A Prospective Review of the Sensory Properties of Plant-Based Dairy and Meat Alternatives with a Focus on Texture
Abstract
:1. Introduction
- To examine the sensory properties of plant-based meat and dairy alternatives with a focus on texture.
- To discuss the sensory evaluation methodologies currently being used and make recommendations for methodologies that can be utilized in future studies for the evaluation of the sensory properties of plant-based alternatives.
2. Textural Properties of Plant-Based Alternatives
2.1. Meat Alternatives
2.1.1. Ingredients
2.1.2. Processing Methods
2.2. Dairy Alternatives
2.2.1. Plant-Based Beverages
2.2.2. Other Dairy Alternatives: Ice Cream, Yogurt, and Cheese
3. Review of Sensory Evaluation Methods Used and Future Considerations
Type of Plant-Based Alternative | Sensory Method | Panelists | Reference |
---|---|---|---|
Plant-based analogues to chicken nuggets (compared to chicken control) | Consumer acceptability (hedonic scales and CATA) | 105 untrained panelists | Ettinger et al. [47] |
Plant-based analogues to beef patty (with beef control) | Trained Panel | 10 trained panelists | Bakhsh et al. [124] |
Peanut-based analogues to a beef patty | Consumer Acceptability (hedonic and JAR scales) | 60 untrained panelists | Rehrah et al. [57] |
Mushroom-based sausage analogue | Consumer Acceptability (hedonic and intensity scales) | 32 untrained panelists | Yuan et al. [46] |
Gluten-free and soy-free plant-based meat analogues | Consumer Acceptability (hedonic scales) | 60 untrained panelists | Szpicer et al. [54] |
Meat substitutes | Consumer Acceptability (hedonic scale) | 93 untrained panelists | Elzerman et al. [125] |
Beef, plant-based, and hybrid burgers | Consumer Acceptability (under blinded, expected, and informed conditions using hedonic scales and CATA) | 99 untrained panelists | Grasso et al. [28] |
Plant-based to chicken and beef | Consumer Acceptability (hedonic scales) | 71 untrained panelists | Godschalk-Broers et al. [32] |
Plant-based chicken sausage analogues and hybrid chicken sausages | Hedonic Scales | 8 trained panelists | Kamani et al. [30] |
Plant-based nugget | Consumer Preference (ranking scale) | 42 untrained panelists | Yuliarti et al. [34] |
Plant-based beverages (two trials: unflavored and flavored) | Consumer Acceptability (hedonic scales and CATA) | 88 untrained panelists and 80 untrained panelists | Moss et al. [14] |
Chickpea and coconut plant-based beverages | Consumer Acceptability (hedonic scales) | 128 untrained panelists | Rincon et al. [13] |
Dairy milk and plant-based beverages added to cappuccino | Consumer Acceptability (hedonic scales | 50 untrained panelists | Zakidou et al. [71] |
Plant-based alternatives to ice cream | Consumer Acceptability (hedonic scales) | 30 untrained panelists | Leahu et al. [17] |
Plant-based alternatives to yogurt (including two dairy controls) | Temporal Dominance of Sensations (mouthfeel properties) | 87 untrained panelists | Greis et al. [78] |
Plant-based alternatives to yogurt (including dairy control) | Consumer Acceptability (hedonic scales) | 25 untrained panelists | Grasso et al. [85] |
Plant-based alternatives to yogurt | Consumer Acceptability (hedonic scales) | 15 untrained panelists | Huang et al. [82] |
Plant-based alternatives to cheese (two trials= raw and melted) | Consumer Acceptability (hedonic scales, CATA, emotional response) | 100 untrained panelists and 93 untrained panelists | Falkeisen et al. [96] |
Plant-based alternatives to cheese | Acceptance Test | 10 trained panelists | Li et al. [87] |
Plant-based alternatives to cheese | Consumer Acceptability (hedonic scales) | 50 untrained panelists | Arise et al. [92] |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alcorta, A.; Porta, A.; Tárrega, A.; Alvarez, M.D.; Vaquero, M.P. Foods for Plant-Based Diets: Challenges and Innovations. Foods 2021, 10, 293. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J.; Grossmann, L. A Brief Review of the Science behind the Design of Healthy and Sustainable Plant-Based Foods. NPJ Sci. Food 2021, 5, 17. [Google Scholar] [CrossRef]
- Pointke, M.; Albrecht, E.H.; Geburt, K.; Gerken, M.; Traulsen, I.; Pawelzik, E. A Comparative Analysis of Plant-Based Milk Alternatives Part 1: Composition, Sensory, and Nutritional Value. Sustainability 2022, 14, 7996. [Google Scholar] [CrossRef]
- Sim, S.Y.J.; Hua, X.Y.; Henry, C.J. A Novel Approach to Structure Plant-Based Yogurts Using High Pressure Processing. Foods 2020, 9, 1126. [Google Scholar] [CrossRef] [PubMed]
- Vu, G.; Zhou, H.; McClements, D.J. Impact of Cooking Method on Properties of Beef and Plant-Based Burgers: Appearance, Texture, Thermal Properties, and Shrinkage. J. Agric. Food Res. 2022, 9, 100355. [Google Scholar] [CrossRef]
- Crosser, N. Plant-Based Meat, Eggs, and Dairy: 2019 U.S. State of the Industry Report; Good Food Institute: Washington, DC, USA, 2020; pp. 1–72. [Google Scholar]
- Islam, N.; Shafiee, M.; Vatanparast, H. Trends in the Consumption of Conventional Dairy Milk and Plant-Based Beverages and Their Contribution to Nutrient Intake among Canadians. J. Hum. Nutr. Diet. 2021, 34, 1022–1034. [Google Scholar] [CrossRef]
- Bakhsh, A.; Lee, S.-J.; Lee, E.-Y.; Hwang, Y.-H.; Joo, S.-T. Evaluation of Rheological and Sensory Characteristics of Plant-Based Meat Analog with Comparison to Beef and Pork. Food Sci. Anim. Resour. 2021, 41, 983–996. [Google Scholar] [CrossRef]
- Kyriakopoulou, K.; Keppler, J.K.; van der Goot, A.J.; Boom, R.M. Alternatives to Meat and Dairy. Annu. Rev. Food Sci. Technol. 2021, 12, 29–50. [Google Scholar] [CrossRef]
- Xing, Z.; Li, J.; Zhang, Y.; Gao, A.; Xie, H.; Gao, Z.; Chu, X.; Cai, Y.; Gu, C. Peptidomics Comparison of Plant-Based Meat Alternatives and Processed Meat after in Vitro Digestion. Food Res. Int. 2022, 158, 111462. [Google Scholar] [CrossRef]
- Clegg, M.E.; Tarrado Ribes, A.; Reynolds, R.; Kliem, K.; Stergiadis, S. A Comparative Assessment of the Nutritional Composition of Dairy and Plant-Based Dairy Alternatives Available for Sale in the UK and the Implications for Consumers’ Dietary Intakes. Food Res. Int. 2021, 148, 110586. [Google Scholar] [CrossRef]
- Park, Y.W. The Impact of Plant-Based Non-Dairy Alternative Milk on the Dairy Industry. Food Sci. Anim. Resour. 2021, 41, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Rincon, L.; Braz Assunção Botelho, R.; de Alencar, E.R. Development of Novel Plant-Based Milk Based on Chickpea and Coconut. LWT 2020, 128, 109479. [Google Scholar] [CrossRef]
- Moss, R.; Barker, S.; Falkeisen, A.; Gorman, M.; Knowles, S.; McSweeney, M.B. An Investigation into Consumer Perception and Attitudes towards Plant-Based Alternatives to Milk. Food Res. Int. 2022, 159, 111648. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Tyagi, S.K.; Anurag, R.K. Plant-Based Milk Alternatives an Emerging Segment of Functional Beverages: A Review. J. Food Sci. Technol. 2016, 53, 3408–3423. [Google Scholar] [CrossRef] [PubMed]
- Pua, A.; Tang, V.C.Y.; Goh, R.M.V.; Sun, J.; Lassabliere, B.; Liu, S.Q. Ingredients, Processing, and Fermentation: Addressing the Organoleptic Boundaries of Plant-Based Dairy Analogues. Foods 2022, 11, 875. [Google Scholar] [CrossRef] [PubMed]
- Leahu, A.; Ropciuc, S.; Ghinea, C. Plant-Based Milks: Alternatives to the Manufacture and Characterization of Ice Cream. Appl. Sci. 2022, 12, 1754. [Google Scholar] [CrossRef]
- Montemurro, M.; Pontonio, E.; Coda, R.; Rizzello, C.G. Plant-Based Alternatives to Yogurt: State-of-the-Art and Perspectives of New Biotechnological Challenges. Foods 2021, 10, 316. [Google Scholar] [CrossRef]
- Alves, V.; Scapini, T.; Camargo, A.F.; Bonatto, C.; Stefanski, F.S.; Pompeu de Jesus, E.; Techi Diniz, L.G.; Bertan, L.C.; Maldonado, R.R.; Treichel, H. Development of Fermented Beverage with Water Kefir in Water-Soluble Coconut Extract (Cocos nucifera L.) with Inulin Addition. LWT 2021, 145, 111364. [Google Scholar] [CrossRef]
- Bechthold, A.; Boeing, H.; Schwedhelm, C.; Hoffmann, G.; Knüppel, S.; Iqbal, K.; De Henauw, S.; Michels, N.; Devleesschauwer, B.; Schlesinger, S.; et al. Food Groups and Risk of Coronary Heart Disease, Stroke and Heart Failure: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Crit. Rev. Food Sci. Nutr. 2019, 59, 1071–1090. [Google Scholar] [CrossRef]
- Bouvard, V.; Loomis, D.; Guyton, K.Z.; Grosse, Y.; Ghissassi, F.E.; Benbrahim-Tallaa, L.; Guha, N.; Mattock, H.; Straif, K. Carcinogenicity of Consumption of Red and Processed Meat. Lancet Oncol. 2015, 16, 1599–1600. [Google Scholar] [CrossRef]
- Tuso, P.; Stoll, S.R.; Li, W.W. A Plant-Based Diet, Atherogenesis, and Coronary Artery Disease Prevention. Perm. J. 2015, 19, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef] [PubMed]
- Hadi, J.; Brightwell, G. Safety of Alternative Proteins: Technological, Environmental and Regulatory Aspects of Cultured Meat, Plant-Based Meat, Insect Protein and Single-Cell Protein. Foods 2021, 10, 1226. [Google Scholar] [CrossRef] [PubMed]
- Sha, L.; Xiong, Y.L. Plant Protein-Based Alternatives of Reconstructed Meat: Science, Technology, and Challenges. Trends Food Sci. Technol. 2020, 102, 51–61. [Google Scholar] [CrossRef]
- Clark, L.F.; Bogdan, A.-M. The Role of Plant-Based Foods in Canadian Diets: A Survey Examining Food Choices, Motivations and Dietary Identity. J. Food Prod. Mark. 2019, 25, 355–377. [Google Scholar] [CrossRef]
- Michel, F.; Hartmann, C.; Siegrist, M. Consumers’ Associations, Perceptions and Acceptance of Meat and Plant-Based Meat Alternatives. Food Qual. Prefer. 2021, 87, 104063. [Google Scholar] [CrossRef]
- Grasso, S.; Rondoni, A.; Bari, R.; Smith, R.; Mansilla, N. Effect of Information on Consumers’ Sensory Evaluation of Beef, Plant-Based and Hybrid Beef Burgers. Food Qual. Prefer. 2022, 96, 104417. [Google Scholar] [CrossRef]
- Caputo, V.; Sogari, G.; Van Loo, E.J. Do Plant-Based and Blend Meat Alternatives Taste like Meat? A Combined Sensory and Choice Experiment Study. Appl. Econ. Perspect. Policy 2023, 45, 86–105. [Google Scholar] [CrossRef]
- Kamani, M.H.; Meera, M.S.; Bhaskar, N.; Modi, V.K. Partial and Total Replacement of Meat by Plant-Based Proteins in Chicken Sausage: Evaluation of Mechanical, Physico-Chemical and Sensory Characteristics. J. Food Sci. Technol. 2019, 56, 2660–2669. [Google Scholar] [CrossRef]
- Starowicz, M.; Kubara Poznar, K.; Zieliński, H. What Are the Main Sensory Attributes That Determine the Acceptance of Meat Alternatives? Curr. Opin. Food Sci. 2022, 48, 100924. [Google Scholar] [CrossRef]
- Godschalk-Broers, L.; Sala, G.; Scholten, E. Meat Analogues: Relating Structure to Texture and Sensory Perception. Foods 2022, 11, 2227. [Google Scholar] [CrossRef] [PubMed]
- Samard, S.; Ryu, G.-H. A Comparison of Physicochemical Characteristics, Texture, and Structure of Meat Analogue and Meats. J. Sci. Food Agric. 2019, 99, 2708–2715. [Google Scholar] [CrossRef] [PubMed]
- Yuliarti, O.; Kiat Kovis, T.J.; Yi, N.J. Structuring the Meat Analogue by Using Plant-Based Derived Composites. J. Food Eng. 2021, 288, 110138. [Google Scholar] [CrossRef]
- Cornet, S.H.V.; Snel, S.J.E.; Lesschen, J.; van der Goot, A.J.; van der Sman, R.G.M. Enhancing the Water Holding Capacity of Model Meat Analogues through Marinade Composition. J. Food Eng. 2021, 290, 110283. [Google Scholar] [CrossRef]
- Zhou, H.; Vu, G.; Gong, X.; McClements, D.J. Comparison of the Cooking Behaviors of Meat and Plant-Based Meat Analogues: Appearance, Texture, and Fluid Holding Properties. ACS Food Sci. Technol. 2022, 2, 844–851. [Google Scholar] [CrossRef]
- Dreher, J.; König, M.; Herrmann, K.; Terjung, N.; Gibis, M.; Weiss, J. Varying the Amount of Solid Fat in Animal Fat Mimetics for Plant-Based Salami Analogues Influences Texture, Appearance and Sensory Characteristics. LWT 2021, 143, 111140. [Google Scholar] [CrossRef]
- Canon, F.; Maillard, M.-B.; Famelart, M.-H.; Thierry, A.; Gagnaire, V. Mixed Dairy and Plant-Based Yogurt Alternatives: Improving Their Physical and Sensorial Properties through Formulation and Lactic Acid Bacteria Cocultures. Curr. Res. Food Sci. 2022, 5, 665–676. [Google Scholar] [CrossRef]
- Mefleh, M.; Faccia, M.; Natrella, G.; De Angelis, D.; Pasqualone, A.; Caponio, F.; Summo, C. Development and Chemical-Sensory Characterization of Chickpeas-Based Beverages Fermented with Selected Starters. Foods 2022, 11, 3578. [Google Scholar] [CrossRef]
- Pachekrepapol, U.; Kokhuenkhan, Y.; Ongsawat, J. Formulation of Yogurt-like Product from Coconut Milk and Evaluation of Physicochemical, Rheological, and Sensory Properties. Int. J. Gastron. Food Sci. 2021, 25, 100393. [Google Scholar] [CrossRef]
- Xu, J.; Xu, X.; Yuan, Z.; Hua, D.; Yan, Y.; Bai, M.; Song, H.; Yang, L.; Zhu, D.; Liu, J.; et al. Effect of Hemp Protein on the Physicochemical Properties and Flavor Components of Plant-Based Yogurt. LWT 2022, 172, 114145. [Google Scholar] [CrossRef]
- Mattice, K.D.; Marangoni, A.G. Physical Properties of Plant-Based Cheese Products Produced with Zein. Food Hydrocoll. 2020, 105, 105746. [Google Scholar] [CrossRef]
- Pontonio, E.; Montemurro, M.; Dingeo, C.; Rotolo, M.; Centrone, D.; Carofiglio, V.E.; Rizzello, C.G. Design and Characterization of a Plant-Based Ice Cream Obtained from a Cereal/Legume Yogurt-Like. LWT 2022, 161, 113327. [Google Scholar] [CrossRef]
- Lima, M.; Costa, R.; Rodrigues, I.; Lameiras, J.; Botelho, G. A Narrative Review of Alternative Protein Sources: Highlights on Meat, Fish, Egg and Dairy Analogues. Foods 2022, 11, 2053. [Google Scholar] [CrossRef] [PubMed]
- Kyriakopoulou, K.; Keppler, J.K.; van der Goot, A.J. Functionality of Ingredients and Additives in Plant-Based Meat Analogues. Foods 2021, 10, 600. [Google Scholar] [CrossRef]
- Yuan, X.; Jiang, W.; Zhang, D.; Liu, H.; Sun, B. Textural, Sensory and Volatile Compounds Analyses in Formulations of Sausages Analogue Elaborated with Edible Mushrooms and Soy Protein Isolate as Meat Substitute. Foods 2022, 11, 52. [Google Scholar] [CrossRef]
- Ettinger, L.; Falkeisen, A.; Knowles, S.; Gorman, M.; Barker, S.; Moss, R.; McSweeney, M.B. Consumer Perception and Acceptability of Plant-Based Alternatives to Chicken. Foods 2022, 11, 2271. [Google Scholar] [CrossRef]
- Jia, W.; Sutanto, I.R.; Ndiaye, M.; Keppler, J.K.; van der Goot, A.J. Effect of Aqueous Ethanol Washing on Functional Properties of Sunflower Materials for Meat Analogue Application. Food Struct. 2022, 33, 100274. [Google Scholar] [CrossRef]
- Bohrer, B.M. An Investigation of the Formulation and Nutritional Composition of Modern Meat Analogue Products. Food Sci. Hum. Wellness 2019, 8, 320–329. [Google Scholar] [CrossRef]
- Arshad, M.S.; Sohaib, M.; Ahmad, R.S.; Nadeem, M.T.; Imran, A.; Arshad, M.U.; Kwon, J.-H.; Amjad, Z. Ruminant Meat Flavor Influenced by Different Factors with Special Reference to Fatty Acids. Lipids Health Dis. 2018, 17, 223. [Google Scholar] [CrossRef]
- Rubio, N.R.; Xiang, N.; Kaplan, D.L. Plant-Based and Cell-Based Approaches to Meat Production. Nat. Commun. 2020, 11, 6276. [Google Scholar] [CrossRef]
- Kołodziejczak, K.; Onopiuk, A.; Szpicer, A.; Poltorak, A. Meat Analogues in the Perspective of Recent Scientific Research: A Review. Foods 2022, 11, 105. [Google Scholar] [CrossRef] [PubMed]
- BeMiller, J.N. Pasting, Paste, and Gel Properties of Starch–Hydrocolloid Combinations. Carbohydr. Polym. 2011, 86, 386–423. [Google Scholar] [CrossRef]
- Szpicer, A.; Onopiuk, A.; Barczak, M.; Kurek, M. The Optimization of a Gluten-Free and Soy-Free Plant-Based Meat Analogue Recipe Enriched with Anthocyanins Microcapsules. LWT 2022, 168, 113849. [Google Scholar] [CrossRef]
- Kyriakopoulou, K.; Dekkers, B.; van der Goot, A.J. Chapter 6 - Plant-Based Meat Analogues. In Sustainable Meat Production and Processing; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 103–126. ISBN 978-0-12-814874-7. [Google Scholar]
- Kazir, M.; Livney, Y.D. Plant-Based Seafood Analogs. Molecules 2021, 26, 1559. [Google Scholar] [CrossRef] [PubMed]
- Rehrah, D.; Ahmedna, M.; Goktepe, I.; Yu, J. Extrusion Parameters and Consumer Acceptability of a Peanut-Based Meat Analogue. Int. J. Food Sci. Technol. 2009, 44, 2075–2084. [Google Scholar] [CrossRef]
- Zhong, C.; Feng, Y.; Xu, Y. Production of Fish Analogues from Plant Proteins: Potential Strategies, Challenges, and Outlook. Foods 2023, 12, 614. [Google Scholar] [CrossRef]
- Chen, Y.P.; Feng, X.; Blank, I.; Liu, Y. Strategies to Improve Meat-like Properties of Meat Analogs Meeting Consumers’ Expectations. Biomaterials 2022, 287, 121648. [Google Scholar] [CrossRef]
- Dekkers, B.L.; Boom, R.M.; van der Goot, A.J. Structuring Processes for Meat Analogues. Trends Food Sci. Technol. 2018, 81, 25–36. [Google Scholar] [CrossRef]
- Bocker, R.; Silva, E.K. Innovative Technologies for Manufacturing Plant-Based Non-Dairy Alternative Milk and Their Impact on Nutritional, Sensory and Safety Aspects. Future Foods 2022, 5, 100098. [Google Scholar] [CrossRef]
- Briviba, K.; Gräf, V.; Walz, E.; Guamis, B.; Butz, P. Ultra High Pressure Homogenization of Almond Milk: Physico-Chemical and Physiological Effects. Food Chem. 2016, 192, 82–89. [Google Scholar] [CrossRef]
- Durand, A.; Franks, G.V.; Hosken, R.W. Particle Sizes and Stability of UHT Bovine, Cereal and Grain Milks. Food Hydrocoll. 2003, 17, 671–678. [Google Scholar] [CrossRef]
- Frühauf, V.; Egea, M.; Hernandes, T.; Takeuchi, K. Relationship between Physicochemical and Sensory Characteristics of Commercial Plant-Based Beverages. J. Culin. Sci. Technol. 2022, 0, 1–17. [Google Scholar] [CrossRef]
- Jonas da Rocha Esperança, V.; Corrêa de Souza Coelho, C.; Tonon, R.; Torrezan, R.; Freitas-Silva, O. A Review on Plant-Based Tree Nuts Beverages: Technological, Sensory, Nutritional, Health and Microbiological Aspects. Int. J. Food Prop. 2022, 25, 2396–2408. [Google Scholar] [CrossRef]
- McClements, D.J. Development of Next-Generation Nutritionally Fortified Plant-Based Milk Substitutes: Structural Design Principles. Foods 2020, 9, 421. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; He, W.; Cai, X.; Bekhit, A.E.-D.A.; Xu, B. Sensory, Physicochemical and Rheological Properties of Plant-Based Milk Alternatives Made from Soybean, Peanut, Adlay, Adzuki Bean, Oat and Buckwheat. Int. J. Food Sci. Technol. 2022, 57, 4868–4878. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Domínguez, R.; Budaraju, S.; Roselló-Soto, E.; Barba, F.J.; Mallikarjunan, K.; Roohinejad, S.; Lorenzo, J.M. Effect of Innovative Food Processing Technologies on the Physicochemical and Nutritional Properties and Quality of Non-Dairy Plant-Based Beverages. Foods 2020, 9, 288. [Google Scholar] [CrossRef]
- Sousa, A.; Bolanz, K.A.K. Nutritional Implications of an Increasing Consumption of Non-Dairy Plant-Based Beverages Instead of Cow’s Milk in Switzerland. J. Adv. Dairy Res. 2017, 5, 1–7. [Google Scholar] [CrossRef]
- Rasika, D.M.; Vidanarachchi, J.K.; Rocha, R.S.; Balthazar, C.F.; Cruz, A.G.; Sant’Ana, A.S.; Ranadheera, C.S. Plant-Based Milk Substitutes as Emerging Probiotic Carriers. Curr. Opin. Food Sci. 2021, 38, 8–20. [Google Scholar] [CrossRef]
- Zakidou, P.; Varka, E.-M.; Paraskevopoulou, A. Foaming Properties and Sensory Acceptance of Plant-Based Beverages as Alternatives in the Preparation of Cappuccino Style Beverages. Int. J. Gastron. Food Sci. 2022, 30, 100623. [Google Scholar] [CrossRef]
- Ho, T.M.; Bhandari, B.R.; Bansal, N. Functionality of Bovine Milk Proteins and Other Factors in Foaming Properties of Milk: A Review. Crit. Rev. Food Sci. Nutr. 2022, 62, 4800–4820. [Google Scholar] [CrossRef]
- Chang, C.; Tu, S.; Ghosh, S.; Nickerson, M.T. Effect of PH on the Inter-Relationships between the Physicochemical, Interfacial and Emulsifying Properties for Pea, Soy, Lentil and Canola Protein Isolates. Food Res. Int. 2015, 77, 360–367. [Google Scholar] [CrossRef]
- Gorman, M.; Knowles, S.; Falkeisen, A.; Barker, S.; Moss, R.; McSweeney, M.B. Consumer Perception of Milk and Plant-Based Alternatives Added to Coffee. Beverages 2021, 7, 80. [Google Scholar] [CrossRef]
- Bekiroglu, H.; Goktas, H.; Karaibrahim, D.; Bozkurt, F.; Sagdic, O. Determination of Rheological, Melting and Sensorial Properties and Volatile Compounds of Vegan Ice Cream Produced with Fresh and Dried Walnut Milk. Int. J. Gastron. Food Sci. 2022, 28, 100521. [Google Scholar] [CrossRef]
- Beegum, P.P.S.; Nair, J.P.; Manikantan, M.R.; Pandiselvam, R.; Shill, S.; Neenu, S.; Hebbar, K.B. Effect of Coconut Milk, Tender Coconut and Coconut Sugar on the Physico-Chemical and Sensory Attributes in Ice Cream. J. Food Sci. Technol. 2022, 59, 2605–2616. [Google Scholar] [CrossRef]
- de Medeiros, A.C.; Bolini, H.M.A. Plant-Based Frozen Desserts: Temporal Sensory Profile and Preference. Braz. J. Food Technol. 2021, 24. [Google Scholar] [CrossRef]
- Greis, M.; Sainio, T.; Katina, K.; Kinchla, A.J.; Nolden, A.; Partanen, R.; Seppä, L. Dynamic Texture Perception in Plant-Based Yogurt Alternatives: Identifying Temporal Drivers of Liking by TDS. Food Qual. Prefer. 2020, 86, 104019. [Google Scholar] [CrossRef]
- Greis, M.; Kukkonen, R.; Lampi, A.-M.; Seppä, L.; Partanen, R.; Sandell, M. The Impact of Vanilla and Lemon Aromas on Sensory Perception in Plant-Based Yogurts Measured with Static and Dynamic Methods. Foods 2022, 11, 2030. [Google Scholar] [CrossRef]
- Giacalone, D.; Clausen, M.P.; Jaeger, S.R. Understanding Barriers to Consumption of Plant-Based Foods and Beverages: Insights from Sensory and Consumer Science. Curr. Opin. Food Sci. 2022, 48, 100919. [Google Scholar] [CrossRef]
- Grasso, N.; Alonso-Miravalles, L.; O’Mahony, J.A. Composition, Physicochemical and Sensorial Properties of Commercial Plant-Based Yogurts. Foods 2020, 9, 252. [Google Scholar] [CrossRef]
- Huang, K.; Liu, Y.; Zhang, Y.; Cao, H.; Luo, D.; Yi, C.; Guan, X. Formulation of Plant-Based Yoghurt from Soybean and Quinoa and Evaluation of Physicochemical, Rheological, Sensory and Functional Properties. Food Biosci. 2022, 49, 101831. [Google Scholar] [CrossRef]
- Jeske, S.; Zannini, E.; Arendt, E.K. Past, Present and Future: The Strength of Plant-Based Dairy Substitutes Based on Gluten-Free Raw Materials. Food Res. Int. 2018, 110, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Boeck, T.; Sahin, A.W.; Zannini, E.; Arendt, E.K. Nutritional Properties and Health Aspects of Pulses and Their Use in Plant-Based Yogurt Alternatives. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3858–3880. [Google Scholar] [CrossRef] [PubMed]
- Heymann, H.; Lawless, H.T. Sensory Evaluation of Food: Principles and Practices; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; ISBN 978-1-4419-7452-5. [Google Scholar]
- Li, Q.; Xia, Y.; Zhou, L.; Xie, J. Evaluation of the Rheological, Textural, Microstructural and Sensory Properties of Soy Cheese Spreads. Food Bioprod. Process. 2013, 91, 429–439. [Google Scholar] [CrossRef]
- Nicolás Saraco, M.; Blaxland, J. Dairy-Free Imitation Cheese: Is Further Development Required? Br. Food J. 2020, 122, 3727–3740. [Google Scholar] [CrossRef]
- Bachmann, H.-P. Cheese Analogues: A Review. Int. Dairy. J. 2001, 11, 505–515. [Google Scholar] [CrossRef]
- Short, E.C.; Kinchla, A.J.; Nolden, A.A. Plant-Based Cheeses: A Systematic Review of Sensory Evaluation Studies and Strategies to Increase Consumer Acceptance. Foods 2021, 10, 725. [Google Scholar] [CrossRef]
- James, S.; Nwokocha, L.; Tsebam, B.C.; Amuga, S.J.; Ibrahim, A.B.; Audu, Y. Effects of Different Coagulants on the Physico-Chemical, Microbial and Sensory Properties of Wara, a Nigerian Soft Soy-Cheese. Agro-Science 2016, 15, 41–45. [Google Scholar] [CrossRef]
- Arise, A.K.; Opaleke, D.O.; Salami, K.O.; Awolola, G.V.; Akinboro, D.F. Physico-Chemical and Sensory Properties of a Cheese-like Product from the Blend of Soymilk and Almond Milk. Agrosearch 2020, 19, 54–63. [Google Scholar] [CrossRef]
- Jianming, W.; Qiuqian, L.; Yiyun, W.; Xi, C. Research on Soybean Curd Coagulated by Lactic Acid Bacteria. SpringerPlus 2013, 2, 250. [Google Scholar] [CrossRef]
- Adejuyitan, J.; Olanipekun, B.; Moyinwin, O.A. Production and Evaluation of Cheese-like Product Fr Om the Blend of Soy Milk and Coconut Milk. Arch. Appl. Sci. Res. 2014, 6, 263–266. [Google Scholar]
- Mefleh, M.; Pasqualone, A.; Caponio, F.; De Angelis, D.; Natrella, G.; Summo, C.; Faccia, M. Spreadable Plant-Based Cheese Analogue with Dry-Fractioned Pea Protein and Inulin–Olive Oil Emulsion-Filled Gel. J. Sci. Food Agric. 2022, 102, 5478–5487. [Google Scholar] [CrossRef] [PubMed]
- Falkeisen, A.; Gorman, M.; Knowles, S.; Barker, S.; Moss, R.; McSweeney, M.B. Consumer Perception and Emotional Responses to Plant-Based Cheeses. Food Res. Int. 2022, 158, 111513. [Google Scholar] [CrossRef] [PubMed]
- McBey, D.; Watts, D.; Johnstone, A.M. Nudging, Formulating New Products, and the Lifecourse: A Qualitative Assessment of the Viability of Three Methods for Reducing Scottish Meat Consumption for Health, Ethical, and Environmental Reasons. Appetite 2019, 142, 104349. [Google Scholar] [CrossRef] [PubMed]
- da Silva, A.N.; da Silva, R.D.C.D.S.N.; Ferreira, M.A.M.; Minim, V.P.R.; da Costa, T.D.M.T.; Perez, R. Performance of Hedonic Scales in Sensory Acceptability of Strawberry Yogurt. Food Qual. Prefer. 2013, 30, 9–21. [Google Scholar] [CrossRef]
- Cardello, A.V.; Jaeger, S.R. 7—Hedonic Measurement for Product Development: New Methods for Direct and Indirect Scaling. In Consumer-Driven Innovation in Food and Personal Care Products; Jaeger, S.R., MacFie, H., Eds.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Sawston, UK, 2010; pp. 135–174. ISBN 978-1-84569-567-5. [Google Scholar]
- Martins, Y.; Pliner, P. Human Food Choices: An Examination of the Factors Underlying Acceptance/Rejection of Novel and Familiar Animal and Nonanimal Foods. Appetite 2005, 45, 214–224. [Google Scholar] [CrossRef]
- Andersen, B.V.; Brockhoff, P.B.; Hyldig, G. The Importance of Liking of Appearance, -Odour, -Taste and -Texture in the Evaluation of Overall Liking. A Comparison with the Evaluation of Sensory Satisfaction. Food Qual. Prefer. 2019, 71, 228–232. [Google Scholar] [CrossRef]
- Cordelle, S.; Redl, A.; Schlich, P. Sensory Acceptability of New Plant Protein Meat Substitutes. Food Qual. Prefer. 2022, 98, 104508. [Google Scholar] [CrossRef]
- Elzerman, J.E.; Hoek, A.C.; van Boekel, M.J.A.S.; Luning, P.A. Appropriateness, Acceptance and Sensory Preferences Based on Visual Information: A Web-Based Survey on Meat Substitutes in a Meal Context. Food Qual. Prefer. 2015, 42, 56–65. [Google Scholar] [CrossRef]
- Saint-Eve, A.; Paçi Kora, E.; Martin, N. Impact of the Olfactory Quality and Chemical Complexity of the Flavouring Agent on the Texture of Low Fat Stirred Yogurts Assessed by Three Different Sensory Methodologies. Food Qual. Prefer. 2004, 15, 655–668. [Google Scholar] [CrossRef]
- Alcaire, F.; Antúnez, L.; Vidal, L.; Giménez, A.; Ares, G. Aroma-Related Cross-Modal Interactions for Sugar Reduction in Milk Desserts: Influence on Consumer Perception. Food Res. Int. 2017, 97, 45–50. [Google Scholar] [CrossRef]
- Forde, C.G.; Delahunty, C.M. Understanding the Role Cross-Modal Sensory Interactions Play in Food Acceptability in Younger and Older Consumers. Food Qual. Prefer. 2004, 15, 715–727. [Google Scholar] [CrossRef]
- Kirkmeyer, S.V.; Tepper, B.J. Consumer Reactions to Creaminess and Genetic Sensitivity to 6-n-Propylthiouracil: A Multidimensional Study. Food Qual. Prefer. 2005, 16, 545–556. [Google Scholar] [CrossRef]
- Aschemann-Witzel, J.; Ares, G.; Thøgersen, J.; Monteleone, E. A Sense of Sustainability?—How Sensory Consumer Science Can Contribute to Sustainable Development of the Food Sector. Trends Food Sci. Technol. 2019, 90, 180–186. [Google Scholar] [CrossRef]
- Jaeger, S.R.; Giacalone, D. Barriers to Consumption of Plant-Based Beverages: A Comparison of Product Users and Non-Users on Emotional, Conceptual, Situational, Conative and Psychographic Variables. Food Res. Int. 2021, 144, 110363. [Google Scholar] [CrossRef]
- Gacula, M.; Rutenbeck, S.; Pollack, L.; Resurreccion, A.V.A.; Moskowitz, H.R. The Just-About-Right Intensity Scale: Functional Analyses and Relation to Hedonics. J. Sens. Stud. 2007, 22, 194–211. [Google Scholar] [CrossRef]
- Moskowitz, H.R. Sensory Directionals for Pizza: A Deeper Analysis. J. Sens. Stud. 2001, 16, 583–600. [Google Scholar] [CrossRef]
- Lawrence, S.E.; Lopetcharat, K.; Drake, M.A. Preference Mapping of Soymilk with Different U.S. Consumers. J. Food Sci. 2016, 81, S463–S476. [Google Scholar] [CrossRef]
- Ares, G.; Jaeger, S.R. Check-All-That-Apply Questions: Influence of Attribute Order on Sensory Product Characterization. Food Qual. Prefer. 2013, 28, 141–153. [Google Scholar] [CrossRef]
- Ares, G.; Dauber, C.; Fernández, E.; Giménez, A.; Varela, P. Penalty Analysis Based on CATA Questions to Identify Drivers of Liking and Directions for Product Reformulation. Food Qual. Prefer. 2014, 32, 65–76. [Google Scholar] [CrossRef]
- Vaikma, H.; Kaleda, A.; Rosend, J.; Rosenvald, S. Market Mapping of Plant-Based Milk Alternatives by Using Sensory (RATA) and GC Analysis. Future Foods 2021, 4, 100049. [Google Scholar] [CrossRef]
- Ares, G.; Bruzzone, F.; Vidal, L.; Cadena, R.S.; Giménez, A.; Pineau, B.; Hunter, D.C.; Paisley, A.G.; Jaeger, S.R. Evaluation of a Rating-Based Variant of Check-All-That-Apply Questions: Rate-All-That-Apply (RATA). Food Qual. Prefer. 2014, 36, 87–95. [Google Scholar] [CrossRef]
- Cliceri, D.; Spinelli, S.; Dinnella, C.; Prescott, J.; Monteleone, E. The Influence of Psychological Traits, Beliefs and Taste Responsiveness on Implicit Attitudes toward Plant- and Animal-Based Dishes among Vegetarians, Flexitarians and Omnivores. Food Qual. Prefer. 2018, 68, 276–291. [Google Scholar] [CrossRef]
- Rothgerber, H. Can You Have Your Meat and Eat It Too? Conscientious Omnivores, Vegetarians, and Adherence to Diet. Appetite 2015, 84, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Onwezen, M.C.; Bouwman, E.P.; Reinders, M.J.; Dagevos, H. A Systematic Review on Consumer Acceptance of Alternative Proteins: Pulses, Algae, Insects, Plant-Based Meat Alternatives, and Cultured Meat. Appetite 2021, 159, 105058. [Google Scholar] [CrossRef]
- Bryant, C.; Szejda, K.; Parekh, N.; Deshpande, V.; Tse, B. A Survey of Consumer Perceptions of Plant-Based and Clean Meat in the USA, India, and China. Front. Sustain. Food Syst. 2019, 3. [Google Scholar] [CrossRef]
- Milfont, T.L.; Satherley, N.; Osborne, D.; Wilson, M.S.; Sibley, C.G. To Meat, or Not to Meat: A Longitudinal Investigation of Transitioning to and from Plant-Based Diets. Appetite 2021, 166, 105584. [Google Scholar] [CrossRef]
- Siegrist, M.; Hartmann, C. Impact of Sustainability Perception on Consumption of Organic Meat and Meat Substitutes. Appetite 2019, 132, 196–202. [Google Scholar] [CrossRef]
- Fiorentini, M.; Kinchla, A.J.; Nolden, A.A. Role of Sensory Evaluation in Consumer Acceptance of Plant-Based Meat Analogs and Meat Extenders: A Scoping Review. Foods 2020, 9, 1334. [Google Scholar] [CrossRef]
- Cardello, A.V.; Llobell, F.; Giacalone, D.; Roigard, C.M.; Jaeger, S.R. Plant-Based Alternatives vs Dairy Milk: Consumer Segments and Their Sensory, Emotional, Cognitive and Situational Use Responses to Tasted Products. Food Qual. Prefer. 2022, 100, 104599. [Google Scholar] [CrossRef]
- Bakhsh, A.; Lee, S.-J.; Lee, E.-Y.; Sabikun, N.; Hwang, Y.-H.; Joo, S.-T. A Novel Approach for Tuning the Physicochemical, Textural, and Sensory Characteristics of Plant-Based Meat Analogs with Different Levels of Methylcellulose Concentration. Foods 2021, 10, 560. [Google Scholar] [CrossRef]
- Elzerman, J.E.; Hoek, A.C.; van Boekel, M.A.J.S.; Luning, P.A. Consumer Acceptance and Appropriateness of Meat Substitutes in a Meal Context. Food Qual. Prefer. 2011, 22, 233–240. [Google Scholar] [CrossRef]
- Blackmore, H.; Hidrio, C.; Yeomans, M.R. A Taste of Things to Come: The Effect of Extrinsic and Intrinsic Cues on Perceived Properties of Beer Mediated by Expectations. Food Qual. Prefer. 2021, 94, 104326. [Google Scholar] [CrossRef]
- Aschemann-Witzel, J.; Varela, P.; Peschel, A.O. Consumers’ Categorization of Food Ingredients: Do Consumers Perceive Them as ‘Clean Label’ Producers Expect? An Exploration with Projective Mapping. Food Qual. Prefer. 2019, 71, 117–128. [Google Scholar] [CrossRef]
- Varela, P.; Arvisenet, G.; Gonera, A.; Myhrer, K.S.; Fifi, V.; Valentin, D. Meat Replacer? No Thanks! The Clash between Naturalness and Processing: An Explorative Study of the Perception of Plant-Based Foods. Appetite 2022, 169, 105793. [Google Scholar] [CrossRef]
- Spinelli, S.; Dinnella, C.; Ares, G.; Abbà, S.; Zoboli, G.P.; Monteleone, E. Global Profile: Going beyond Liking to Better Understand Product Experience. Food Res. Int. 2019, 121, 205–216. [Google Scholar] [CrossRef]
- Ng, M.; Chaya, C.; Hort, J. Beyond Liking: Comparing the Measurement of Emotional Response Using EsSense Profile and Consumer Defined Check-All-That-Apply Methodologies. Food Qual. Prefer. 2013, 28, 193–205. [Google Scholar] [CrossRef]
- Meyners, M.; Pineau, N. Statistical Inference for Temporal Dominance of Sensations Data Using Randomization Tests. Food Qual. Prefer. 2010, 21, 805–814. [Google Scholar] [CrossRef]
- Ares, G.; Jaeger, S.R.; Antúnez, L.; Vidal, L.; Giménez, A.; Coste, B.; Picallo, A.; Castura, J.C. Comparison of TCATA and TDS for Dynamic Sensory Characterization of Food Products. Food Res. Int. 2015, 78, 148–158. [Google Scholar] [CrossRef]
Type of Plant-Based Alternative | Method of Evaluation | Reference |
---|---|---|
Plant-based analogues to burgers | Texture Profile Analysis | Vu et al. [5] |
Texturized Vegetable Protein compared to beef, pork, chicken | Water Absorption Capacity Integrity Index Texture Profile Analysis Cutting Strength | Samard and Ryu [33] |
Plant-based analogues to nuggets | Texture Profile Analysis Consumer Acceptability (hedonic scales) | Yuliarti et al. [34] |
Plant-based analogues to meat | Water Holding Capacity | Cornet et al. [35] |
Plant-based analogues to burgers | Water Holding Capacity Texture Profile Analysis | Zhou et al. [36] |
Plant-based analogues to sausages | Texture Analysis Consumer Acceptability (hedonic scales and JAR scales) | Dreher et al. [37] |
Plant-based alternatives to yogurt | Texture Analysis Water-holding capacity Sorting | Canon et al. [38] |
Plant-based alternatives to yogurt beverages | Texture Analysis Quantitative Descriptive Analysis | Mefleh et al. [39] |
Plant-based alternatives to yogurt | Oscillatory Measurement Apparent Viscosity Consumer Acceptability (hedonic scales) | Pachekrepapol et al. [40] |
Plant-based alternatives to yogurt | Water Holding Capacity Texture Analysis Rotary Rheometer | Xu et al. [41] |
Plant-based alternatives to cheese | Texture Profile Analysis Cheese Stretchability | Mattice and Marangoni [42] |
Plant-based alternatives to ice cream | Trained Panel Texture Profile Analysis | Pontonio et al. [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moss, R.; LeBlanc, J.; Gorman, M.; Ritchie, C.; Duizer, L.; McSweeney, M.B. A Prospective Review of the Sensory Properties of Plant-Based Dairy and Meat Alternatives with a Focus on Texture. Foods 2023, 12, 1709. https://doi.org/10.3390/foods12081709
Moss R, LeBlanc J, Gorman M, Ritchie C, Duizer L, McSweeney MB. A Prospective Review of the Sensory Properties of Plant-Based Dairy and Meat Alternatives with a Focus on Texture. Foods. 2023; 12(8):1709. https://doi.org/10.3390/foods12081709
Chicago/Turabian StyleMoss, Rachael, Jeanne LeBlanc, Mackenzie Gorman, Christopher Ritchie, Lisa Duizer, and Matthew B. McSweeney. 2023. "A Prospective Review of the Sensory Properties of Plant-Based Dairy and Meat Alternatives with a Focus on Texture" Foods 12, no. 8: 1709. https://doi.org/10.3390/foods12081709
APA StyleMoss, R., LeBlanc, J., Gorman, M., Ritchie, C., Duizer, L., & McSweeney, M. B. (2023). A Prospective Review of the Sensory Properties of Plant-Based Dairy and Meat Alternatives with a Focus on Texture. Foods, 12(8), 1709. https://doi.org/10.3390/foods12081709