Effects of Soybean Trypsin Inhibitor on Pancreatic Oxidative Damage of Mice at Different Growth Periods
Abstract
:1. Introduction
2. Material and Methods
2.1. Main Reagents and Reasons for Selection
2.2. Animals and Diets
2.3. Sample Preparation
2.4. Analytical Methods
2.4.1. Determination of Oxidation and Antioxidant Parameters
2.4.2. Determination of Trypsin Activity and Hormone Levels
2.4.3. Transmission Electron Microscopy (TEM) of the Pancreas
2.4.4. RNA Extraction and Real-Time PCR
2.5. Statistical Analysis
3. Results
3.1. The Pancreas Index, Oxidative and Antioxidant Parameters in Serum and Pancreas of Mice
3.2. Trypsin Activity and Hormone Levels
3.3. Analysis of Relative Gene Expression
3.4. TEM of Pancreas Tissue
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Haidar, C.N.; Coscueta, E.; Cordisco, E.; Nerli, B.B.; Malpiedi, L.P. Aqueous micellar two-phase system as an alternative method to selectively remove soy antinutritional factors. LWT 2018, 93, 665–672. [Google Scholar] [CrossRef]
- Vagadia, B.H.; Vanga, S.K.; Raghavan, V. Inactivation methods of soybean trypsin inhibitor—A review. Trends Food Sci. Technol. 2017, 64, 115–125. [Google Scholar] [CrossRef]
- Li, J.; Xiang, Q.; Liu, X.; Ding, T.; Zhang, X.; Zhai, Y.; Bai, Y. Inactivation of soybean trypsin inhibitor by dielectric-barrier discharge (DBD) plasma. Food Chem. 2017, 232, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Flavin, D.F. The effects of soybean trypsin inhibitors on the pancreas of animals and man: A review. Vet. Hum. Toxicol. 1982, 24, 25–28. [Google Scholar]
- Kunitz, M. Crystalline soybean trypsin inhibitor: Ii. General properties. J. Gen. Physiol. 1947, 30, 291–310. [Google Scholar] [CrossRef]
- Zhao, W.-P.; Wang, H.-W.; Liu, J.; Zhang, Z.-H.; Zhu, S.-Q.; Zhou, B.-H. Mitochondrial respiratory chain complex abnormal expressions and fusion disorder are involved in fluoride-induced mitochondrial dysfunction in ovarian granulosa cells. Chemosphere 2019, 215, 619–625. [Google Scholar] [CrossRef]
- Svegliati, S.T.; Spadoni, G. Moroncini and A. Gabrielli. “Nadph oxidase, oxidative stress and fibrosis in systemic sclerosis. Free Radic. Biol. Med. 2018, 125, 90–97. [Google Scholar] [CrossRef]
- Ramírez-Camacho, I.; Correa, F.; El Hafidi, M.; Silva-Palacios, A.; Ostolga-Chavarría, M.; Esparza-Perusquía, M.; Olvera-Sánchez, S.; Flores-Herrera, O.; Zazueta, C. Cardioprotective strategies preserve the stability of respiratory chain supercomplexes and reduce oxidative stress in reperfused ischemic hearts. Free Radic. Biol. Med. 2018, 129, 407–417. [Google Scholar] [CrossRef]
- Homma, T.; Kobayashi, S.; Sato, H.; Fujii, J. Edaravone, a free radical scavenger, protects against ferroptotic cell death in vitro. Exp. Cell Res. 2019, 384, 111592. [Google Scholar] [CrossRef]
- Premaratne, S.; Amaratunga, D.T.; Mensah, F.E.; McNamara, J.J. Significance of oxygen free radicals in the pathophysiology of hemorrhagic shock—A protocol. Int. J. Surg. Protoc. 2018, 9, 15–19. [Google Scholar] [CrossRef]
- Losada-Barreiro, S.; Bravo-Díaz, C. Free radicals and polyphenols: The redox chemistry of neurodegenerative diseases. Eur. J. Med. Chem. 2017, 133, 379–402. [Google Scholar] [CrossRef]
- Ahn, B.; Smith, N.; Saunders, D.; Ranjit, R.; Kneis, P.; Towner, R.A.; Van Remmen, H. Using MRI to measure in vivo free radical production and perfusion dynamics in a mouse model of elevated oxidative stress and neurogenic atrophy. Redox Biol. 2019, 26, 101308. [Google Scholar] [CrossRef]
- Taleb, A.; Ahmad, K.A.; Ihsan, A.U.; Qu, J.; Lin, N.; Hezam, K.; Koju, N.; Hui, L.; Qilong, D. Antioxidant effects and mechanism of silymarin in oxidative stress induced cardiovascular diseases. Biomed. Pharmacother. 2018, 102, 689–698. [Google Scholar] [CrossRef]
- Fonin, A.V.; Stepanenko, O.; Povarova, O.I.; Volova, C.A.; Philippova, E.M.; Bublikov, G.S.; Kuznetsova, I.M.; Demchenko, A.P.; Turoverov, K.K. Spectral characteristics of the mutant form GGBP/H152C of D-glucose/D-galactose-binding protein labeled with fluorescent dye BADAN: Influence of external factors. PeerJ 2014, 2, e275. [Google Scholar] [CrossRef]
- Zhong, G.S.; Qin, D.; Townsend, B.A.; Schulte, K.D.T.; Wang, G.Y. Oxidative stress induces senescence in breast cancer stem cells. Biochem. Biophys. Res. Commun. 2019, 514, 1204–1209. [Google Scholar] [CrossRef]
- Poprac, P.; Jomova, K.; Simunkova, M.; Kollar, V.; Rhodes, C.J.; Valko, M. Targeting Free Radicals in Oxidative Stress-Related Human Diseases. Trends Pharmacol. Sci. 2017, 38, 592–607. [Google Scholar] [CrossRef]
- Abudawood, M.; Tabassum, H.; Almaarik, B.; Aljohi, A. Interrelationship between oxidative stress, DNA damage and cancer risk in diabetes (Type 2) in Riyadh, KSA. Saudi J. Biol. Sci. 2019, 27, 177–183. [Google Scholar] [CrossRef]
- Koca, K.; Yurttas, Y.; Bilgic, S.; Cayci, T.; Topal, T.; Durusu, M.; Kaldirim, U.; Akgul, E.O.; Ozkan, H.; Yanmis, I.; et al. Effect of Preconditioned Hyperbaric Oxygen and Ozone on Ischemia-Reperfusion Induced Tourniquet in Skeletal Bone of Rats. J. Surg. Res. 2010, 164, e83–e89. [Google Scholar] [CrossRef]
- Beauchamp, C.; Fridovich, I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef]
- Sabuncu, T.; Vural, H.; Harma, M.; Harma, M. Oxidative stress in polycystic ovary syndrome and its contribution to the risk of cardiovascular disease. Clin. Biochem. 2001, 34, 407–413. [Google Scholar] [CrossRef]
- Mineo, H.; Ishida, K.; Morikawa, N.; Ohmi, S.; Machida, A.; Noda, T.; Fukushima, M.; Chiji, H. Ingestion of potato starch decreases chymotrypsin but does not affect trypsin, amylase, or lipase activity in the pancreas in rats. Nutr. Res. 2007, 27, 113–118. [Google Scholar] [CrossRef]
- Li, W.; Shi, Y.H.; Yang, R.L.; Cui, J.; Xiao, Y.; Wang, B.; Le, G.W. Effect of somatostatin analog on high-fat diet-induced metabolic syndrome: Involvement of reactive oxygen species. Peptides 2010, 31, 625–629. [Google Scholar] [CrossRef] [PubMed]
- Peña-Bautista, C.M.; Baquero, M.V.; Cháfer-Pericás, C. Free radicals in alzheimer’s disease: Lipid peroxidation biomarkers. Clin. Chim. Acta 2019, 491, 85–90. [Google Scholar] [CrossRef]
- Sahna, E.; Parlakpinar, H.; Turkoz, Y.; Acet, A. Protective effects of melatonin on myocardial ischemia-reperfusion induced infarct size and oxidative changes. Physiol. Res. 2005, 5, 491–495. [Google Scholar] [CrossRef]
- Ni, H.; Li, J.; Jin, Y.; Zang, H.; Peng, L. The experimental animal model of hyperlipidemia and hyperlipidemic fatty liver in rats. Chin. Pharmacol. Bull. 1986, 12, wpr-555126. [Google Scholar]
- Min, Y.; Niu, Z.; Sun, T.; Wang, Z.; Jiao, P.; Zi, B.; Chen, P.; Tian, D.; Liu, F. Vitamin E and vitamin C supplementation improves antioxidant status and immune function in oxidative-stressed breeder roosters by up-regulating expression of GSH-Px gene. Poult. Sci. 2018, 97, 1238–1244. [Google Scholar] [CrossRef]
- Mazzawi, T.; Hausken, T.; Gundersen, D.; El-Salhy, M. Dietary guidance normalizes large intestinal endocrine cell densities in patients with irritable bowel syndrome. Eur. J. Clin. Nutr. 2015, 70, 175–181. [Google Scholar] [CrossRef]
- Streuli, J.; Harris, A.G.; Cottiny, C.; Allagnat, F.; Daly, A.F.; Grouzmann, E.; Abid, K. Cellular effects of AP102, a somatostatin analog with balanced affinities for the hSSTR2 and hSSTR5 receptors. Neuropeptides 2018, 68, 84–89. [Google Scholar] [CrossRef]
- Bustamante, J.; Lobo, M.V.T.; Alonso, F.J.; Mukala, N.-T.A.; Giné, E.; Solís, J.M.; Tamarit-Rodriguez, J.; Del Río, R.M. An osmotic-sensitive taurine pool is localized in rat pancreatic islet cells containing glucagon and somatostatin. Am. J. Physiol. Metab. 2001, 281, E1275–E1285. [Google Scholar] [CrossRef]
- Virgolini, I.; Traub-Weidinger, T.; Decristoforo, C. Nuclear medicine in the detection and management of pancreatic islet-cell tumours. Best Pr. Res. Clin. Endocrinol. Metab. 2005, 19, 213–227. [Google Scholar] [CrossRef]
- Wenger, F.A.; Kilian, M.; Mautsch, I.; Jacobi, C.A.; Steiert, A.; Peter, F.J.; Guski, H.; Schimke, I.; Müller, J.M. Influence of Octreotide on Liver Metastasis and Hepatic Lipid Peroxidation in BOP-Induced Pancreatic Cancer in Syrian Hamsters. Pancreas 2001, 23, 266–272. [Google Scholar] [CrossRef]
- Schwetz, T.A.; Ustione, A.; Piston, D.W. Neuropeptide Y and somatostatin inhibit insulin secretion through different mechanisms. Am. J. Physiol. Metab. 2013, 304, E211–E221. [Google Scholar] [CrossRef]
- Fang, Y.-Z.; Yang, S.; Wu, G. Free radicals, antioxidants, and nutrition. Nutrition 2002, 18, 872–879. [Google Scholar] [CrossRef]
Ingredient | Diet (g/kg) | |
---|---|---|
Protein | Casein | 200 |
Carbohydrates | Corn starch | 660 |
Fat | Soybean oil (without STI) | 50 |
Fiber | Cellulose powder | 30 |
Others | Mineral mixture b | 50 |
Vitamin mixture c | 10 |
Gene Product | Primer Sequence | T (°C) | PCR (bp) |
---|---|---|---|
Glutathione Peroxidase (GSH-Px) | 5′-TGGCATTGGCTTGGTGATTACTGG-3′(F) | 59 | 150 |
5′-GGTGGAAAGGCATCGGGAATGG-3′(R) | 60 | ||
Superoxide Dismutase (SOD) | 5′-CCTTGTGACTGGCATCCCTTAGC-3′(F) | 58 | 105 |
5′-AGGCAGACTGTTAGATGGCTTGTTC-3′(R) | 59 | ||
Somatostatin (SST) | 5′- CCTCTCCCATTCCTCCCTTTTGTTC-3′(F) | 59 | 108 |
5′-GGGCATCATTCTCTGTCTGGTTGG-3′(R) | 58 | ||
Somatostatin Receptor 5 (SSTR5) | 5′-CGTCTGTGCTGGGCTTCTTTGG-3′(F) | 60 | 136 |
5′-ATGCGAGTCACCTTGCGTTCTG-3′(R) | 58 | ||
Trypsin (TPS) | 5′-TCCTCATCTCTACCCACAACATTGC-3′(F) | 60 | 96 |
5′-CACTTCCGAACCATAACCGTAGGC-3′(R) | 58 |
Treatment | 1 Wk | 2 Wk | 3 Wk | 4 Wk | 5 Wk |
---|---|---|---|---|---|
Control | 0.09 ± 0.01 | 0.09 ± 0.01 | 0.09 ± 0.02 | 0.09 ± 0.01 | 0.08 ± 0.01 |
STI | 0.11 ± 0.01 * | 0.10 ± 0.02 | 0.12 ± 0.02 | 0.11 ± 0.02 | 0.10 ± 0.01 |
STI + VC | 0.10 ± 0.02 | 0.10 ± 0.01 | 0.11 ± 0.01 | 0.09 ± 0.02 | 0.09 ± 0.02 |
Treatment | 1 Wk | 2 Wk | 3 Wk | 4 Wk | 5 Wk | |
---|---|---|---|---|---|---|
Serum (nmol/mL) | Control | 2.5 ± 0.3 | 3.4 ± 0.2 | 3.8 ± 0.2 | 4.1 ± 0.2 | 4.5 ± 0.3 |
STI | 4.4 ± 0.2 * | 4.7 ± 0.1 * | 7.6 ± 0.2 * | 5.6 ± 0.1 * | 4.9 ± 0.1 | |
STI + VC | 3.2 ± 0.1 # | 4.6 ± 0.4 * | 5.9 ± 0.2 # | 4.6 ± 0.3 * | 4.8 ± 0.1 | |
Pancreas (nmol/mg prot) | Control | 4.2 ± 0.2 | 4.9 ± 0.3 | 5.5 ± 0.3 | 7.4 ± 0.2 | 8.1 ± 0.3 |
STI | 6.3 ± 0.1 * | 8.3 ± 0.2 * | 15.7 ± 0.4 * | 11.7 ± 0.4 * | 9.6 ± 0.3 * | |
STI + VC | 6.1 ± 0.1 * | 8.1 ± 0.2 * | 13.7 ± 0.3 # | 9.6 ± 0.4 # | 8.6 ± 0.3 |
Treatment | 1 Wk | 2 Wk | 3 Wk | 4 Wk | 5 Wk | |
---|---|---|---|---|---|---|
Serum (U/mL) | Control | 174 ± 3.2 | 162 ± 4.5 | 135 ± 3.5 | 147 ± 3.8 | 117 ± 3.5 |
STI | 150 ± 2.8 * | 120 ± 10 * | 62 ± 1.8 * | 83 ± 0.4 * | 92 ± 1.9 * | |
STI + VC | 162 ± 1.1 # | 133 ± 3.0 * | 77 ± 1.7 # | 94 ± 2.2 # | 106 ± 4.0 # | |
Pancreas (U/mg prot) | Control | 81 ± 4.7 | 68 ± 1.3 | 50 ± 1.0 | 39 ± 1.5 | 22 ± 1.8 |
STI | 49 ± 3.5 * | 38 ± 2.8 * | 10 ± 1.7 * | 18 ± 0.3 * | 16 ± 0.2 * | |
STI + VC | 55 ± 3.5 * | 47 ± 1.3 # | 18 ± 0.4 # | 23 ± 1.2 # | 18 ± 1.7 # |
Treatment | 1 Wk | 2 Wk | 3 Wk | 4 Wk | 5 Wk | |
---|---|---|---|---|---|---|
Serum (U/mL) | Control | 693 ± 33 | 359 ± 28 | 260 ± 10 | 496 ± 35 | 1380 ± 30 |
STI | 481 ± 32 * | 315 ± 57 * | 165 ± 31 * | 410 ± 10 * | 577 ± 45 * | |
STI + VC | 540 ± 28 # | 345 ± 41 # | 240 ± 10 # | 456 ± 44 # | 640 ± 30 * | |
Pancreas (U/mg prot) | Control | 287 ± 12 | 190 ± 10 | 180 ± 10 | 240 ± 10 | 384 ± 1.7 |
STI | 134 ± 14 * | 96 ± 4.5 * | 87 ± 4.8 * | 108 ± 5.5 * | 143 ± 4.5 * | |
STI + VC | 176 ± 20 # | 143 ± 5.0 # | 138 ± 5.0 # | 180 ± 10 # | 230 ± 10 # |
Treatment | 1 Wk | 2 Wk | 3 Wk | 4 Wk | 5 Wk | |
---|---|---|---|---|---|---|
Serum (U/mL) | Control | 84 ± 3 | 92 ± 3 | 95 ± 3 | 97 ± 1 | 98 ± 1 |
STI | 44 ± 3 * | 39 ± 2 * | 25 ± 2 * | 35 ± 3 * | 44 ± 2 * | |
STI + VC | 68 ± 5 # | 62 ± 3 # | 48 ± 5 # | 63 ± 2 # | 69 ± 1 # | |
Pancreas (U/mg prot) | Control | 7.0 ± 0.1 | 7.8 ± 0.2 | 8.5 ± 0.3 | 9.1 ± 0.1 | 9.0 ± 0.2 |
STI | 3.5 ± 0.2 * | 3.3 ± 0.2 * | 2.1 ± 0.1 * | 3.1 ± 0.1 * | 3.6 ± 0.2 * | |
STI + VC | 5.2 ± 0.3 # | 4.3 ± 0.1 # | 3.7 ± 0.1 # | 4.3 ± 0.1 # | 5.2 ± 0.1 # |
Treatment | 1 Wk | 2 Wk | 3 Wk | 4 Wk | 5 Wk | |
---|---|---|---|---|---|---|
Serum (pg/mL) | Control | 50 ± 10 | 20 ± 5.7 | 20 ± 10 | 45 ± 4.3 | 50 ± 10 |
STI | 27 ± 3.5 * | 16 ± 4.2 | 14 ± 0.3 | 19 ± 3.7 * | 23 ± 2.8 * | |
STI + VC | 30 ± 10 * | 21 ± 5.1 | 16 ± 5.6 | 30 ± 10 * | 30 ± 10 * | |
Pancreas (pg/mg prot) | Control | 29 ± 1.2 | 25 ± 1.5 | 12 ± 0.4 | 29 ± 2.0 | 98 ± 1.7 |
STI | 21 ± 1.8 * | 19 ± 1.7 * | 10 ± 0.2 | 20 ± 1.5 * | 38 ± 0.5 * | |
STI + VC | 24 ± 2.3 # | 22 ± 0.1 # | 10 ± 0.1 | 22 ± 1.1 * | 87 ± 1.6 # |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, C.; Yang, Q.; Li, S.; Zhao, L.; Lyu, B.; Wang, Y.; Yu, H. Effects of Soybean Trypsin Inhibitor on Pancreatic Oxidative Damage of Mice at Different Growth Periods. Foods 2023, 12, 1691. https://doi.org/10.3390/foods12081691
Gu C, Yang Q, Li S, Zhao L, Lyu B, Wang Y, Yu H. Effects of Soybean Trypsin Inhibitor on Pancreatic Oxidative Damage of Mice at Different Growth Periods. Foods. 2023; 12(8):1691. https://doi.org/10.3390/foods12081691
Chicago/Turabian StyleGu, Chunmei, Qiuping Yang, Shujun Li, Linlin Zhao, Bo Lyu, Yingnan Wang, and Hansong Yu. 2023. "Effects of Soybean Trypsin Inhibitor on Pancreatic Oxidative Damage of Mice at Different Growth Periods" Foods 12, no. 8: 1691. https://doi.org/10.3390/foods12081691
APA StyleGu, C., Yang, Q., Li, S., Zhao, L., Lyu, B., Wang, Y., & Yu, H. (2023). Effects of Soybean Trypsin Inhibitor on Pancreatic Oxidative Damage of Mice at Different Growth Periods. Foods, 12(8), 1691. https://doi.org/10.3390/foods12081691