microb. Pathog. 2017, 109, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, J.R.; de Carvalho Junior, R.N. Occurrence and Possible Roles of Polysaccharides in Fungi and Their Influence on the Development of New Technologies. Carbohydr. Polym. 2020, 246, 116613. [Google Scholar] [CrossRef]
- Khan, M.S.; Zhang, X.; You, L.; Fu, X.; Abbasi, A.M. Structure and Bioactivities of Fungal Polysaccharides. In Polysaccharides; Ramawat, K.G., Mérillon, J.-M., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 1851–1866. [Google Scholar] [CrossRef]
- Gorin, P.A.J.; Spencer, J.F.T. Structural Chemistry of Fungal Polysaccharides. In Advances in Carbohydrate Chemistry; Elsevier: Amsterdam, The Netherlands, 1968; Volume 23, pp. 367–417. [Google Scholar] [CrossRef]
- He, F.; Yang, Y.; Yang, G.; Yu, L. Studies on Antibacterial Activity and Antibacterial Mechanism of a Novel Polysaccharide from Streptomyces Virginia H03. Food Control 2010, 21, 1257–1262. [Google Scholar] [CrossRef]
- Wasser, S.P. Medicinal Mushroom Science: History, Current Status, Future Trends, and Unsolved Problems. Int. J. Med. Mushrooms 2010, 12, 1–16. [Google Scholar] [CrossRef]
- Liu, K.; Wang, J.; Zhao, L.; Wang, Q. Anticancer, Antioxidant and Antibiotic Activities of Mushroom Ramaria Flava. Food Chem. Toxicol. 2013, 58, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, R.; Smith, J.E.; Rowan, N.J. Medicinal Mushrooms and Cancer Therapy: Translating a Traditional Practice into Western Medicine. Perspect. Biol. Med. 2006, 49, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Marine Drugs | Free Full-Text | Advanced Technologies for the Extraction of Marine Brown Algal Polysaccharides. Available online: https://www.mdpi.com/1660-3397/18/3/168 (accessed on 18 March 2023).
- Ibañez, E.; Cifuentes, A. Benefits of Using Algae as Natural Sources of Functional Ingredients: Algae as Sources of Functional Ingredients. J. Sci. Food Agric. 2013, 93, 703–709. [Google Scholar] [CrossRef]
- Chaisuwan, W.; Phimolsiripol, Y.; Chaiyaso, T.; Techapun, C.; Leksawasdi, N.; Jantanasakulwong, K.; Rachtanapun, P.; Wangtueai, S.; Sommano, S.R.; You, S.; et al. The Antiviral Activity of Bacterial, Fungal, and Algal Polysaccharides as Bioactive Ingredients: Potential Uses for Enhancing Immune Systems and Preventing Viruses. Front. Nutr. 2021, 8, 772033. [Google Scholar] [CrossRef] [PubMed]
- Mourão, P. Perspective on the Use of Sulfated Polysaccharides from Marine Organisms as a Source of New Antithrombotic Drugs. Mar. Drugs 2015, 13, 2770–2784. [Google Scholar] [CrossRef]
- Abou Zeid, A.H.; Aboutabl, E.A.; Sleem, A.A.; El-Rafie, H.M. Water Soluble Polysaccharides Extracted from Pterocladia Capillacea and Dictyopteris Membranacea and Their Biological Activities. Carbohydr. Polym. 2014, 113, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Taylor, T.A.; Unakal, C.G. Staphylococcus Aureus. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Ashayerizadeh, O.; Dastar, B.; Pourashouri, P. Study of Antioxidant and Antibacterial Activities of Depolymerized Fucoidans Extracted from Sargassum Tenerrimum. Int. J. Biol. Macromol. 2020, 151, 1259–1266. [Google Scholar] [CrossRef] [PubMed]
- Chojnacka, K. Biologically Active Compounds in Seaweed Extracts-the Prospects for the Application. Open Conf. Proc. J. 2012, 3, 20–28. [Google Scholar] [CrossRef]
- Liu, X.; Sun, Z.; Zhang, M.; Meng, X.; Xia, X.; Yuan, W.; Xue, F.; Liu, C. Antioxidant and Antihyperlipidemic Activities of Polysaccharides from Sea Cucumber Apostichopus Japonicus. Carbohydr. Polym. 2012, 90, 1664–1670. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Zhang, Q.; Zhang, Z.; Wang, J. In Vitro Antioxidant Activity of Polysaccharides Extracted from Bryopsis Plumosa. Carbohydr. Polym. 2010, 80, 1057–1061. [Google Scholar] [CrossRef]
- Fu, L.; Wang, Y.; Wang, J.; Yang, Y.; Hao, L. Evaluation of the Antioxidant Activity of Extracellular Polysaccharides from Morchella Esculenta. Food Funct. 2013, 4, 871–879. [Google Scholar] [CrossRef] [PubMed]
- Muthukumar, J.; Chidambaram, R.; Sukumaran, S. Sulfated Polysaccharides and Its Commercial Applications in Food Industries—A Review. J. Food Sci. Technol. 2021, 58, 2453–2466. [Google Scholar] [CrossRef] [PubMed]
- Cockburn, D.W.; Koropatkin, N.M. Polysaccharide Degradation by the Intestinal Microbiota and Its Influence on Human Health and Disease. J. Mol. Biol. 2016, 428, 3230–3252. [Google Scholar] [CrossRef]
- Qi, X.; Su, T.; Zhang, M.; Tong, X.; Pan, W.; Zeng, Q.; Shen, J. Sustainable, Flexible and Biocompatible Hydrogels Derived from Microbial Polysaccharides with Tailorable Structures for Tissue Engineering. Carbohydr. Polym. 2020, 237, 116160. [Google Scholar] [CrossRef]
- Paul, F.; Morin, A.; Monsan, P. Microbial Polysaccharides with Actual Potential Industrial Applications. Biotechnol. Adv. 1986, 4, 245–259. [Google Scholar] [CrossRef]
- Ahmad, N.H.; Mustafa, S.; Che Man, Y.B. Microbial Polysaccharides and Their Modification Approaches: A Review. Int. J. Food Prop. 2015, 18, 332–347. [Google Scholar] [CrossRef]
- Xu, L.; Qiu, Z.; Gong, H.; Zhu, C.; Li, Z.; Li, Y.; Dong, M. Rheological Behaviors of Microbial Polysaccharides with Different Substituents in Aqueous Solutions: Effects of Concentration, Temperature, Inorganic Salt and Surfactant. Carbohydr. Polym. 2019, 219, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Trujillo-Cayado, L.A.; Alfaro, M.C.; Muñoz, J.; Raymundo, A.; Sousa, I. Development and Rheological Properties of Ecological Emulsions Formulated with a Biosolvent and Two Microbial Polysaccharides. Colloids Surf. B Biointerfaces 2016, 141, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Munisamy, S.; Ramu Ganesan, A. Microbial Polysaccharides-Chemistry and Applications. J. Biol. Act. Prod. Nat. 2019, 9, 73–78. [Google Scholar] [CrossRef]
- Zampieri, R.M.; Adessi, A.; Caldara, F.; De Philippis, R.; Dalla Valle, L.; La Rocca, N. In Vivo Anti-Inflammatory and Antioxidant Effects of Microbial Polysaccharides Extracted from Euganean Therapeutic Muds. Int. J. Biol. Macromol. 2022, 209, 1710–1719. [Google Scholar] [CrossRef] [PubMed]
- NithyaBalaSundari, S.; Nivedita, V.; Chakravarthy, M.; Srisowmeya, G.; Antony, U.; Nandhini Dev, G. Characterization of Microbial Polysaccharides and Prebiotic Enrichment of Wheat Bread with Pullulan. LWT 2020, 122, 109002. [Google Scholar] [CrossRef]
- Kim, Y.; Oh, S.; Kim, S.H. Released Exopolysaccharide (r-EPS) Produced from Probiotic Bacteria Reduce Biofilm Formation of Enterohemorrhagic Escherichia Coli O157:H7. Biochem. Biophys. Res. Commun. 2009, 379, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, Y.-T.; Zheng, W.; Han, X.-X.; Jiang, Y.-H.; Hu, P.-L.; Tang, Z.-X.; Shi, L.-E. The Antibacterial Activity and Antibacterial Mechanism of a Polysaccharide from Cordyceps Cicadae. J. Funct. Foods 2017, 38, 273–279. [Google Scholar] [CrossRef]
- Nikolic, M.; López, P.; Strahinic, I.; Suárez, A.; Kojic, M.; Fernández-García, M.; Topisirovic, L.; Golic, N.; Ruas-Madiedo, P. Characterisation of the Exopolysaccharide (EPS)-Producing Lactobacillus Paraplantarum BGCG11 and Its Non-EPS Producing Derivative Strains as Potential Probiotics. Int. J. Food Microbiol. 2012, 158, 155–162. [Google Scholar] [CrossRef]
- Freitas, F.; Alves, V.D.; Reis, M.A.M. Bacterial Polysaccharides: Production and Applications in Cosmetic Industry. In Polysaccharides; Ramawat, K.G., Mérillon, J.-M., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 1–24. [Google Scholar] [CrossRef]
- Delves-Broughton, J. 6-Natural Antimicrobials as Additives and Ingredients for the Preservation of Foods and Beverages. In Natural Food Additives, Ingredients and Flavourings; Baines, D., Seal, R., Eds.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Cambridge, UK, 2012; pp. 127–161. [Google Scholar] [CrossRef]
- Gottardi, D.; Bukvicki, D.; Prasad, S.; Tyagi, A.K. Beneficial Effects of Spices in Food Preservation and Safety. Front. Microbiol. 2016, 7, 1394. [Google Scholar] [CrossRef]
- Moreno, Y.; Arteaga, H. Natural Conservation of Guinea Pig (Cavia Porcellus) Meat Vacuum Packed: Oregano Essential Oil Effect on the Physicochemical, Microbiological and Sensory Characteristics. Sci. Agropecu. 2018, 9, 467–476. [Google Scholar] [CrossRef]
- Michalczyk, M.; Macura, R.; Tesarowicz, I.; Banaś, J. Effect of Adding Essential Oils of Coriander (Coriandrum Sativum L.) and Hyssop (Hyssopus Officinalis L.) on the Shelf Life of Ground Beef. Meat Sci. 2012, 90, 842–850. [Google Scholar] [CrossRef] [PubMed]
- Ju, J.; Xie, Y.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. Application of Edible Coating with Essential Oil in Food Preservation. Crit. Rev. Food Sci. Nutr. 2019, 59, 2467–2480. [Google Scholar] [CrossRef] [PubMed]
- Dias, A.M.G.C.; Hussain, A.; Marcos, A.S.; Roque, A.C.A. A Biotechnological Perspective on the Application of Iron Oxide Magnetic Colloids Modified with Polysaccharides. Biotechnol. Adv. 2011, 29, 142–155. [Google Scholar] [CrossRef] [PubMed]
- Bondarenko, O.M.; Ivask, A.; Kahru, A.; Vija, H.; Titma, T.; Visnapuu, M.; Joost, U.; Pudova, K.; Adamberg, S.; Visnapuu, T.; et al. Bacterial Polysaccharide Levan as Stabilizing, Non-Toxic and Functional Coating Material for Microelement-Nanoparticles. Carbohydr. Polym. 2016, 136, 710–720. [Google Scholar] [CrossRef] [PubMed]
- Hamed, M.; Bougatef, H.; Karoud, W.; Krichen, F.; Haddar, A.; Bougatef, A.; Sila, A. Polysaccharides Extracted from Pistachio External Hull: Characterization, Antioxidant Activity and Potential Application on Meat as Preservative. Ind. Crops Prod. 2020, 148, 112315. [Google Scholar] [CrossRef]
- Kallel, F.; Driss, D.; Bouaziz, F.; Belghith, L.; Zouari-Ellouzi, S.; Chaari, F.; Haddar, A.; Chaabouni, S.E.; Ghorbel, R. Polysaccharide from Garlic Straw: Extraction, Structural Data, Biological Properties and Application to Beef Meat Preservation. RSC Adv. 2015, 5, 6728–6741. [Google Scholar] [CrossRef]
- Ben Hlima, H.; Smaoui, S.; Barkallah, M.; Elhadef, K.; Tounsi, L.; Michaud, P.; Fendri, I.; Abdelkafi, S. Sulfated Exopolysaccharides from Porphyridium Cruentum: A Useful Strategy to Extend the Shelf Life of Minced Beef Meat. Int. J. Biol. Macromol. 2021, 193, 1215–1225. [Google Scholar] [CrossRef] [PubMed]
- Trabelsi, I.; Slima, S.B.; Chaabane, H.; Riadh, B.S. Purification and Characterization of a Novel Exopolysaccharides Produced by Lactobacillus Sp. Ca6. Int. J. Biol. Macromol. 2015, 74, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Trabelsi, I.; Ktari, N.; Triki, M.; Bkhairia, I.; Ben Slima, S.; Sassi Aydi, S.; Aydi, S.; Abdeslam, A.; Ben Salah, R. Physicochemical, Techno-Functional, and Antioxidant Properties of a Novel Bacterial Exopolysaccharide in Cooked Beef Sausage. Int. J. Biol. Macromol. 2018, 111, 11–18. [Google Scholar] [CrossRef]
- Hamzaoui, A.; Ghariani, M.; Sellem, I.; Hamdi, M.; Feki, A.; Jaballi, I.; Nasri, M.; Amara, I.B. Extraction, Characterization and Biological Properties of Polysaccharide Derived from Green Seaweed “Chaetomorpha Linum” and Its Potential Application in Tunisian Beef Sausages. Int. J. Biol. Macromol. 2020, 148, 1156–1168. [Google Scholar] [CrossRef]
- Ktari, N.; Feki, A.; Trabelsi, I.; Triki, M.; Maalej, H.; Slima, S.B.; Nasri, M.; Ben Amara, I.; Ben Salah, R. Structure, Functional and Antioxidant Properties in Tunisian Beef Sausage of a Novel Polysaccharide from Trigonella Foenum-Graecum Seeds. Int. J. Biol. Macromol. 2017, 98, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Hajji, M.; Falcimaigne-Gordin, A.; Ksouda, G.; Merlier, F.; Thomasset, B.; Nasri, M. A Water-Soluble Polysaccharide from Anethum Graveolens Seeds: Structural Characterization, Antioxidant Activity and Potential Use as Meat Preservative. Int. J. Biol. Macromol. 2021, 167, 516–527. [Google Scholar] [CrossRef] [PubMed]
- Luo, A.; Feng, J.; Hu, B.; Lv, J.; Chen, O.; Xie, S. Polysaccharides in Spirulina Platensis Improve Antioxidant Capacity of Chinese-Style Sausage. J. Food Sci. 2017, 82, 2591–2597. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Zhou, H.; Zhang, S.; Pan, X.; Li, S.; Zhu, N.; Wu, Q.; Wang, S.; Qiao, X.; Chen, W. Changes of Protein Oxidation, Lipid Oxidation and Lipolysis in Chinese Dry Sausage with Different Sodium Chloride Curing Salt Content. Food Sci. Hum. Wellness 2020, 9, 328–337. [Google Scholar] [CrossRef]
- Andrès, S.; Zaritzky, N.; Califano, A. The Effect of Whey Protein Concentrates and Hydrocolloids on the Texture and Colour Characteristics of Chicken Sausages. Int. J. Food Sci. Technol. 2006, 41, 954–961. [Google Scholar] [CrossRef]
- He, Y.; Zhang, C.; Zheng, Y.; Xiong, H.; Ai, C.; Cao, H.; Xiao, J.; El-Seedi, H.; Chen, L.; Teng, H. Effects of Blackberry Polysaccharide on the Quality Improvement of Boiled Chicken Breast. Food Chem. X 2023, 18, 100623. [Google Scholar] [CrossRef] [PubMed]
- Latou, E.; Mexis, S.F.; Badeka, A.V.; Kontakos, S.; Kontominas, M.G. Combined Effect of Chitosan and Modified Atmosphere Packaging for Shelf Life Extension of Chicken Breast Fillets. LWT-Food Sci. Technol. 2014, 55, 263–268. [Google Scholar] [CrossRef]
Polysaccharide | Main Sources | Antioxidant Activity | Antimicrobial Activity | References | |||
---|---|---|---|---|---|---|---|
Method | Values | Target Microorganism | MIC (mg/mL) | ZI (mm) | |||
Broussonetia papyrifera polysaccharide (BPP) | Broussonetia papyrifera | DPPH assay IC50 (mg/mL) | 0.54–0.84 | E. coli | 0.3–1 0.25–1 | 9.71–11.5 | [22] |
Hydroxyl radical scavenging activity IC50 (mg/mL) | 1.28–2.09 | P. aeruginosa | 0.25–1 | 7.39–12.77 | |||
Ferric—reducing activity power (mmol/L) | 0.37–0.74 | B. subtilis | 0.3–4 | 6.00–9.84 | |||
Erythrocytehemolysis (%) | 60.09–79.69 | S. aureus | 0.25–1 | 7.06–13.40 | |||
Olive trees polysaccharide (OLP) | Olea europaea | DPPH assay IC50 (µg/mL) | 34.80 | B. cereus M. luteus | - | 10 21.5 | [46] |
β-carotenelinoleate bleaching assay (%) | 59.51–500 | S. enterica E. coli | - | 23.5 10.5 | |||
Reducing power assay (µg/mL) | 106.31 | Enterobacter sp. K. pneumonieae | - | 9.5 - | |||
A water-soluble polysaccharide fraction (DJP-2) | Diaphragma juglandis | DPPH assay IC50 (mg/mL) | 1.068 | E. coli P. aeruginosa | - | 8.22–14.85 8.42–15.31 | [23] |
ABTS assay IC50 (mg/mL) | 0.649 | S. aureus | - | 9.11–15.97 | |||
Hydroxyl radical scavenging activity | 0.909 | E. faecalis | - | 8.12–14.35 | |||
Polysaccharides extracted via precipitation with cetylpyridinium chloride (P1) or ethanol (P2) | Malva aegyptiaca | (Fe2+) chelating activity IC50 (mg/mL) | 1.15–3.30 | S. aureus M. luteus | - | 7.5–18.5 20.0–10.0 | [47] |
(Fe3+) reducing antioxidant power (FRAP) EC50 (mg/mL) | 1.22–4.5 | B. cereus E. coli | - | 19.5–8.5 18.5–13.5 | |||
β-carotene bleaching inhibition capacity IC50 (mg/mL) | 1.56–2.74 | K. pneumoniae | - | 25.0–19.5 | |||
DPPH assay IC50 (mg/mL) | 1.94–3.57 | S. enterica S.typhi | - | 12.5–5.0 17.5–10.5 | |||
Mycelial polysaccharides modified via carboxymethylation (cmCVP-1Ss) | Catathelasma ventricosum | DPPH assay | 3.73–18.40 | E. coli S. typhimurium | 2.14–10.86 2.85–4.76 | 3.55–17.60 4.40–8.53 | [48] |
Reducing power EC50 (mg/mL) | 1.04–14.64 | S. aureus | 1.78–6.89 | 4.01–12.22 | |||
Metal chelating activity EC50 (mg/mL) | 2.85–8.95 | B. subtilis | 2.25–4.63 | 3.75–9.05 | |||
Intracellular zinc polysaccharides (IZPS) | Grifola frondosa SH-05 | Hydroxyl radical-scavenging assay EC50 (mg/mL) Reducing power assay At 1000 mg/mL DPPH assay EC50 (mg/mL) Superoxide radical-scavenging activity EC50 (mg/mL) Hydrogen peroxide-scavenging activity at 1000 mg/mL Ferrous ion chelating activity at 1000 mg/mL | 203.7–510 0.59–0.38 211.2 525.27 90.31–95.23 27.09–50.92 | E. coli S. aureus B. megaterium L. monocytogenes | 5–1.25 2.5–0.625 10.0–2.5 5–2.5 | 13.2–30 18.1–39.7 14.6–26.3 15.5–28.6 | [49] |
Fucoidan | Spatoglossum asperum | DPPH assay IC50 (µg/mL) | 76.80 | A. hydrophila | - | 32 | [50] |
Reducing power assay (%) at 500 mg/mL | 42.63 | ||||||
Total antioxidant activity IC50 (µg/mL) | 89.81 | ||||||
Sulfated polysaccharides (SPs) | Pterocladia capillacea | DPPH assay IC50 (µg/mL) | 530–1104 | S. aureus | - | 7–9.2 | [51] |
Hydrogen peroxide scavenging assay IC50 (µg/mL) | 1093–8143 | E. coli | - | 8 | |||
Polysaccharides conjugated to proteins and polyphenols (CBG) | Cystoseira barbata | DPPH assay EC50 (µg/mL) | 11.70 | S. aureus B. cereus | 10 20 | 19 11 | [52] |
Iron (III) to iron (II)-reducing activity EC50 (µg/mL) | 51.22 | E. faecalis M. luteus | 20 20 | 11 11 | |||
Ferrous ion-chelating activity EC50 (µg/mL) | 40.31 | E. coli P.aeruginosa S. enterica | - - | - - - | |||
Hydroxyl radical-scavenging activity EC50 (µg/mL) | 11.39 | K. pneumoniae | 40 | 8 | |||
Polysaccharides extracted from cuttlefish skin (CSP) and muscles (CMP) | Cuttlefish (Sepia officinalis) | DPPH assay (%) (at 3–5 mg/mL) | 60–65 | E. coli K. pneumoniae | 3.12–1.56 12.5–3.12 | 24.5–24.2 24.5–22.0 | [53] |
β-carotene bleaching method (%) (at 1 mg/mL) | 93–64 | S. enterica Enterobacter sp. | 6.25–0.78 12.5–3.125 | 18.5–19.02 2.7–17.5 | |||
Metal chelating activity IC50 (µg/mL) | 250–367 | M. luteus | 12.5–3.12 | 44.5–43 | |||
S. aureus B. cereus | 6.25 6.25 | 17.7–18 11.5–19.0 | |||||
Sulfated polysaccharides | Common smooth hound (Mustelusmustelus) | Ferrous chelating effect IC50 (µg/mL) | 25.04–34.07 | S. aureus M. luteus | - - | 7.0–11.5 27.0–31.0 | [54] |
B. cereus E. coli | - - | 8.2–14.5 10.2–16.5 | |||||
β-carotene bleaching inhibition (%) (at 0.25 mg/mL) | 52–83 | K. pneumonia S. enterica | - - | 30.5–31.0 9.5–12.5 | |||
DNA nicking assay (at 50 and 100 µg/mL) | - | S. typhi Enterobacter sp. | - - | 20.5–26.5 7.5–14.5 | |||
Sulfated polysaccharides from Pleurotu seryngii (PEPS) and Streptococcus thermophilus ASCC 1275 exopolysaccharides (ST1275 EPS) | Streptococcus thermophilus ASCC 1275 | DPPH assay (%) at 1000 µg/mL | 14.55–7.71 | S. aureus | <0.625–2.5 | 14.5–31.8 | [28] |
Superoxide radical scavenging activity (%) at 1000 µg/mL | 35.10–22.33 | E.coli | 2.5–5.0 | 9.8–11.7 | |||
Sulfated Pleurotu seryngii | |||||||
Hydroxyl radical scavenging activity (%) at 1000 µg/mL | 23.44–21.81 | L. monocytogenes | 1.25–10.0 | 9.8–17.3 | |||
Exopoly- saccharide (EPS) isolated from Lactobacillus plantarum (EPLB) | Lactobacillus plantarum | DPPH assay IC50 (mg/mL) | 0.59–0.17 | S. aureus | 2 | - | [55] |
Linoleic acid peroxidation with TBARS assay IC50 (mg/mL) | 0.57 | L. monocytogenes | 10 | - | |||
P. aeruginosa | 1 | - | |||||
S. typhymurium | 2 | - |
Active Compound | Sample | Added Levels | Storage Conditions | Effect | References |
---|---|---|---|---|---|
Polysaccharides from pistachio external hull (PHCP) | Minced beef meat | 0.5%, 1%, and 2% to 20 g of ground meat | 9 days at 4 °C | Inhibited lipid oxidation (TBARS production). Improved the stability of meat color. | [95] |
Polysaccharides from garlic straw (GSP) | Minced beef meat | 2%, and 4% to 25 g of minced beef meat | 9 days at 4 °C | Protected ground beef against lipid peroxidation. Increased shelf life. Improved sensory attribute (color). | [96] |
Sulfated exopolysaccharides from Porphyridium cruentum (EPS) | Minced beef meat | 0.5%, 1%, and 2% (equivalent to MIC, 2 × MIC and 4 × MIC against L. monocytogenes ATCC19117, respectively.) | plastic vacuum bags, 14 days at 4 °C | Extended the shelf life of ground beef by inhibiting the spoilage microorganisms. Prevented lipid and protein oxidation of minced meat. | [97] |
Exopolysaccharide produced by Lactobacillus sp. Ca6 (EPS-Ca6) | Beef sausage | Vit C at 0.0625% + EPS-Ca6 at 0.0625%, and EPS-Ca6 at 0.125% | 12 days at 4 °C | Retarded lipid peroxidation during refrigerated storage. Reduced the oxymyoglobin oxidation. | [96,97,98,99] |
Polysaccharides derived from green seaweed “Chaetomorpha linum” (PS) | Beef sausage | 0.05%, 0.125%, 0.25% | 12 days at 4 °C | Increased pH and moisture values. Improved color stability. Stabilized MetMb and heme iron values. Decreased lipid oxidation. Reduced microbial counts. | [100] |
Polysaccharides from Trigonella foenum-graecum (FWSP) | Beef sausage | 0.05%, 0.125%, 0.25% | 10 days at 4 °C | Reduced meat lipid oxidation. Significantly inhibited myoglobin oxidation. | [101] |
A water-soluble polysaccharide from Anethum graveolens | Turkey meat sausages | 0.05%, 0.15%, 0.3%. | polyethylene bag for 12 days at 4 °C | Increase the humidity level. Reduced lipid peroxidation. Preserved pH and color. Extended the shelf life by minimizing the growth rate of several bacteria. | [102] |
Spirulina platensis polysaccharides (SPP) | Chinese-style (pork) sausages | 0.1%, 0.25%, 0.5% | 24 days at 4 °C | Maintained stable redness values. Preserved pH. Prevented the decrease in aroma, flavor, and sensory acceptance. Decreased lipid peroxidation. | [103] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Akacha, B.; Michalak, M.; Najar, B.; Venturi, F.; Taglieri, I.; Kačániová, M.; Ben Saad, R.; Mnif, W.; Garzoli, S.; Ben Hsouna, A. Recent Advances in the Incorporation of Polysaccharides with Antioxidant and Antibacterial Functions to Preserve the Quality and Shelf Life of Meat Products. Foods 2023, 12, 1647. https://doi.org/10.3390/foods12081647
Ben Akacha B, Michalak M, Najar B, Venturi F, Taglieri I, Kačániová M, Ben Saad R, Mnif W, Garzoli S, Ben Hsouna A. Recent Advances in the Incorporation of Polysaccharides with Antioxidant and Antibacterial Functions to Preserve the Quality and Shelf Life of Meat Products. Foods. 2023; 12(8):1647. https://doi.org/10.3390/foods12081647
Chicago/Turabian StyleBen Akacha, Boutheina, Monika Michalak, Basma Najar, Francesca Venturi, Isabella Taglieri, Miroslava Kačániová, Rania Ben Saad, Wissem Mnif, Stefania Garzoli, and Anis Ben Hsouna. 2023. "Recent Advances in the Incorporation of Polysaccharides with Antioxidant and Antibacterial Functions to Preserve the Quality and Shelf Life of Meat Products" Foods 12, no. 8: 1647. https://doi.org/10.3390/foods12081647
APA StyleBen Akacha, B., Michalak, M., Najar, B., Venturi, F., Taglieri, I., Kačániová, M., Ben Saad, R., Mnif, W., Garzoli, S., & Ben Hsouna, A. (2023). Recent Advances in the Incorporation of Polysaccharides with Antioxidant and Antibacterial Functions to Preserve the Quality and Shelf Life of Meat Products. Foods, 12(8), 1647. https://doi.org/10.3390/foods12081647