Impact of Processing Methods on the In Vitro Protein Digestibility and DIAAS of Various Foods Produced by Millet, Highland Barley and Buckwheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Protein Extraction
2.3. Food Processing
2.4. In Vitro Digestion
2.4.1. Preparation of Simulated Digestion Fluids
2.4.2. In Vitro Digestion
2.5. Crude Protein (CP) and Amino Acid (AA) Analysis
2.6. In Vitro Digestibility of Protein and Individual AA
2.7. Digestible Indispensable AA Score (DIAAS) Calculation
2.8. Statistical Analysis
3. Results
3.1. Comparisons of Crude Protein (CP) Contents and AA Compositions between Raw Grains and Protein Isolates of Three Cereals
3.2. Effect of Processing Methods on Digestible AA Compositions of Three Cereals
3.3. Effect of Processing Methods on In Vitro Protein Digestibility of Three Cereals
3.4. Effect of Processing Methods on In Vitro AA Digestibility of Three Cereals
3.5. Effect of Processing Methods on DIAAS of Three Cereals
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PG | cereal-based foods produced using grains |
PF | cereal-based foods produced using flour |
DPG | digest from PG |
DPF | digest from PF |
AA | amino acid |
CP | crude protein |
SAA | sulfur amino acid, methionine with cysteine |
DIAAS | digestible indispensable amino acid score, the lowest DIAA reference ratio (%) |
TIA | true ileal digestibility |
TAA | total amino acids |
References
- Yousaf, L.; Hou, D.Z.; Liaqat, H.; Shen, Q. Millet: A review of its nutritional and functional changes during processing. Food Res. Int. 2021, 142, 110197. [Google Scholar] [CrossRef] [PubMed]
- Bonafaccia, G.; Marocchini, M.; Kreft, I. Composition and technological properties of the, flour and bran from common and tartary buckwheat. Food Chem. 2003, 80, 9–15. [Google Scholar] [CrossRef]
- Obadi, M.; Sun, J.; Xu, B. Highland barley: Chemical composition, bioactive compounds, health effects, and applications. Food Res. Int. 2021, 140, 110065. [Google Scholar] [CrossRef] [PubMed]
- Poutanen, K.S.; Karlund, A.O.; Gomez-Gallego, C.; Johansson, D.P.; Scheers, N.M.; Marklinder, I.M.; Eriksen, A.K.; Silventoinen, P.C.; Nordlund, E.; Sozer, N.; et al. Grains—A major source of sustainable protein for health. Nutr. Rev. 2022, 80, 1648–1663. [Google Scholar] [CrossRef]
- Bwibo, N.O.; Neumann, C.G. The need for animal source foods by Kenyan children. J. Nutr. 2003, 133, S3936–S3940. [Google Scholar] [CrossRef]
- van Boekel, M.; Fogliano, V.; Pellegrini, N.; Stanton, C.; Scholz, G.; Lalljie, S.; Somoza, V.; Knorr, D.; Jasti, P.R.; Eisenbrand, G. A review on the beneficial aspects of food processing. Mol. Nutr. Food Res. 2010, 54, 1215–1247. [Google Scholar] [CrossRef]
- Joye, I. Protein Digestibility of Cereal Products. Foods 2019, 8, 199. [Google Scholar] [CrossRef]
- Finot, P.A. The absorption and metabolism of modified amino acids in processed foods. J. AOAC Int. 2005, 88, 894–903. [Google Scholar] [CrossRef]
- Rafii, M.; Elango, R.; Ball, R.O.; Pencharz, P.B.; Courtney-Martin, G. Metabolic Availability of the Limiting Amino Acids Lysine and Tryptophan in Cooked White African Cornmeal assessed in Healthy Young Men Using the Indicator Amino Acid Oxidation Technique. J. Nutr. 2018, 148, 917–924. [Google Scholar] [CrossRef]
- FAO. Dietary protein quality evaluation in human nutrition. Report of an FAQ Expert Consultation. FAO Food Nutr. Pap. 2013, 92, 1–66. [Google Scholar]
- Dupont, D.; Alric, M.; Blanquet-Diot, S.; Bornhorst, G.; Cueva, C.; Deglaire, A.; Denis, S.; Ferrua, M.; Havenaar, R.; Lelieveld, J.; et al. Can dynamic in vitro digestion systems mimic the physiological reality? Crit. Rev. Food Sci. Nutr. 2019, 59, 1546–1562. [Google Scholar] [CrossRef]
- Mulet-Cabero, A.I.; Egger, L.; Portmann, R.; Menard, O.; Marze, S.; Minekus, M.; Le Feunteun, S.; Sarkar, A.; Grundy, M.M.L.; Carriere, F.C.; et al. A standardised semi-dynamic in vitro digestion method suitable for food–An international consensus. Food Funct. 2020, 11, 1702–1720. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carriere, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food–An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assuncao, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carriere, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Egger, L.; Schlegel, P.; Baumann, C.; Stoffers, H.; Guggisberg, D.; Brugger, C.; Durr, D.; Stoll, P.; Vergeres, G.; Portmann, R. Physiological comparability of the harmonized INFOGEST in vitro digestion method to in vivo pig digestion. Food Res. Int. 2017, 102, 567–574. [Google Scholar] [CrossRef]
- Sanchon, J.; Fernandez-Tome, S.; Miralles, B.; Hernandez-Ledesma, B.; Tome, D.; Gaudichon, C.; Recio, I. Protein degradation and peptide release from milk proteins in human jejunum. Comparison with in vitro gastrointestinal simulation. Food Chem. 2018, 239, 486–494. [Google Scholar] [CrossRef]
- Sousa, R.; Recio, I.; Heimo, D.; Dubois, S.; Moughan, P.J.; Hodgkinson, S.M.; Portmann, R.; Egger, L. In vitro digestibility of dietary proteins and in vitro DIAAS analytical workflow based on the INFOGEST static protocol and its validation with in vivo data. Food Chem. 2023, 404, 134720. [Google Scholar] [CrossRef] [PubMed]
- Hodgkinson, S.M.; Stroebinger, N.; van der Wielen, N.; Mensink, M.; Montoya, C.; Hendriks, W.H.; de Vries, S.; Stein, H.H.; Moughan, P.J. Comparison of True Ileal Amino Acid Digestibility between Adult Humans and Growing Pigs. J. Nutr. 2022, 152, 1635–1646. [Google Scholar] [CrossRef]
- Fu, Y.X.; Yin, R.Y.; Guo, E.H.; Cheng, R.H.; Diao, X.M.; Xue, Y.; Shen, Q. Protein Isolates from Raw and Cooked Foxtail Millet Attenuate Development of Type 2 Diabetes in Streptozotocin-Induced Diabetic Mice. Mol. Nutr. Food Res. 2021, 65, 2000365. [Google Scholar] [CrossRef]
- Guan, X.; Yao, H.Y. Optimization of Viscozyme L-assisted extraction of oat bran protein using response surface methodology. Food Chem. 2008, 106, 345–351. [Google Scholar] [CrossRef]
- Kayashita, J.; Shimaoka, I.; Nakajyoh, M. Hypocholesterolemic effect of buckwheat protein extract in rats fed cholesterol enriched diets. Nutr. Res. 1995, 15, 691–698. [Google Scholar] [CrossRef]
- Liu, K.L.; Zheng, J.B.; Chen, F.S. Effects of washing, soaking and domestic cooking on cadmium, arsenic and lead bioaccessibilities in rice. J. Sci. Food Agric. 2018, 98, 3829–3835. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Hu, J.; Sun, Y.; Ji, H.; Liu, F.; Peng, X.; Zhong, Y.; Geng, F.; Nie, S. In vitro digestion of eight types of wholegrains and their dietary recommendations for different populations. Food Chem. 2022, 370, 131069. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.A.; Nie, S.P.; Hu, J.L.; Zong, X.Y.; Li, Q.Q.; Xie, M.Y. In vitro and in vivo gastrointestinal digestion and fermentation of the polysaccharide from Ganoderma atrum. Food Hydrocoll. 2017, 63, 646–655. [Google Scholar] [CrossRef]
- Feng, Y.; Yuan, D.; Cao, C.; Kong, B.; Sun, F.; Xia, X.; Liu, Q. Changes of in vitro digestion rate and antioxidant activity of digestion products of ethanol-modified whey protein isolates. Food Hydrocoll. 2022, 131, 107756. [Google Scholar] [CrossRef]
- Wu, C.; Dong, H.; Wang, P.; Han, M.; Xu, X. Sequential changes in antioxidant activity and structure of curcumin-myofibrillar protein nanocomplex during in vitro digestion. Food Chem. 2022, 382, 132331. [Google Scholar] [CrossRef]
- Zhang, F.; Yue, Q.; Li, X.; Kong, B.; Sun, F.; Cao, C.; Zhang, H.; Liu, Q. Mechanisms underlying the effects of ultrasound-assisted alkaline extraction on the structural properties and in vitro digestibility of Tenebrio molitor larvae protein. Ultrason. Sonochem. 2023, 94, 106335. [Google Scholar] [CrossRef]
- WHO. Energy and Protein Requirements. In Proceedings of the Report of a Joint Fao/Who Ad Hoc Expert Committee, Rome, Italy, 22 March–2 April 1971; WHO: Geneva, Switzerland, 1973; pp. 1–118. [Google Scholar]
- Zumwalt, R.W.; Absheer, J.S.; Kaiser, F.E.; Gehrke, C.W. Acid hydrolysis of proteins for chromatographic analysis of amino acids. J. Assoc. Off Anal. Chem. 1987, 70, 147–151. [Google Scholar] [CrossRef]
- Cordelino, I.G.; Tyl, C.; Inamdar, L.; Vickers, Z.; Marti, A.; Ismail, B.P. Cooking quality, digestibility, and sensory properties of proso millet pasta as impacted by amylose content and prolamin profile. LWT-Food Sci. Technol. 2019, 99, 1–7. [Google Scholar] [CrossRef]
- Cervantes-Pahm, S.K.; Liu, Y.H.; Stein, H.H. Digestible indispensable amino acid score and digestible amino acids in eight cereal grains. Br. J. Nutr. 2014, 111, 1663–1672. [Google Scholar] [CrossRef]
- Bean, S.; Ioerger, B.P. Sorghum and Millet Proteins. In Applied Food Protein Chemistry; Ustunol, Z., Ed.; John Wiley & Sons, Inc.: NewYork, NY, USA, 2015; pp. 323–359. [Google Scholar]
- Zhang, F.; Laraib, Y.; Chai, X.J.; Shen, Y.N.; Wang, X.R.; Li, S.T.; Guo, E.H.; Diao, X.M.; Shen, Q. The effect of reducing agent DTT on pasting, hydration and microstructure properties of foxtail millet. J. Cereal Sci. 2020, 95, 103044. [Google Scholar] [CrossRef]
- Gao, K.; He, S.D.; Li, Q.Y.; Chen, H.S.; Sun, H.J.; Miao, X.Y. Extraction and properties of glutinous rice bran protein obtained by the mild alkaline extraction for the bran combined with enzymatic treatment for the residues. J. Food Process. Preserv. 2022, 46, e16980. [Google Scholar] [CrossRef]
- Liu, C.; Hao, L.; Chen, F.; Yang, C. Study on Extraction of Peanut Protein and Oil Bodies by Aqueous Enzymatic Extraction and Characterization of Protein. J. Chem. 2020, 2020, 5148967. [Google Scholar] [CrossRef]
- Annor, G.A.; Tyl, C.; Marcone, M.; Ragaee, S.; Marti, A. Why do millets have slower starch and protein digestibility than other cereals? Trends Food Sci. Technol. 2017, 66, 73–83. [Google Scholar] [CrossRef]
- Annor, G.A.; Marcone, M.; Bertoft, E.; Seetharaman, K. In Vitro Starch Digestibility and Expected Glycemic Index of Kodo Millet (Paspalum scrobiculatum) as Affected by Starch-Protein-Lipid Interactions. Cereal Chem. 2013, 90, 211–217. [Google Scholar] [CrossRef]
- Wang, Z.X.; Liu, Y.; Li, H.; Yang, L. Rice proteins, extracted by alkali and alpha-amylase, differently affect in vitro antioxidant activity. Food Chem. 2016, 206, 137–145. [Google Scholar] [CrossRef]
- Han, F.; Han, F.L.; Wang, Y.; Fan, L.P.; Song, G.; Chen, X.; Jiang, P.; Miao, H.J.; Han, Y.Y. Digestible indispensable amino acid scores of nine cooked cereal grains. Br. J. Nutr. 2019, 121, 30–41. [Google Scholar] [CrossRef]
- Gulati, P.; Li, A.X.; Holding, D.; Santra, D.; Zhang, Y.; Rose, D.J. Heating Reduces Proso Millet Protein Digestibility via Formation of Hydrophobic Aggregates. J. Agric. Food Chem. 2017, 65, 1952–1959. [Google Scholar] [CrossRef]
- Nunes, A.; Correia, I.; Barros, A.; Delgadillo, I. Sequential in vitro pepsin digestion of uncooked and cooked sorghum and maize samples. J. Agric. Food Chem. 2004, 52, 2052–2058. [Google Scholar] [CrossRef]
- De Brier, N.; Gomand, S.V.; Celus, I.; Courtin, C.M.; Brijs, K.; Delcour, J.A. Extractability and Chromatographic Characterization of Wheat (Triticum aestivum L.) Bran Protein. J. Food Sci. 2015, 80, C967–C974. [Google Scholar] [CrossRef]
- Prakash, J.; Ramanatham, G. Effect of stabilization of rice bran on the extractability and recovery of proteins. Nahr. Food 1994, 38, 87–95. [Google Scholar] [CrossRef]
- Mertz, E.T.; Hassen, M.M.; Cairnswhittern, C.; Kirleis, A.W.; Tu, L.; Axtell, J.D. Pepsin digestibility of proteins in sorghum and other major cereals. Proc. Natl. Acad. Sci. USA 1984, 81, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Ramachandra, G.; Virupaksha, T.K.; Shadaksharaswamy, M. Relation between tannin levels and in vitro protein digestibility in finger millet (Eleusine coracana Gaertn.). J. Agric. Food Chem. 1977, 25, 1101–1104. [Google Scholar] [CrossRef] [PubMed]
- Kalinova, J.; Moudry, J. Content and quality of protein in proso millet (Panicum miliaceum L.) varieties. Plant Food Hum. Nutr. 2006, 61, 45–49. [Google Scholar] [CrossRef]
- Bai, T.; Nosworthy, M.G.; House, J.D.; Nickerson, M.T. Effect of tempering moisture and infrared heating temperature on the nutritional properties of desi chickpea and hull-less barley flours, and their blends. Food Res. Int. 2018, 108, 430–439. [Google Scholar] [CrossRef]
- Motta, C.; Castanheira, I.; Gonzales, G.B.; Delgado, I.; Torres, D.; Santos, M.; Matos, A.S. Impact of cooking methods and malting on amino acids content in amaranth, buckwheat and quinoa. J. Food Compos. Anal. 2019, 76, 58–65. [Google Scholar] [CrossRef]
- Mota, C.; Santos, M.; Mauro, R.; Samman, N.; Matos, A.S.; Torres, D.; Castanheira, I. Protein content and amino acids profile of pseudocereals. Food Chem. 2016, 193, 55–61. [Google Scholar] [CrossRef]
- Abelilla, J.J.; Liu, Y.H.; Stein, H.H. Digestible indispensable amino acid score (DIAAS) and protein digestibility corrected amino acid score (PDCAAS) in oat protein concentrate measured in 20- to 30-kilogram pigs. J. Sci. Food Agric. 2018, 98, 410–414. [Google Scholar] [CrossRef]
- Han, F.; Moughan, P.J.; Li, J.T.; Stroebinger, N.; Pang, S.J. The Complementarity of Amino Acids in Cooked Pulse/Cereal Blends and Effects on DIAAS. Plants-Basel 2021, 10, 1999. [Google Scholar] [CrossRef]
S.No | Amino Acid | Retention Time | Linear Regression (R2) | Calibration Curve |
---|---|---|---|---|
1 | Asp | 2.584 | 0.9993 | y = 1,410,214.67x |
2 | Glu | 3.371 | 0.9997 | y = 1,626,141.02x |
3 | Ser | 6.794 | 0.9999 | y = 4,327,388.94x |
4 | Gly | 7.166 | 0.9999 | y = 4,420,685.42x |
5 | His | 8.237 | 0.9998 | y = 4,552,605.19x |
6 | Thr | 8.567 | 0.9996 | y = 4,531,925.27x |
7 | Arg | 8.905 | 0.9994 | y = 4,325,442.78x |
8 | Ala | 9.204 | 0.9998 | y = 4,710,639.21x |
9 | Pro | 9.603 | 0.9999 | y = 4,792,423.45x |
10 | Tyr | 12.359 | 0.9999 | y = 5,017,018.42x |
11 | Val | 12.950 | 0.9996 | y = 5,027,540.16x |
12 | Met | 13.366 | 0.9997 | y = 5,259,886.56x |
13 | Cys | 13.976 | 0.9973 | y = 3,948,177.56x |
14 | Ile | 14.498 | 0.9989 | y = 4,148,934.21x |
15 | Leu | 14.619 | 0.9998 | y = 5,319,782.40x |
16 | Phe | 15.307 | 0.9999 | y = 5,104,462.37x |
17 | Lys | 15.792 | 0.9997 | y = 8,961,547.43x |
Millet | Highland Barley | Buckwheat | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Raw Grains | PI | DPG | DPF | Raw Grains | PI | DPG | DPF | Raw Grains | PI | DPG | DPF | |
CP 1 | 116.76 ± 1.88 a | 437.84 ± 3.32 | 84.78 ± 3.79 b | 107.74 ± 0.62 a | 92.89 ± 0.99 b | 932.14 ± 2.65 | 101.22 ± 5.51 a | 88.00 ± 2.90 c | 121.19 ± 0.13 a | 895.21 ± 1.38 | 100.25 ± 0.79 b | 116.90 ± 0.64 a |
Indispensable AA | ||||||||||||
His | 2.40 ± 0.09 a | 5.67 ± 0.17 | 2.06 ± 0.06 b | 1.93 ± 0.05 b | 1.62 ± 0.12 b | 16.81 ± 1.07 | 1.73 ± 0.03 b | 2.14 ± 0.11 a | 2.68 ± 0.15 c | 17.35 ± 1.77 | 2.18 ± 0.10 b | 3.10 ± 0.17 a |
Thr | 3.94 ± 0.10 a | 13.27 ± 0.24 | 3.71 ± 0.13 a | 3.87 ± 0.15 a | 2.69 ± 0.13 b | 28.05 ± 0.85 | 4.08 ± 0.03 a | 4.15 ± 0.20 a | 5.64 ± 0.12 b | 41.55 ± 1.63 | 4.38 ± 0.22 c | 6.05 ± 0.15 a |
Tyr | 4.27 ± 0.11 b | 18.95 ± 0.95 | 4.20 ± 0.08 b | 4.86 ± 0.07 a | 3.74 ± 0.14 b | 45.89 ± 0.64 | 5.05 ± 0.09 a | 4.71 ± 0.26 a | 4.16 ± 0.13 b | 33.74 ± 0.88 | 3.97 ± 0.25 b | 4.87 ± 0.10 a |
Val | 5.71 ± 0.07 a | 20.20 ± 0.34 | 4.02 ± 0.09 c | 4.64 ± 0.02 b | 4.24 ± 0.16 a | 41.26 ± 0.41 | 4.67 ± 0.25 a | 4.48 ± 0.25 a | 5.86 ± 0.03 a | 41.58 ± 1.80 | 3.90 ± 0.02 c | 5.29 ± 0.31 b |
Met | 3.09 ± 0.11 a | 7.64 ± 0.12 | 2.10 ± 0.07 c | 2.79 ± 0.03 b | 1.64 ± 0.12 b | 11.28 ± 0.51 | 2.27 ± 0.03 a | 2.31 ± 0.01 a | 2.80 ± 0.17 b | 10.33 ± 0.96 | 2.33 ± 0.04 c | 3.50 ± 0.13 a |
Cys | 2.23 ± 0.09 a | 3.55 ± 0.44 | 0.96 ± 0.05 c | 1.12 ± 0.04 b | 2.46 ± 0.14 a | 9.66 ± 1.35 | 0.70 ± 0.05 b | 0.60 ± 0.03 b | 2.54 ± 0.20 a | 12.10 ± 0.93 | 0.30 ± 0.02 c | 0.61 ± 0.05 b |
Ile | 5.66 ± 0.38 a | 20.64 ± 0.58 | 2.75 ± 0.07 b | 3.10 ± 0.07 b | 3.99 ± 0.06 a | 38.82 ± 0.78 | 3.64 ± 0.08 b | 2.78 ± 0.07 c | 5.26 ± 0.12 a | 42.42 ± 1.47 | 3.53 ± 0.12 b | 3.65 ± 0.05 b |
Leu | 11.40 ± 0.59 a | 41.52 ± 1.63 | 6.13 ± 0.08 c | 7.41 ± 0.15 b | 5.83 ± 0.02 b | 55.17 ± 2.00 | 6.25 ± 0.11 a | 5.86 ± 0.21 b | 7.87 ± 0.12 a | 55.43 ± 1.95 | 4.23 ± 0.13 c | 6.68 ± 0.19 b |
Phe | 6.20 ± 0.13 a | 23.09 ± 1.02 | 4.04 ± 0.07 c | 4.91 ± 0.13 b | 4.37 ± 0.08 a | 46.55 ± 0.58 | 4.59 ± 0.19 a | 4.46 ± 0.03 a | 5.41 ± 0.18 b | 44.83 ± 0.74 | 4.32 ± 0.05 c | 5.85 ± 0.21 a |
Lys | 2.19 ± 0.02 c | 6.86 ± 0.18 | 3.75 ± 0.07 b | 4.46 ± 0.03 a | 2.98 ± 0.06 c | 24.13 ± 0.38 | 4.78 ± 0.06 a | 4.04 ± 0.06 b | 6.01 ± 0.07 b | 42.99 ± 0.74 | 5.37 ± 0.03 c | 7.15 ± 0.21 a |
Total 2 | 47.10 ± 0.93 a | 161.39 ± 2.07 | 33.73 ± 0.22 c | 39.10 ± 0.45 b | 33.55 ± 0.86 c | 317.62 ± 1.81 | 37.77 ± 0.55 a | 35.54 ± 0.84 b | 48.23 ± 0.87 a | 342.32 ± 5.56 | 34.51 ± 0.25 c | 46.74 ± 0.51 b |
Dispensable AA | ||||||||||||
Asp | 7.64 ± 0.30 b | 32.89 ± 0.69 | 7.40 ± 0.19 b | 15.72 ± 0.25 a | 6.32 ± 0.27 b | 66.22 ± 1.03 | 8.28 ± 0.39 a | 5.67 ± 0.29 b | 14.10 ± 0.10 a | 85.03 ± 3.58 | 10.97 ± 0.90 b | 10.23 ± 0.63 b |
Glu | 21.31 ± 1.12 a | 87.74 ± 0.73 | 13.76 ± 0.35 c | 16.64 ± 0.62 b | 22.02 ± 0.55 a | 238.62 ± 6.74 | 21.10 ± 1.22 a | 12.56 ± 0.56 b | 23.08 ± 0.39 a | 190.63 ± 7.25 | 20.69 ± 1.38 ab | 20.27 ± 0.99 b |
Ser | 5.17 ± 0.11 a | 18.13 ± 0.69 | 4.29 ± 0.12 c | 4.85 ± 0.12 b | 3.50 ± 0.14 c | 36.56 ± 0.16 | 5.26 ± 0.15 a | 4.16 ± 0.15 b | 5.79 ± 0.31 b | 43.47 ± 1.44 | 5.35 ± 0.26 b | 6.86 ± 0.10 a |
Gly | 2.78 ± 0.07 c | 8.85 ± 0.23 | 4.74 ± 0.06 b | 5.43 ± 0.05 a | 3.09 ± 0.13 c | 29.48 ± 0.39 | 5.81 ± 0.28 a | 4.10 ± 0.08 b | 6.16 ± 0.20 a | 40.96 ± 2.24 | 6.42 ± 0.16 a | 6.67 ± 0.45 a |
Arg | 6.57 ± 0.28 a | 29.87 ± 0.28 | 4.56 ± 0.28 c | 5.64 ± 0.05 b | 5.31 ± 0.53 ab | 56.69 ± 2.61 | 6.19 ± 0.30 a | 4.79 ± 0.26 b | 7.91 ± 0.08 b | 71.17 ± 2.86 | 7.27 ± 0.17 c | 8.47 ± 0.12 a |
Ala | 8.83 ± 0.09 a | 32.59 ± 0.42 | 5.19 ± 0.25 c | 6.33 ± 0.11 b | 3.14 ± 0.12 c | 30.80 ± 0.70 | 4.51 ± 0.09 a | 3.68 ± 0.18 b | 4.88 ± 0.08 a | 30.22 ± 1.48 | 3.51 ± 0.11 b | 4.30 ± 0.46 a |
Pro | 7.63 ± 0.04 a | 30.20 ± 0.21 | 5.51 ± 0.06 c | 6.26 ± 0.05 b | 8.44 ± 0.41 b | 94.97 ± 0.99 | 9.43 ± 0.30 a | 9.09 ± 0.13 ab | 3.92 ± 0.37 c | 32.65 ± 1.06 | 4.61 ± 0.12 b | 5.58 ± 0.26 a |
Total 3 | 59.94 ± 0.96 a | 240.27 ± 2.19 | 45.45 ± 0.51 b | 60.87 ± 0.60 a | 51.83 ± 0.08 b | 553.33 ± 8.62 | 60.59 ± 2.53 a | 44.06 ± 1.03 c | 65.83 ± 0.16 a | 494.12 ± 12.60 | 58.81 ± 2.49 b | 62.38 ± 2.41 ab |
TAA 4 | 107.03 ± 0.32 a | 401.66 ± 3.34 | 79.18 ± 0.71 c | 99.97 ± 0.72 b | 85.37 ± 0.92 b | 870.95 ± 8.62 | 98.37 ± 2.77 a | 79.60 ± 1.80 c | 114.06 ± 0.98 a | 836.44 ± 14.27 | 93.32 ± 2.28 c | 109.12 ± 2.29 b |
AA | Millet | Highland Barley | Buckwheat | |||
---|---|---|---|---|---|---|
PG | PF | PG | PF | PG | PF | |
Indispensable AA | ||||||
His | 35.83 ± 0.95 c | 33.25 ± 0.81 c | 44.17 ± 1.09 b | 75.25 ± 4.62 a | 51.44 ± 2.57 b | 70.42 ± 5.62 a |
Thr | 39.28 ± 1.34 d | 40.68 ± 1.62 d | 62.65 ± 1.24 b | 87.51 ± 3.19 a | 49.11 ± 2.19 c | 65.40 ± 0.85 b |
Tyr | 41.02 ± 0.74 d | 47.19 ± 0.86 c | 55.65 ± 2.16 b | 71.27 ± 2.98 a | 60.30 ± 4.10 b | 71.43 ± 3.13 a |
Val | 29.41 ± 0.72 c | 33.67 ± 0.20 c | 45.33 ± 1.56 b | 59.72 ± 2.56 a | 42.03 ± 0.37 b | 55.11 ± 4.83 a |
Met | 28.37 ± 0.89 f | 37.44 ± 0.41 e | 57.15 ± 1.91 c | 80.05 ± 1.16 a | 52.52 ± 0.77 d | 76.01 ± 1.65 b |
Cys | 17.93 ± 0.87 b | 20.77 ± 0.73 a | 11.80 ± 1.04 d | 13.88 ± 0.75 c | 7.44 ± 0.55 e | 14.56 ± 0.75 c |
Ile | 20.31 ± 0.49 d | 22.70 ± 0.59 c | 37.69 ± 1.08 b | 39.49 ± 0.65 b | 42.46 ± 1.60 a | 42.35 ± 1.44 a |
Leu | 22.44 ± 0.25 f | 26.95 ± 0.63 e | 44.23 ± 0.27 c | 56.98 ± 1.33 a | 33.94 ± 1.01 d | 51.72 ± 1.55 b |
Phe | 27.19 ± 0.46 f | 32.83 ± 0.95 e | 43.30 ± 1.03 d | 57.84 ± 0.29 b | 50.43 ± 0.41 c | 65.96 ± 4.38 a |
Lys | 71.54 ± 1.30 c | 84.46 ± 0.48 a | 66.16 ± 1.02 d | 77.04 ± 2.08 b | 56.43 ± 0.49 e | 72.57 ± 4.31 bc |
Total 1 | 29.89 ± 0.14 d | 34.41 ± 0.50 c | 46.42 ± 0.58 b | 60.03 ± 0.70 a | 45.21 ± 0.58 b | 59.10 ± 2.46 a |
Dispensable AA | ||||||
Asp | 40.39 ± 1.01 d | 85.23 ± 1.65 a | 54.03 ± 1.35 b | 50.82 ± 1.98 b | 49.16 ± 3.81 bc | 45.08 ± 3.74 cd |
Glu | 26.96 ± 0.65 d | 32.36 ± 1.21 c | 39.45 ± 1.49 b | 32.30 ± 1.08 c | 56.61 ± 3.50 a | 53.47 ± 1.27 a |
Ser | 34.63 ± 0.92 e | 38.83 ± 1.01 d | 61.90 ± 0.59 c | 67.34 ± 2.56 b | 58.30 ± 2.54 c | 72.16 ± 2.54 a |
Gly | 71.05 ± 1.01 cd | 80.82 ± 0.81 a | 77.48 ± 2.19 ab | 75.20 ± 1.46 bc | 65.83 ± 1.66 e | 65.97 ± 4.69 de |
Arg | 28.98 ± 1.80 e | 35.58 ± 0.22 d | 48.08 ± 2.98 c | 51.05 ± 2.37 c | 58.07 ± 1.56 b | 65.25 ± 1.39 a |
Ala | 24.53 ± 1.15 d | 29.73 ± 0.60 d | 59.27 ± 1.25 b | 66.40 ± 4.04 a | 45.54 ± 1.69 c | 53.72 ± 5.53 b |
Pro | 30.17 ± 0.31 e | 34.00 ± 0.21 e | 46.05 ± 1.28 d | 61.05 ± 0.61 c | 74.34 ± 1.77 b | 86.77 ± 3.99 a |
Total 2 | 31.65 ± 0.29 d | 42.09 ± 0.51 c | 48.17 ± 0.92 b | 48.15 ± 0.61 b | 56.44 ± 2.12 a | 57.95 ± 2.29 a |
TAA 3 | 30.88 ± 0.22 e | 38.71 ± 0.41 d | 47.48 ± 0.61 c | 52.82 ± 0.54 b | 51.69 ± 1.03 b | 58.44 ± 1.99 a |
Sample | Millet | Highland Barley | Buckwheat | Reference Pattern (mg/g Protein) | |||
---|---|---|---|---|---|---|---|
PG | PF | PG | PF | PG | PF | ||
DIAA reference ratio (child (6 months to 3 years)) | |||||||
Ile | 0.31 | 0.34 | 0.51 | 0.53 | 0.57 | 0.58 | 32 |
Leu | 0.34 | 0.39 | 0.43 | 0.54 | 0.33 | 0.52 | 66 |
Lys | 0.24 | 0.27 | 0.38 | 0.43 | 0.49 | 0.64 | 57 |
Thr | 0.41 | 0.43 | 0.59 | 0.81 | 0.73 | 0.99 | 31 |
Val | 0.34 | 0.38 | 0.49 | 0.63 | 0.47 | 0.63 | 43 |
His | 0.38 | 0.34 | 0.39 | 0.65 | 0.57 | 0.79 | 20 |
Sulfur AA | 0.41 | 0.50 | 0.50 | 0.66 | 0.50 | 0.77 | 27 |
Aromatic AA | 0.58 | 0.65 | 0.84 | 1.07 | 0.83 | 1.05 | 52 |
DIAAS (%) 1 | 24 (Lys) f | 27 (Lys) e | 38 (Lys) c | 43 (Lys) b | 33 (Leu) d | 52 (Leu) a | |
DIAA reference ratio (older child, adolescent, adult) | |||||||
Ile | 0.33 | 0.36 | 0.55 | 0.56 | 0.61 | 0.62 | 30 |
Leu | 0.37 | 0.42 | 0.46 | 0.58 | 0.36 | 0.56 | 61 |
Lys | 0.28 | 0.32 | 0.45 | 0.51 | 0.58 | 0.76 | 48 |
Thr | 0.54 | 0.59 | 0.74 | 1.01 | 0.91 | 1.23 | 25 |
Val | 0.37 | 0.40 | 0.53 | 0.68 | 0.50 | 0.67 | 40 |
His | 0.47 | 0.42 | 0.49 | 0.81 | 0.71 | 0.99 | 16 |
Sulfur AA | 0.48 | 0.59 | 0.58 | 0.77 | 0.59 | 0.91 | 23 |
Aromatic AA | 0.73 | 0.83 | 1.06 | 1.36 | 1.05 | 1.33 | 41 |
DIAAS (%) 1 | 28 (Lys) f | 32 (Lys) e | 45 (Lys) c | 51 (Lys) b | 36 (Leu) d | 56 (Leu) a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, L.; Gao, S.; Li, B. Impact of Processing Methods on the In Vitro Protein Digestibility and DIAAS of Various Foods Produced by Millet, Highland Barley and Buckwheat. Foods 2023, 12, 1714. https://doi.org/10.3390/foods12081714
Fu L, Gao S, Li B. Impact of Processing Methods on the In Vitro Protein Digestibility and DIAAS of Various Foods Produced by Millet, Highland Barley and Buckwheat. Foods. 2023; 12(8):1714. https://doi.org/10.3390/foods12081714
Chicago/Turabian StyleFu, Lulu, Song Gao, and Bo Li. 2023. "Impact of Processing Methods on the In Vitro Protein Digestibility and DIAAS of Various Foods Produced by Millet, Highland Barley and Buckwheat" Foods 12, no. 8: 1714. https://doi.org/10.3390/foods12081714
APA StyleFu, L., Gao, S., & Li, B. (2023). Impact of Processing Methods on the In Vitro Protein Digestibility and DIAAS of Various Foods Produced by Millet, Highland Barley and Buckwheat. Foods, 12(8), 1714. https://doi.org/10.3390/foods12081714