Antibiotic Resistance Profiles and ARG Detection from Isolated Bacteria in a Culture-Dependent Study at the Codfish Industry Level
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Collection
2.1.1. Food Matrices
2.1.2. Process Samples
2.2. Qualitative Microbiological Screenings
2.2.1. Food Matrices
2.2.2. Environmental and Personnel Sample Collections
2.3. Bacterial Identification and Antibiotic Susceptibility Tests (ASTs)
MRS and MSS Staphylococcus spp.
2.4. Biomolecular Assays
Bacterial DNA Extraction and ARG Screening
2.5. Statistical Analysis
3. Results
3.1. Bacterial Identification
3.2. AST Results
3.3. ARG Detection
3.4. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Food Safety Authority (EFSA); Panel on Biological Hazards (BIOHAZ); Koutsoumanis, K.; Allende, A.; Álvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; et al. Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. EFSA J. 2021, 19, e06651. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency (EMA). Advice on the Designation of Antimicrobials or Groups of Antimicrobials Reserved for Treatment of Certain Infections in Humans—In relation to Implementing Measures under Article 37(5) of Regulation (EU) 2019/6 on Veterinary MEDICINAL Products. 2022. Available online: https://www.ema.europa.eu/en/documents/regulatory-procedural-guideline/advice-designation-antimicrobials-groups-antimicrobials-reserved-treatment-certain-infections-humans/6-veterinary-medicinal-products_en.pdf (accessed on 4 August 2022).
- Hernando-Amado, S.; Coque, T.M.; Baquero, F.; Martínez, J.L. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat. Microbiol. 2019, 4, 1432–1442. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). Approved Drugs for Use in Seafoods; FAO: Rome, Italy, 2020; Available online: http://www.fao.org/3/ca9229en/ca9229en.pdf (accessed on 4 August 2022).
- Loayza, F.; Graham, J.P.; Trueba, G. Factors Obscuring the Role of E. coli from Domestic Animals in the Global Antimicrobial Resistance Crisis: An Evidence-Based Review. Int. J. Environ. Res. Public Health 2020, 17, 3061. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Dai, X. High Salt Cross-Protects Escherichia coli from Antibiotic Treatment through Increasing Efflux Pump Expression. mSphere 2018, 3, e00095-18. [Google Scholar] [CrossRef]
- Higuera-Llantén, S.; Vásquez-Ponce, F.; Barrientos-Espinoza, B.; Mardones, F.O.; Marshall, S.H.; Olivares-Pacheco, J. Extended antibiotic treatment in salmon farms select multiresistant gut bacteria with a high prevalence of antibiotic resistance genes. PLoS ONE 2018, 13, e0203641. [Google Scholar] [CrossRef] [PubMed]
- Devirgiliis, C.; Zinno, P.; Perozzi, G. Update on antibiotic resistance in foodborne Lactobacillus and Lactococcus species. Front. Microbiol. 2013, 4, 301. [Google Scholar] [CrossRef] [PubMed]
- Dafale, N.A.; Srivastava, S.; Purohit, H.J. Zoonosis: An Emerging Link to Antibiotic Resistance Under “One Health Approach”. Indian J. Microbiol. 2020, 60, 139–152. [Google Scholar] [CrossRef]
- Hassan, M.M.; El Zowalaty, M.E.; Lundkvist, Å.; Järhult, J.D.; Khan Nayem, M.R.; Tanzin, A.Z. Residual antimicrobial agents in food originating from animals. Trends Food Sci. Technol. 2021, 111, 141–150. [Google Scholar] [CrossRef]
- Delannoy, S.; Hoffer, C.; Youf, R.; Dauvergne, E.; Webb, H.E.; Brauge, T. High Throughput Screening of Antimicrobial Resistance Genes in Gram-Negative Seafood Bacteria. Microorganisms 2022, 10, 1225. [Google Scholar] [CrossRef]
- Hossain, A.; Habibullah-Al-Mamun, M.; Nagano, I.; Masunaga, S.; Kitazawa, D.; Matsuda, H. Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: Risks, current concern, and future thinking. Environ. Sci. Pollut. Res. Int. 2022, 29, 11054–11075. [Google Scholar] [CrossRef]
- Thiang, L.E.; Chai, C.Y.S.; Lee, C.W.; Takada, H.; Wang, A.J.; Chai, L.C.; Bong, C.W. Tetracycline Resistance and Prevalence of Tetracycline Resistance Genes in Bacteria from Marine Aquaculture Farms in Peninsular Malaysia. Sains Malays. 2022, 51, 345–357. [Google Scholar] [CrossRef]
- Rodrigues, M.J.; Ho, P.; López-Caballero, M.E.; Vaz-Pires, P.; Nunes, M.L. Characterization and identification of microflora from soaked cod and respective salted raw materials. Food Microbiol. 2003, 20, 471–481. [Google Scholar] [CrossRef]
- Rode, T.M.; Rotabakk, B.T. Extending shelf life of desalted cod by high pressure processing. Inn. Food Sci. Emerg. Dis. 2021, 69, 102476. [Google Scholar] [CrossRef]
- Arnaud, C.; de Lamballerie, M.; Pottier, L. Effect of high-pressure processing on the preservation of frozen and re-thawed sliced cod (Gadus morhua) and salmon (Salmo salar) fillets. High Press. Proces. 2018, 38, 62–79. [Google Scholar] [CrossRef]
- Oliveira, F.A.d.; Neto, O.C.; Santos, L.M.R.d.; Ferreira, E.H.R.; Rosenthal, A. Effect of high pressure on the fish meat quality—A review. Trends Food Sci. Technol. 2017, 66, 1–19. [Google Scholar] [CrossRef]
- ISO 11290-1,2:2017; Horizontal Method for the Detection and Enumeration of Listeria monocytogenes and of Listeria spp.—Part 1: Detection Method; Part 2: Enumeration Method. ISO: London, UK, 2017. Available online: https://www.iso.org/standard/60313.html (accessed on 2 August 2022).
- ISO 21872-1:2017; Microbiology of the Food Chain—Horizontal Method for the Determination of Vibrio spp.—Part 1: Detection of Potentially Enteropathogenic Vibrio parahaemolyticus, Vibrio cholerae and Vibrio vulnificus. ISO: London, UK, 2017. Available online: https://www.iso.org/standard/74112.html (accessed on 5 September 2022).
- ISO 6888-1:2018; Horizontal Method for the Enumeration of Coagulase-Positive Staphylococci (Staphylococcus aureus and Other Species)—Part 1: Method Using Baird-Parker Agar Medium. ISO: London, UK, 2018. Available online: https://www.iso.org/standard/64947.html (accessed on 15 September 2022).
- ISO 7898-2:2000; Water Quality—Detection and Enumeration of Intestinal Enterococci—Part 2: Membrane Filtration Method. ISO: London, UK, 2000. Available online: https://www.iso.org/standard/14854.html (accessed on 10 October 2022).
- ISO 16654-1:2017; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Detection of Escherichia coli O157—Amendment 1: Annex B: Result of Interlaboratory Studies. ISO: London, UK, 2017. Available online: https://www.iso.org/standard/64704.html (accessed on 15 October 2022).
- ISO 16266:2008; Water Quality—Detection and Enumeration of Pseudomonas aeruginosa—Method by Membrane Filtration. ISO: London, UK, 2008. Available online: https://www.iso.org/standard/39272.html (accessed on 15 October 2022).
- Clinical & Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 33rd Edition. Available online: https://clsi.org/ (accessed on 10 January 2023).
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- McClure, J.A.; Conly, J.M.; Lau, V.; Elsayed, S.; Louie, T.; Hutchins, W. Novel multiplex PCR assay for detection of the staphylococcal virulence marker Panton-Valentine leukocidin genes and simultaneous discrimination of methicillin-susceptible from -resistant staphylococci. J. Clin. Microbiol. 2006, 44, 1141–1144. [Google Scholar] [CrossRef]
- Kozak, G.K.; Boerlin, P.; Janecko, N.; Reid-Smith, R.J.; Jardine, C. Antimicrobial resistance in Escherichia coli isolates from swine and wild small mammals in the proximity of swine farms and in natural environments in Ontario, Canada. Appl. Environ. Microbiol. 2009, 75, 559–566. [Google Scholar] [CrossRef]
- Monstein, H.J.; Ostholm-Balkhed, A.; Nilsson, M.V.; Nilsson, M.; Dornbusch, K.; Nilsson, L.E. Multiplex PCR amplification assay for the detection of blaSHV, blaTEM and blaCTX-M genes in Enterobacteriaceae. APMIS 2007, 115, 1400–1408. [Google Scholar] [CrossRef]
- Liao, C.Y.; Balasubramanian, B.; Peng, J.J.; Tao, S.R.; Liu, W.C.; Ma, Y. Antimicrobial Resistance of Escherichia coli From Aquaculture Farms and Their Environment in Zhanjiang, China. Front. Vet. Sci. 2021, 8, 806653. [Google Scholar] [CrossRef]
- Helmy, M.M.; Wasfi, R. Phenotypic and molecular characterization of plasmid mediated AmpC β-lactamases among Escherichia coli, Klebsiella spp., and Proteus mirabilis isolated from urinary tract infections in Egyptian hospitals. BioMed Res. Int. 2014, 2014, 171548. [Google Scholar] [CrossRef] [PubMed]
- Hatrongjit, R.; Kerdsin, A.; Akeda, Y.; Hamada, S. Detection of plasmid-mediated colistin-resistant and carbapenem-resistant genes by multiplex PCR. MethodsX 2018, 5, 532–536. [Google Scholar] [CrossRef]
- Kishk, R.M.; Anani, M.M.; Nemr, N.A.; Soliman, N.M.; Fouad, M.M. Inducible clindamycin resistance in clinical isolates of Staphylococcus aureus in Suez Canal University Hospital, Ismailia, Egypt. J. Infect. Dev. Ctries. 2020, 14, 1281–1287. [Google Scholar] [CrossRef] [PubMed]
- Bender, J.K.; Fleige, C.; Klare, I.; Werner, G. Development of a multiplex-PCR to simultaneously detect acquired linezolid resistance genes cfr, optrA and poxtA in enterococci of clinical origin. J. Microbiol. Methods 2019, 160, 101–103. [Google Scholar] [CrossRef] [PubMed]
- García, V.; Montero, I.; Bances, M.; Rodicio, R.; Rodicio, M.R. Incidence and Genetic Bases of Nitrofurantoin Resistance in Clinical Isolates of Two Successful Multidrug-Resistant Clones of Salmonella enterica Serovar Typhimurium: Pandemic “DT 104” and pUO-StVR2. Microb. Drug Resist. 2017, 23, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Costa, D.; Poeta, P.; Sáenz, Y.; Vinué, L.; Coelho, A.C.; Matos, M. Mechanisms of antibiotic resistance in Escherichia coli isolates recovered from wild animals. Microb. Drug Res. 2008, 14, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Xia, Q.Q.; Wang, H.N.; Zhang, A.Y. Detection of tetracycline resistant genes in bacterial by using a triple-PCR method. J. Sichuan Univ. 2013, 50, 171–176. [Google Scholar] [CrossRef]
- Gevers, D.; Danielsen, M.; Huys, G.; Swings, J. Molecular characterization of tet(M) genes in Lactobacillus isolates from different types of fermented dry sausage. J. Appl. Environ. Microbiol. 2003, 69, 1270–1275. [Google Scholar] [CrossRef]
- Trzcinski, K.; Cooper, B.S.; Hryniewicz, W.; Dowson, C.G. Expression of resistance to tetracyclines in strains of methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 2000, 45, 763–770. [Google Scholar] [CrossRef]
- Nomura, T.; Hashimoto, Y.; Kurushima, J.; Hirakawa, H.; Tanimoto, K.; Zheng, B. New colony multiplex PCR assays for the detection and discrimination of vancomycin-resistant enterococcal species. J. Microbiol. Methods 2018, 145, 69–72. [Google Scholar] [CrossRef]
- Kuuliala, L.; Al Hage, Y.; Ioannidis, A.G.; Sader, M.; Kerckhof, F.M.; Vanderroost, M. Microbiological, chemical and sensory spoilage analysis of raw Atlantic cod (Gadus morhua) stored under modified atmospheres. Food Microbiol. 2018, 70, 232–244. [Google Scholar] [CrossRef] [PubMed]
- Abdou, M.S.; Ebied, N.A. Isolation of highly antibiotic-resistant Staph. aureus from salted fish sold in markets. Alex. J. Vet. Sci. 2021, 71, 30–45. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Liu, X.; Lei, Y.; Regenstein, J.M.; Luo, Y. Characterization of the microbial composition and quality of lightly salted grass carp (Ctenopharyngodon idellus) fillets with vacuum or modified atmosphere packaging. Int. J. Food Microbiol. 2019, 293, 87–93. [Google Scholar] [CrossRef]
- Helsens, N.; Calvez, S.; Prevost, H.; Bouju-Albert, A.; Maillet, A.; Rossero, A. Antibiotic Resistance Genes and Bacterial Communities of Farmed Rainbow Trout Fillets (Oncorhynchus mykiss). Front. Microbiol. 2020, 11, 590902. [Google Scholar] [CrossRef]
- Biswas, K.; Sharma, P.; Joshi, S.R. Co-occurrence of antimicrobial resistance and virulence determinants in enterococci isolated from traditionally fermented fish products. J. Glob. Antimicrob. Resist. 2019, 17, 79–83. [Google Scholar] [CrossRef]
- Shariati, A.; Dadashi, M.; Chegini, Z.; van Belkum, A.; Mirzaii, M.; Khoramrooz, S.S. The global prevalence of Daptomycin, Tigecycline, Quinupristin/Dalfopristin, and Linezolid-resistant Staphylococcus aureus and coagulase-negative staphylococci strains: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control 2020, 9, 56. [Google Scholar] [CrossRef] [PubMed]
- Timmermans, M.; Bogaerts, B.; Vanneste, K.; De Keersmaecker, S.; Roosens, N.; Kowalewicz, C. Large diversity of linezolid-resistant isolates discovered in food-producing animals through linezolid selective monitoring in Belgium in 2019. J. Antimicrob. Chemother. 2021, 77, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Smoglica, C.; Vergara, A.; Angelucci, S.; Festino, A.R.; Antonucci, A.; Marsilio, F.; Di Francesco, C.E. Evidence of Linezolid Resistance and Virulence Factors in Enterococcus spp. Isolates from Wild and Domestic Ruminants, Italy. Antibiotics 2022, 11, 223. [Google Scholar] [CrossRef]
- Li, H.; Stegger, M.; Dalsgaard, A.; Leisner, J.J. Bacterial content and characterization of antibiotic resistant Staphylococcus aureus in Danish sushi products and association with food inspector rankings. Int. J. Food Microbiol. 2019, 305, 108244. [Google Scholar] [CrossRef]
- Yuan, J.; Ni, M.; Liu, M.; Zheng, Y.; Gu, Z. Occurrence of antibiotics and antibiotic resistance genes in a typical estuary aquaculture region of Hangzhou Bay, China. Mar. Pollut. Bullet. 2019, 138, 376–384. [Google Scholar] [CrossRef]
- Majumdar, R.K.; Gupta, S. Isolation, identification and characterization of Staphylococcus sp. from Indian ethnic fermented fish product. Lett. Appl. Microbiol. 2020, 71, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Muziasari, W.I.; Pitkänen, L.K.; Sørum, H.; Stedtfeld, R.D.; Tiedje, J.M.; Virta, M. The Resistome of Farmed Fish Feces Contributes to the Enrichment of Antibiotic Resistance Genes in Sediments below Baltic Sea Fish Farms. Front. Microbiol. 2017, 7, 2137. [Google Scholar] [CrossRef]
- Strommenger, B.; Kettlitz, C.; Werner, G.; Witte, W. Multiplex PCR assay for simultaneous detection of nine clinically relevant antibiotic resistance genes in Staphylococcus aureus. J. Clin. Microbiol. 2003, 41, 4089–4094. [Google Scholar] [CrossRef] [PubMed]
- Lambrecht, E.; Van Coillie, E.; Van Meervenne, E.; Boon, N.; Heyndrickx, M.; Van de Wiele, T. Commensal E. coli rapidly transfer antibiotic resistance genes to human intestinal microbiota in the Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME). Int. J. Food Microbiol. 2019, 311, 108357. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.H.; Manuzon, M.; Lehman, M.; Wan, K.; Luo, H.; Wittum, T.E. Food commensal microbes as a potentially important avenue in transmitting antibiotic resistance genes. FEMS Microbiol. Lett. 2006, 254, 226–231. [Google Scholar] [CrossRef]
- Food and Drug Administration (FDA). Draft Guidance for Industry: Hazard Analysis and Risk-Based Preventive Controls for Human Food. 2018. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/draft-guidance-industry-hazard-analysis-and-risk-based-preventive-controls-human-food (accessed on 11 April 2023).
Bacterial Strains | Culturing Broths | Selective Agar Media | Supplements | Standard Methods |
---|---|---|---|---|
Listeria monocytogenes | HFB | ALOA agar (OXOIDTM) | Listeria (OXOIDTM) | [18] |
Vibrio spp. | APW | TCBS agar (OXOIDTM) | NaCl 20% | [19] |
Staphylococcus spp. | APW | Baird–Parker agar (OXOIDTM) | R.P.F. (OXOIDTM) | [20] |
Enterococcus spp. | BPW | Slanetz–Bartley agar | [21] | |
Enterobacteriaceae | BPW | Mac Conkey agar | [22] | |
Pseudomonas spp. | BPW | Pseudomonas agar | Pseudomonas C-F-C (OXOIDTM) | [23] |
Categories | Target Genes | Primers | Amplicons (bp) | References |
---|---|---|---|---|
Aminoglycosides | aphA1 | F: ATGGGCTCGCGATAATGTC R: CTCACCGAGGCAGTTCCAT | 600 | [27] |
aphA2 | F: GATTGAACAAGATGGATTGC R: CCATGATGGATACTTTCTCG | 347 | ||
aadB | F: GAGGAGTTGGACTATGGATT R: CTTCATCGGCATAGTAAAAG | 208 | ||
aac(3)IV | F: TGCTGGTCCACAGCTCCTTC R: CGGATGCAGGAAGATCAA | 653 | ||
Beta-lactams | blaTEM | F: TCGCCGCATACACTATTCTCAGAATGA R: ACGCTCACCGGCTCCAGATTTAT | 445 | [28] |
blaCTX-M | F: GGGCTGAGATGGTGACAAAGAG R: CGTGCGAGTTCGATTTATTCAAC | 876 | [29] | |
blaCIT | F: TGGCCAGAACTGACAGGCAAA R: TTTCTCCTGAACGTGGCTGGC | 462 | [30] | |
Carbapenem | blaIMP | F: GGAATAGAGTGGCTTAAYTCTC R: GGTTTAAYAAAACAACCACC | 232 | * [31] |
blaOXA-48-like | F: GCGTGGTTAAGGATGAACAC R: CATCAAGTTCAACCCAACCG | 438 | ||
blaNDM | F: GGTTTGGCGATCTGGTTTTC R: CGGAATGGCTCATCACGATC | 621 | ||
blaKPC | F: CGTCTAGTTCTGCTGTCTTG R: CTTGTCATCCTTGTTAGGCG | 790 | ||
Clindamycin | ermA | F: GTTCAAGAACAATCAATACAGGAG R: GGATCAGGAAAAGGACATTTTAC | 421 | * [32] |
ermB | F: CCGTTTACGAAATTGGAACAGGTAAAGGGC R: GAATCGAGACTTGAGTGTGC | 359 | ||
ermC | F: GCTAATATTGTTTAAATCGTCAATTCC R: GGATCAGGAAAAGGACATTTTAC | 572 | ||
Linezolid | cfr | F: TGAAGTATAAAGCAGGTTGGGAGTC R: AACCATATAATTGACCACAAGCAGC | 746 | * [33] |
optrA | F: TACTTGATGAACCTACTAACCA R: CCTTGAACTACTGATTCTCGG | 422 | ||
poxtA | F: AAAGCTACCCATAAAATATC R: TCATCAAGCTGTTCGAGTTC | 533 | ||
Nitrofurantoin | nfsA | F: CTGGCGCTTGCTCTGCTATC R: GCCCGCGTATCATACACTGG | 964 | [34] |
nfsB | F: ATCACCGTCTCGCTACTCAAC R: CGCGCCATTGATCATTGAGG | 921 | ||
Sulfamethoxazole | sul1 | F: TGGTGACGGTGTTCGGCATTC R: GCGAGGGTTTCCGAGAAGGTG | 789 | [35] |
sul2 | F: CGGCATCGTCAACATAACC R: GTGTGCGGATGAAAGTCAG | 722 | ||
sul3 | F: GAGCAAGATTTTTGGAATCG R: CATCTGCAGCTAACCTAGGGTTTGGA | 792 | ||
Tetracycline | tetA | F: GGCACCGAATGCGTATGAT R: AAGCGAGCGGGTTGAGAG | 480 | * [36] |
tetC | F: CTGGGCTGCTTCCTAATGC R: AGCTGTCCCTGATGGTCGT | 580 | ||
tetM | F: GAGGTCCGTCTGAACTTTGCG R: AGAAAGGATTTGGCGGCACT | 915 | ||
tetK | F: TTATGGTGGTTGTAGCTAGAAA R: AAAGGGTTAGAAACTCTTGAAA | 382 | [37] | |
tetL | F: ATAAATTGTTTCGGGTCGGTAAT R: AACCAGCCAACTAATGACAATGAT | 1077 | [38] | |
Vancomycin | vanA | F: GCAAGTCAGGTGAAGATGGA R: GCTAATACGATCAAGCGGTC | 171 | * [39] |
vanB | F: GATGTGTCGGTAAAATCCGC R: CCACTTCGCCGACAATCAAA | 271 | ||
vanC1 | F: GTATCAAGGAAACCTCGCGA R: CGTAGGATAACCCGACTTCC | 836 | ||
vanC2 | F: GCAAACGTTGGTACCTGATG R: GGTGATTTTGGCGCTGATCA | 523 | ||
vanD | F: TGGAATCACAAAATCCGGCG R: TWCCCGCATTTTTCACAACS | 311 | ||
vanM | F: GGCAGAGATTGCCAACAACA R: AGGTAAACGAATCTGCCGCT | 425 | ||
vanN | F: CCTCAAATCAGCAGCTAGTG R: GCTCCTGATAAGTGATACCC | 941 |
Sources | Total Isolates | Gram+ and Gram− | Specimen Types |
---|---|---|---|
450 Fish food matrices | 537 strains | 331 Gram+ (61.6%) | 80 mSD (24.1%) |
78 MSD (23.6%) | |||
73 mSP (22.1%) | |||
65 MSP (19.6%) | |||
15 mHPP (4.6%) | |||
20 MHPP (6.0%) | |||
206 Gram− (38.4%) | 60 mSD (29.2%) | ||
57 MSD (27.6%) | |||
42 mSP (20.4%) | |||
37 MSP 18.0%) | |||
10 mHPP (4.8%) | |||
0 MHPP (0.0%) | |||
100 Process samples | 147 strains | 94 Gram+ (63.9%) | 62 OH (65.9%) |
32 S (34.1%) | |||
53 Gram− (36.1%) | 31 OH (58.5%) | ||
22 S (41.5%) |
Staphylococci Strains | Sources | ||||||||
---|---|---|---|---|---|---|---|---|---|
Tot. | mSD | mSP | mHPP | MSD | MSP | MHPP | OH | S | |
S. aureus | n. 51 | n. 7 (13.7%) | n. 5 (9.8%) | - | n. 12 (23.5%) | n. 9 (17.6%) | - | n. 10 (19.6%) | n. 8 (15.8%) |
S. sciuri | n. 88 | n. 17 (19.3%) | n. 10 (11.4%) | n. 7 (7.9%) | n. 21 (23.9%) | n. 7 (7.9%) | n. 8 (9.1%) | n. 15 (17.1%) | n. 3 (3.4%) |
S. lentus | n. 88 | n. 15 (17.1%) | n. 21 (23.9%) | n. 5 (5.7%) | n. 14 (15.9%) | n. 13 (14.8%) | n. 7 (7.9%) | n. 11 (12.5%) | n. 2 (2.2%) |
S. saprophyticus | n. 75 | n. 20 (26.7%) | n. 12 (16.0%) | - | n. 10 13.3% | n. 18 (24.0%) | - | n. 3 (4.0%) | n. 12 (16.0%) |
S. xylosus | n. 5 | n. 2 (40.0%) | n. 2 (40.0%) | - | n. 1 (20.0%) | - | - | - | - |
S. haemolyticus | n. 2 | - | n. 2 (100.0%) | - | - | - | - | - | - |
S. simulans | n. 1 | - | n. 1 (100.0%) | - | - | - | - | - | - |
S. warneri | n. 1 | n. 1 (100.0%) | - | - | - | - | - | - | - |
Gram-Negative Strains | Sources | ||||||||
---|---|---|---|---|---|---|---|---|---|
Tot. | mSD | mSP | mHPP | MSD | MSP | MHPP | OH | S | |
E. coli | n. 18 | n. 8 (44.4%) | n. 5 (27.8%) | - | n. 3 (16.7%) | n. 2 (11.1%) | - | - | - |
Salmonella serovar. Enteritidis | n. 1 | n. 1 (100.0%) | - | - | - | - | - | - | - |
Cronobacter sakazakii | n. 2 | n. 1 (50.0%) | n.1 (50.0%) | - | - | - | - | - | - |
Acinetobacter lwofii | n. 62 | n. 13 (20.2%) | n. 6 (9.7%) | n. 1 (1.8%) | n. 17 (27.6%) | n. 15 (24.6%) | - | - | n. 10 (16.1%) |
Sphingomonas paucimobilis | n. 50 | n. 12 (24.0%) | - | n. 4 (8.0%) | n. 10 (20.0%) | n. 9 (18.0%) | - | n. 15 (30.0%) | - |
Pseudomonas luteola | n. 41 | n. 12 (29.3%) | n. 13 (31.7%) | - | n. 4 (9.7%) | - | - | n. 12 (29.3%) | - |
Serratia fonticola | n. 37 | - | n. 17 (45.9%) | - | n. 12 (32.4%) | n. 6 (16.3%) | - | - | n. 2 (5.4%) |
Pseudomonas fluorescens | n. 27 | n. 8 (29.7%) | - | n. 5 (18.5%) | n. 7 (25.9%) | - | - | - | n. 7 (25.9%) |
Citrobacter freundii | n. 21 | n. 5 (23.8%) | - | - | n. 4 (19.0%) | n. 5 (23.8%) | - | n. 4 (19.0%) | n. 3 (14.4%) |
Gram-Positive Strains | Antibiotic Resistances (MIC * Values) | |||||
---|---|---|---|---|---|---|
CLI | CTX | LNZ | OXA | TET | VAN | |
S. aureus | 37/51 ** (≥4 µg/mL) | - | 13/51 ** (≥8 µg/mL) | 29/51 ** (≥4 µg/mL) | 39/51 ** (≥16 µg/mL) | 5/51 ** (≥32 µg/mL) |
S. sciuri | 65/88 ** (≥4 µg/mL) | 3/88 ** (≥64 µg/mL) | 10/88 ** (≥8 µg/mL) | 52/88 ** (≥4 µg/mL) | 73/88 ** (≥16 µg/mL) | 15/88 ** (≥32 µg/mL) |
S. lentus | 37/88 ** (≥4 µg/mL) | - | 7/88 ** (≥8 µg/mL) | 69/88 ** (≥4 µg/mL) | 77/88 ** (≥16 µg/mL) | 13/88 ** (≥32 µg/mL) |
S. saprophyticus | 32/75 ** (≥4 µg/mL) | 2/75 ** (≥64 µg/mL) | 11/75 ** (≥8 µg/mL) | 49/75 ** (≥4 µg/mL) | 67/75 ** (≥16 µg/mL) | 13/75 ** (≥32 µg/mL) |
S. xylosus | 1/5 (≥4 µg/mL) | - | - | - | 2/5 (≥16 µg/mL) | - |
S. haemolyticus | - | - | - | - | 1/2 (≥16 µg/mL) | - |
E. faecalis | 23/44 ** (≥4 µg/mL) | - | 27/44 ** (≥8 µg/mL) | - | 35/44 ** (≥16 µg/mL) | 17/44 ** (≥32 µg/mL) |
E. durans | 5/17 ** (≥4 µg/mL) | - | 4/17 ** (≥8 µg/mL) | - | 9/17 ** (≥16 µg/mL) | 4/17 ** (≥32 µg/mL) |
E. faecium | 1/7 ** (≥4 µg/mL) | - | 2/7 ** (≥8 µg/mL) | - | 4/7 ** (≥16 µg/mL) | 1/7 ** (≥32 µg/mL) |
K. kristinae | - | - | - | - | 5/24 (≥16 µg/mL) | - |
K. varians | - | - | - | - | 1/11 (≥16 µg/mL) | - |
Gram-Negative Strains | Antibiotic Resistances (MIC * Values) | ||||||
---|---|---|---|---|---|---|---|
AMK | CTX | ERP | CN | MRM | NIT | SUL | |
E. coli | - | 6/18 ** (≥64 µg/mL) | 2/18 ** (≥8 µg/mL) | - | - | 2/18 ** (≥64 µg/mL) | - |
Salmonella serovar Enteritidis | 1/1 (≥64 µg/mL) | - | - | 1/1 (≥16 µg/mL) | - | - | - |
C. sakazakii | - | 1/2 (≥64 µg/mL) | - | - | - | - | - |
A. lwofii | 8/62 (≥64 µg/mL) | - | - | 4/62 (≥16 µg/mL) | - | - | - |
S. paucimobilis | - | 10/50 (≥64 µg/mL) | - | - | - | - | - |
P. luteola | - | 9/41 ** (≥64 µg/mL) | - | - | 4/41 ** (≥16 µg/mL) | 4/41 ** (≥512 µg/mL) | - |
S. fonticola | - | 4/37 (≥64 µg/mL) | - | - | - | 3/37 (≥512 µg/mL) | - |
C. freundii | - | 1/21 (≥64 µg/mL) | - | - | - | - | 1/21 (≥16 µg/mL) |
Bacterial Strain | Antibiotics | Resistant Strains | rARGs | Susceptible Strains | sARGs |
---|---|---|---|---|---|
S. aureus | AMK | - | - | 51/51 | 12/51 aac(3)IV; 5/51 aphA1 |
CLI | 37/51 | 37/37 ermC; 19/37 ermB | 14/51 | 4/14 ermC | |
MRM; ERP | - | - | 51/51 | 7/51 blaKPC; 3/51 blaIMP | |
LNZ | 13/51 | 13/13 cfr; 4/13 optrA; 1/13 poxtA | 38/51 | 7/38 cfr; 10/38 poxtA | |
OXA | 29/51 | 29/29 mecA | 22/51 | 11/22 mecA | |
TET | 39/51 | 39/39 tetC; 32/39 tetK, tetL | 12/51 | 10/12 tetC; 2/12 tetA, tetB | |
VAN | 5/51 | 5/5 vanD | - | - | |
SUL | - | - | 51/51 | 15/51 sul2; 8/51 sul3 | |
S. sciuri | CLI | 65/88 | 65/65 ermC; 42/65 ermB; 17/65ermA | 23/88 | 9/23 ermC; 5/23 ermB |
CTX | 3/88 | 3/3 blaTEM; 1/3 blaCIT | 85/88 | 17/85 blaTEM; 5/85 blaCTX-M | |
LNZ | 10/88 | 10/10 cfr; 6/10 poxtA | 78/88 | 21/78 cfr; 19/78 optrA | |
OXA | 52/88 | 52/52 mecA | 36/88 | 19/36 mecA | |
TET | 73/88 | 73/73 tetC, tetK; 25/73 tetL | 15/88 | 9/15 tetC, tetK, tetM | |
VAN | 15/88 | 15/15 vanD; 2/15 vanN | 73/88 | 4/73 vanD | |
S. lentus | CLI | 37/88 | 37/37 ermC; 12/37 ermB | 51/88 | 13/51 ermC; 3/51 ermB |
LNZ | 7/88 | 7/7 cfr; 1/7 optrA | 81/88 | 6/81 cfr; 1/81 optrA | |
OXA | 69/88 | 69/69 mecA | 19/88 | 5/19 mecA | |
TET | 77/88 | 77/88 tetC, tetK; 29/88 tetL | 11/88 | 3/11 tetC, tetM | |
VAN | 13/88 | 13/13 vanD | 75/88 | - | |
SUL | - | - | 88/88 | 4/88 sul2; 1/88 sul3 | |
S. saprophyticus | CLI | 32/75 | 32/32 ermC; 17/32 ermB | 43/75 | 5/43 ermC |
CTX | 2/75 | 2/2 blaTEM | 73/75 | - | |
LNZ | 11/75 | 11/11 cfr | 64/75 | - | |
OXA | 49/75 | 49/49 mecA | 26/75 | 11/26 mecA | |
TET | 67/75 | 67/67 tetC, tetK; 41/67 tetL; 11/67 tetM | 8/75 | 8/8 tetC; 3/8 tetM | |
VAN | 13/75 | 13/13 vanD | 62/75 | - | |
S. xylosus | CLI | 1/5 | 1/1 ermC | 4/5 | - |
TET | 2/5 | 2/2 tetC, tetK, tetL | 3/5 | 1/3 tetM | |
S. haemolyticus | TET | 1/2 | 1/2 tetC | 1/2 | - |
AMK | - | - | 44/44 | 5/44 aphA1 | |
CLI | 23/44 | 23/23 ermC; 9/23 ermB | 21/44 | 5/21 ermC | |
LNZ | 27/44 | 27/27 cfr; 17/27 optrA; 6/27 poxtA | 17/44 | 9/17 cfr; 3/17 optrA | |
SUL | - | - | 44/44 | 2/44 sul2, sul3 | |
TET | 35/44 | 35/35 tetC; 17/35 tetK, tetL; 5/35 tetM | 9/44 | 3/9 tetC, tetM | |
VAN | 17/44 | 17/17 vanD | 27/44 | - | |
E. durans | CLI | 5/17 | 5/5 ermC | 12/17 | 1/12 ermC |
LNZ | 4/17 | 4/4 cfr; 2/4 optrA, poxtA | 13/17 | 5/13 cfr | |
TET | 9/17 | 9/9 tetC, tetK, tetL, tetM | 8/17 | 6/8 tetC, tetK | |
VAN | 4/17 | 4/4 vanD | 13/17 | - | |
E. faecium | CLI | 1/7 | 1/1 ermC | 6/7 | - |
LNZ | 2/7 | 2/2 cfr, optrA; 1/2 poxtA | 5/7 | - | |
TET | 4/7 | 4/4 tetC, tetL; 1/4 tetM | 3/7 | 3/3 tetC, tetM | |
VAN | 1/7 | 1/1 vanD | 6/7 | - | |
K. kristinae | TET | 5/24 | 5/5 tetC; 1/5 tetK, tetL | 19/24 | 7/19 tetC |
MRM | - | - | 24/24 | 3/24 blaNDM | |
K. varians | TET | 1/1 tetC | 4/11 tetK, tetL | ||
CTX | 6/18 | 6/6 blaTEM, blaCTX-M | 12/18 | 7/18 blaCIT, blaTEM, blaCTX-M | |
ERP | 2/18 | 2/2 blaIMP; blaKPC; 1/2 blaOXA-48-like | 16/18 | 5/16 blaKPC; 3/16 blaIMP | |
NIT | 2/18 | 2/2 nfsA, nfsB | 16/18 | - | |
SUL | - | - | 18/18 | 4/18 sul2 | |
Salmonella serovar. Enteritidis | AMK | 1/1 | 1/1 aphA1 | - | |
CN | 1/1 | - | - | ||
MRM | - | - | 1/1 | 1/1 blaOXA-48-like; | |
NIT | - | - | 1/1 | 1/1 nfsA, nfsB; | |
SUL | - | - | 1/1 | 1/1 sul2; | |
TET | - | - | 1/1 | 1/1 tetA, tetC, tetM | |
C. sakazakii | CTX | 1/2 | 1/2 blaTEM | 1/2 | - |
ERP | - | - | - | 1/2 blaIMP | |
A. lwofii | AMK | 8/62 | 8/8 aphA1; 3/8 aac(3)IV | 54/62 | - |
CN | 4/62 | 58/62 | - | ||
CTX | - | - | 62/62 | 4/62 blaCIT, blaCTX-M | |
S. paucimobilis | CTX | 10/50 | 10/10 blaTEM; 4/10 blaCIT | 40/50 | - |
ERP | - | - | 50/50 | 7/50 blaKPC, blaIMP | |
SUL | - | - | 50/50 | 9/50 sul2 | |
P. luteola | CTX | 9/41 | 9/9 blaTEM, blaCIT; 2/9 blaCTX-M | 32/41 | - |
MRM | 4/41 | 4/4 blaIMP, blaOXA-48-like | 37/41 | - | |
NIT | 4/41 | 4/4 nfsA, nfsB | 37/41 | - | |
S. fonticola | CTX | 4/37 | 4/4 blaTEM; 1/4 blaCIT | 33/37 | 5/33 blaCTX-M |
MRM | - | - | 37/37 | 7/37 blaIMP | |
NIT | 3/37 | 3/3 nfsA, nfsB | 34/37 | - | |
SUL | 37/37 | 9/37 sul2, sul3 | |||
C. freundii | CTX | 1/21 | 1/21 blaTEM | 20/21 | - |
SUL | 1/21 | 1/21 sul2, sul3 | 20/21 | 8/20 sul2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferri, G.; Lauteri, C.; Scattolini, M.; Vergara, A. Antibiotic Resistance Profiles and ARG Detection from Isolated Bacteria in a Culture-Dependent Study at the Codfish Industry Level. Foods 2023, 12, 1699. https://doi.org/10.3390/foods12081699
Ferri G, Lauteri C, Scattolini M, Vergara A. Antibiotic Resistance Profiles and ARG Detection from Isolated Bacteria in a Culture-Dependent Study at the Codfish Industry Level. Foods. 2023; 12(8):1699. https://doi.org/10.3390/foods12081699
Chicago/Turabian StyleFerri, Gianluigi, Carlotta Lauteri, Mauro Scattolini, and Alberto Vergara. 2023. "Antibiotic Resistance Profiles and ARG Detection from Isolated Bacteria in a Culture-Dependent Study at the Codfish Industry Level" Foods 12, no. 8: 1699. https://doi.org/10.3390/foods12081699
APA StyleFerri, G., Lauteri, C., Scattolini, M., & Vergara, A. (2023). Antibiotic Resistance Profiles and ARG Detection from Isolated Bacteria in a Culture-Dependent Study at the Codfish Industry Level. Foods, 12(8), 1699. https://doi.org/10.3390/foods12081699