Impact of Potentially Toxic Compounds in Cow Milk: How Industrial Activities Affect Animal Primary Productions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Sample Collection
2.3. Sample Preparation
2.4. Determination of Inorganic Elements in Soil, Forage, and Milk by ICP-MS
2.5. Determination of PAHs in Soil, Forage, and Milk by Gas Chromatography–Tandem Mass Spectrometry (GC-MS/MS)
2.6. Data Treatment and Statistical Analyses
3. Results and Discussion
3.1. PTEs and PAHs in the Soil
3.2. PTEs and PAHs in Forage
3.3. PTEs and PAHs in Milk
3.4. Transfer Factors between Soil and Forage and between Forage and Milk
TFsf | TFfm | |||||||
---|---|---|---|---|---|---|---|---|
Present Study | Literature | Present Study | Literature | |||||
Mean ± SD | Range | Median | Mean ± SD | Range | Median | |||
Na | 20.4 ± 50.9 | 0.65–401 | 12.80 | 0.227 ± 0.329 | 0.047–1.973 | 0.1212 | ||
K | 3.0 ± 2.4 | 0.62–11.5 | 2.517 | 0.118 ± 0.054 | 0.042–0.345 | 0.1185 | ||
Ca | 2.2 ± 1.8 | 0.24–7.14 | 1.626 | 0.157 ± 0.058 | 0.076–0.41 | 0.1538 | ||
Mg | 1.1 ± 0.8 | 0.1–3.77 | 1.062 | 0.051 ± 0.019 | 0.032–0.107 | 0.0483 | ||
Cr | 0.47 ± 0.76 | 0.023–3.95 | 0.232 | (0.01–0.1) [54] | 0.002 ± 0.007 | 0–0.046 | 0.0004 | |
Fe | 0.005 ± 0.006 | 0.00–0.033 | 0.004 | 0.0005 ± 0.0005 | 0.00003–0.0017 | 0.0002 | ||
Cu | 0.74 ± 0.53 | 0.082–2.02 | 0.682 | 0.07 [11] (0.1–1) [54] | 0.0048 ± 0.0024 | 0.0014–0.0125 | 0.0048 | 0.04 [11] |
Zn | 0.54 ± 0.37 | 0.048–1.85 | 0.460 | 0.092 [11] (1–10) [54] | 0.074 ± 0.045 | 0.016–0.173 | 0.0636 | 0.117 [11] |
As | 0.099 ± 0.28 | 0.003–1.84 | 0.033 | (0.01–0.1) [54] | 0.0074 ± 0.0077 | 0.0002–0.038 | 0.0050 | |
Se | 0.187 ± 0.146 | 0.026–0.602 | 0.141 | (0.1–10) [54] | 0.0010 ± 0.001 | 0–0.005 | 0.0007 | 0.037 [11] |
Cd | 0.338 ± 0.407 | 0.011–2.31 | 0.235 | 0.06 [11] (1–10) [54] | 0.0002 ± 00003 | 0–0.0013 | 0.0001 | 0.021 [11] |
Hg | 0.125 ± 0.202 | 0.002–0.48 | 0.041 | (0.01–0.1) [54] | 0.001 ± 0.005 | 0–0.029 | 0.0000 | |
Pb | 0.062 ± 0.087 | 0.002–1.0799 | 0.029 | 0.005 [11] 0.01–0.1 [54] | 0.0010 ± 0.001 | 0–0.005 | 0.0007 | 0.037 [11] |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Farm Code | Distance (km) | Group | ||||
---|---|---|---|---|---|---|
Zinc | Chemical Fiber | Steel (1) | Steel (2) | Thermal Power Plant | ||
N1 | 3.0 | 5.7 | 1.9 | 14 | 14 | Near |
N2 | 5.0 | 4.1 | 0.4 | 12 | 13 | Near |
N3 | 3.4 | 5.6 | 1.9 | 14 | 14 | Near |
N4 | 10 | 3.7 | 4.0 | 6.8 | 7.2 | Near |
N5 | 9.3 | 0.8 | 3.4 | 8.7 | 10 | Near |
F1 | 51 | 44 | 45 | 34 | 35 | Far |
N6 | 7.1 | 4.0 | 4.6 | 13 | 15 | Near |
N7 | 10 | 4.6 | 6.6 | 12 | 14 | Near |
N8 | 5.9 | 2.8 | 2.0 | 12 | 13 | Near |
N9 | 14 | 5.0 | 7.2 | 5.3 | 7.7 | Near |
N10 | 17 | 9.4 | 10 | 0.98 | 2.3 | Near |
F2 | 30 | 21 | 24 | 16 | 17 | Far |
F3 | 27 | 18 | 21 | 13 | 14 | Far |
F4 | 39 | 32 | 33 | 22 | 23 | Far |
F5 | 3.0 | 5.7 | 1.9 | 14 | 14 | Far |
F6 | 5.0 | 4.1 | 0.4 | 12 | 13 | Far |
Time (min) | Power (W) | Temperature (°C) |
---|---|---|
3 | 900 | 95 |
10 | 900 | 160 |
3 | 900 | 185 |
15 | 900 | 185 |
LOD | LOQ | Calibration Range | |
---|---|---|---|
Na mg L−1 | 0.025 | 0.083 | 10–200 |
Mg mg L−1 | 0.001 | 0.003 | 10–200 |
K mg L−1 | 0.132 | 0.440 | 10–200 |
Ca mg L−1 | 0.216 | 0.720 | 10–200 |
Cr µg L−1 | 0.100 | 0.333 | 10–5000 |
Fe µg L−1 | 0.800 | 2.667 | 10–5000 |
Cu µg L−1 | 0.325 | 1.083 | 1–50 |
Zn mg L−1 | 0.002 | 0.007 | 0.01–5 |
As µg L−1 | 0.010 | 0.033 | 0.1–50 |
Se µg L−1 | 0.092 | 0.305 | 1–50 |
Cd µg L−1 | 0.001 | 0.003 | 0.1–50 |
Hg µg L−1 | 0.018 | 0.060 | 0.1–10 |
Pb µg L−1 | 0.017 | 0.057 | 0.1–50 |
% Relative Standard Deviation (Repeatability n = 3) | |||
---|---|---|---|
Soil | Rye Grass | Milk Powder | |
Na | 13.73 | 1.64 | 4.42 |
Mg | 2.16 | 2.26 | 4.10 |
K | 4.78 | 1.76 | 3.53 |
Ca | 2.55 | 1.18 | 2.69 |
Cr | 8.75 | 4.67 | 23.19 |
Fe | 1.64 | 5.89 | 6.13 |
Cu | 1.75 | 4.63 | 8.54 |
Zn | 5.02 | 4.08 | 3.52 |
As | 2.03 | 6.77 | 12.83 |
Se | 4.05 | 3.31 | 7.42 |
Cd | 4.67 | 5.70 | 5.07 |
Hg | 2.81 | 2.14 | 7.76 |
Pb | 2.63 | 4.65 | 4.71 |
ERM CD-141 “Loam Soil” | ERM CD-281 “Rye Grass” | ERM BD-151 “Skimmed Milk Powder” | |||||||
---|---|---|---|---|---|---|---|---|---|
Cert. | Det. (n = 3) | Rec, % | Cert. | Det. (n = 3) | Rec, % | Cert. | Det. (n = 3) | Rec, % | |
g kg−1 | |||||||||
Na | - | - | - | (4) 3 | 4.07 ± 0.07 | 102 | 4.19 ± 0.23 | 4.39 ± 0.07 | 105 |
Mg | - | - | - | (1.6) | 1.67 ± 0.03 | 104 | 1.26 ± 0.07 | 1.36 ± 0.03 | 107 |
K | - | - | - | (34) | 36.3 ± 0.6 | 107 | 17 ± 0.8 | 17.8 ± 0.3 | 104 |
Ca | - | - | - | (6.3) | 7.2 ± 0.1 | 114 | 13.9 ± 0.7 | 14.1 ± 0.2 | 101 |
mg kg−1 | |||||||||
Cr | 31 ± 4 | 46 ± 3 | 149 | 24.8 ± 1.3 | 25.4 ± 0.5 | 102 | 0.19 2 | 0.214 ± 0.005 | 113 |
Fe | - | - | - | - | - | - | 53 ± 4 | 49.9 ± 0.7 | 94 |
Cu | 12.4 ± 0.9 | 12.0 ± 0.1 | 96 | 10.2 ± 0.5 | 10.1 ± 0.2 | 99 | 5 ± 0.23 | 4.52 ± 0.11 | 90 |
Zn | 50 ± 4 | 58 ± 1.3 | 117 | 30.5 ± 1.1 | 29.3 ± 0.5 | 96 | 44.9 ± 2.3 | 40.6 ± 0.9 | 90 |
As | 7.5 ± 1.4 | 9.6 ± 1.2 | 128 | 0.042 ± 0.01 | 0.046 ± 0.002 | 109 | - | - | - |
Se | - | - | - | 0.092 1 | 0.097 ± 0.008 | 105 | 0.19 ± 0.04 | 0.176 ± 0.011 | 93 |
Cd | 0.25 ± 0.04 | 0.27 ± 0.01 | 106 | 0.120 ± 0.007 | 0.111 ± 0.004 | 93 | 0.106 ± 0.013 | 0.100 ± 0.003 | 94 |
Hg | 0.080 ± 0.008 | 0.087 ± 0.010 | 108 | 0.016 ± 0.002 | 0.018 ± 0.001 | 112 | 0.52 ± 0.04 | 0.475 ± 0.010 | 91 |
Pb | 32.2 ± 1.4 | 35.4 ± 1.2 | 110 | 1.67 ± 0.11 | 1.63 ± 0.03 | 97 | 0.207 ± 0.014 | 0.183 ± 0.004 | 88 |
References
- Foroutan, A.; Guo, A.C.; Vazquez-Fresno, R.; Lipfert, M.; Zhang, L.; Zheng, J.; Badran, H.; Budinski, Z.; Mandal, R.; Ametaj, B.N.; et al. Chemical Composition of Commercial Cow’s Milk. J. Agric. Food Chem. 2019, 67, 4897–4914. [Google Scholar] [CrossRef] [PubMed]
- Doltra, J.; Villar, A.; Moros, R.; Salcedo, G.; Hutchings, N.J.; Kristensen, I.S. Forage Management to Improve On-Farm Feed Pro-duction, Nitrogen Fluxes and Greenhouse Gas Emissions from Dairy Systems in a Wet Temperate Region. Agric. Syst. 2018, 160, 70–78. [Google Scholar] [CrossRef]
- Orjales, I.; Herrero-Latorre, C.; Miranda, M.; Rey-Crespo, F.; Rodríguez-Bermúdez, R.; López-Alonso, M. Evaluation of Trace Element Status of Organic Dairy Cattle. Animal 2018, 12, 1296–1305. [Google Scholar] [CrossRef]
- Gutiérrez, R.; Vega, S.; Ortiz, R.; Pérez, J.J.; Schettino, B. Presence of PAHs in Milk of Industrial Farms from Tizayuca, Hidalgo, Mexico. J. Environ. Sci. Health-B Pestic. Food Contam. Agric. Wastes 2015, 50, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Crawshaw, R. Animal Feeds, Feeding Practices and Opportunities for Feed Contamination: An Introduction. In Animal Feed Contamination: Effects on Livestock and Food Safety; Fink-Gremmels, J., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2012. [Google Scholar]
- Boente, C.; Albuquerque, M.T.D.; Fernández-Braña, A.; Gerassis, S.; Sierra, C.; Gallego, J.R. Combining raw and compositional data to determine the spatial patterns of potentially toxic elements in soils. Sci. Total Environ. 2018, 631–632, 1117–1126. [Google Scholar] [CrossRef]
- Arthington, J.D.; Ranches, J. Trace Mineral Supplementation of Grazing Beef Cattle. Animals 2021, 11, 2767. [Google Scholar] [CrossRef]
- Singh, R.; Gautam, N.; Mishra, A.; Gupta, R. Heavy Metals and Living Systems: An Overview. Indian J. Pharmacol. 2011, 43, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zheng, N.; Su, C.; Wang, J.; Soyeurt, H. Relationships between Pb, As, Cr, and Cd in Individual Cows’ Milk and Milk Composition and Heavy Metal Contents in Water, Silage, and Soil. Environ. Pollut. 2019, 255, 113322. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Hill, J.; Phillips, C.J.C. The Accumulation of Potentially-Toxic Metals by Grazing Ruminants. Proc. Nutr. Soc. 2003, 62, 267–277. [Google Scholar] [CrossRef]
- Miclean, M.; Cadar, O.; Levei, E.A.; Roman, R.; Ozunu, A.; Levei, L. Metal (Pb, Cu, Cd, and Zn) Transfer along Food Chain and Health Risk Assessment through Raw Milk Consumption from Free-Range Cows. Int. J. Environ. Health Res. 2019, 16, 5–7. [Google Scholar] [CrossRef]
- Cui, Y.J.; Zhu, Y.G.; Zhai, R.H.; Chen, D.Y.; Huang, Y.Z.; Qiu, Y.; Liang, J.Z. Transfer of Metals from Soil to Vegetables in an Area near a Smelter in Nanning, China. Environ. Int. 2004, 30, 785–791. [Google Scholar] [CrossRef] [PubMed]
- Kováts, N.; Hubai, K.; Sainnokhoi, T.A.; Teke, G. Biomonitoring of Polyaromatic Hydrocarbon Accumulation in Rural Gardens Using Lettuce Plants. J. Soils Sediments 2021, 21, 106–117. [Google Scholar] [CrossRef]
- Foan, L.; Sablayrolles, C.; Elustondo, D.; Lasheras, E.; González, L.; Ederra, A.; Simon, V.; Santamaría, J.M. Reconstructing Historical Trends of Polycyclic Aromatic Hydrocarbon Deposition in a Remote Area of Spain Using Herbarium Moss Material. Atmos. Environ. 2010, 44, 3207–3214. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, C.; Wang, Z. Residues and Source Identification of Persistent Organic Pollutants in Farmland Soils Irrigated by Effluents from Biological Treatment Plants. Environ. Int. 2005, 31, 778–783. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Qiao, M.; Arp, H.P.H. Phytoremediation Efficiency of a PAH-Contaminated Industrial Soil Using Ryegrass, White Clover, and Celery as Mono- and Mixed Cultures. J. Soils Sediments 2011, 11, 482–490. [Google Scholar] [CrossRef]
- Costera, A.; Rychen, G.; Feidt, C.; Soligot, C.; Jurjanz, S. Ruminal Disappearance of PAHs in Contaminated Grass Using the Nylon Bag Technique. Agron. Sustain. Dev. 2010, 30, 769–775. [Google Scholar] [CrossRef]
- Grova, N.; Feidt, C.; Crépineau, C.; Laurent, C.; Lafargue, P.E.; Hachimi, A.; Rychen, G. Detection of Polycyclic Aromatic Hydrocarbon Levels in Milk Collected Near Potential Contamination Sources. J. Agric. Food Chem. 2002, 50, 4640–4642. [Google Scholar] [CrossRef]
- Grova, N.; Laurent, C.; Feidt, C.; Rychen, G.; Laurent, F. Gas Chromatography-Mass Spectrometry Study of Polycyclic Aromatic Hydrocarbons in Grass and Milk from Urban and Rural Farms. Eur. J. Mass Spectrom. 2000, 6, 457–460. [Google Scholar] [CrossRef]
- Crépineau, C.; Rychen, G.; Feidt, C.; Le Roux, Y.; Lichtfouse, E.; Laurent, F. Contamination of Pastures by Polycyclic Aromatic Hydrocarbons (PAHs) in the Vicinity of a Highway. J. Agric. Food Chem. 2003, 51, 4841–4845. [Google Scholar] [CrossRef]
- Commission Regulation (EU) No 835/2011 of 19 August 2011 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels for Polycyclic Aromatic Hydrocarbons in Foodstuffs. 2011. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:215:0004:0008:En:PDF (accessed on 12 December 2022).
- Liang, X.; Zhu, L.; Zhuang, S. Sorption of Polycyclic Aromatic Hydrocarbons to Soils Enhanced by Heavy Metals: Perspective of Molecular Interactions. J. Soils Sediments 2016, 16, 1509–1518. [Google Scholar] [CrossRef]
- Gunawardena, J.; Egodawatta, P.; Ayoko, G.A.; Goonetilleke, A. Role of Traffic in Atmospheric Accumulation of Heavy Metals and Polycyclic Aromatic Hydrocarbons. Atmos. Environ. 2012, 54, 502–510. [Google Scholar] [CrossRef]
- Baizán, S.; Vicente, F.; Martínez-Fernández, A. Management Influence on the Quality of an Agricultural Soil Destined for Forage Production and Evaluated by Physico-Chemical and Biological Indicators. Sustainability 2021, 13, 5159. [Google Scholar] [CrossRef]
- McCarthy, O.J.; Singh, H. Physico-chemical Properties of Milk. In Advanced Dairy Chemistry; McSweeney, P., Fox, P., Eds.; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Li, H.; Zhu, D.; Lu, X.; Du, H.; Guan, S.; Chen, Z. Determination and Risk Assessment of Sixteen Polycyclic Aromatic Hydrocarbons in Vegetables. J. Environ. Sci. Health-Toxic/Hazard. Subst. Environ. Eng. 2017, 53, 116–123. [Google Scholar] [CrossRef]
- Boente, C.; Matanzas, N.; García-González, N.; Rodríguez-Valdés, E.; Gallego, J.R. Trace elements of concern affecting urban agriculture in industrialized areas: A multivariate approach. Chemosphere 2017, 183, 546–556. [Google Scholar] [CrossRef]
- Reimann, C.; Filzmoser, P.; Garrett, R.G.; Dutter, R. Statistical Data Analysis Explained. Applied Environmental Statistics with R; Wiley & Sons Ltd.: Chichester, West Sussex, UK, 2008; 343p. [Google Scholar]
- Borůvka, L.; Vacek, O.; Jehlička, J. Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils. Geoderma 2005, 128, 289–300. [Google Scholar] [CrossRef]
- Gallego, J.R.; Ortiz, J.E.; Sánchez-Palencia, Y.; Baragaño, D.; Borrego, Á.G.; Torres, T. A multivariate examination of the timing and accumulation of potentially toxic elements at las conchas bog (NW Spain). Environ. Pollut. 2019, 254, 113048. [Google Scholar] [CrossRef] [PubMed]
- Sierra, C.; Boado, C.; Saavedra, A.; Ordóñez, C.; Gallego, J.R. Origin, patterns and anthropogenic accumulation of potentially toxic elements (PTEs) in surface sediments of the Avilés estuary (Asturias, northern Spain). Mar. Pollut. Bull. 2014, 86, 530–538. [Google Scholar] [CrossRef]
- Baragaño, D.; Ratié, G.; Sierra, C.; Chrastný, V.; Komárek, M.; Gallego, J.R. Multiple pollution sources unravelled by environmental forensics techniques and multivariate statistics. J. Hazard. Mater. 2022, 424, 127413. [Google Scholar] [CrossRef]
- Boente, C.; Baragaño, D.; Gallego, J.R. Benzo[a]pyrene sourcing and abundance in a coal region in transition reveals historical pollution, rendering soil screening levels impractical. Environ. Pollut. 2020, 266, 115341. [Google Scholar] [CrossRef]
- Velea, T.; Gherghe, L.; Predica, V.; Krebs, R. Heavy metal contamination in the vicinity of an industrial area near Bucharest. Environ. Sci. Pollut. Res. 2009, 16, 27–32. [Google Scholar] [CrossRef]
- Su, C.; Meng, J.; Zhou, Y.; Bi, R.; Chen, Z.; Diao, J.; Huang, Z.; Kan, Z.; Wang, T. Heavy Metals in Soils From Intense Industrial Areas in South China: Spatial Distribution, Source Apportionment, and Risk Assessment. Front. Environ. Sci. 2022, 10, 820536. [Google Scholar] [CrossRef]
- Official Bulletin of the Principality of Asturias No. 91 of 21 April 2014 Setting the Generic Reference Levels for Heavy Metals in Soils from the Principality of Asturias. 2014. Available online: http://sede.612asturias.es/bopa/2014/04/21/2014e06617.pdf (accessed on 12 December 2022).
- Bandowe, B.A.M.; Shukurov, N.; Leimer, S.; Kersten, M.; Steinberger, Y.; Wilcke, W. Polycyclic aromatic hydrocarbons (PAHs) in soils of an industrial area in semi-arid Uzbekistan: Spatial distribution, relationship with trace metals and risk assessment. Environ. Geochem. Health 2021, 43, 4847–4861. [Google Scholar] [CrossRef] [PubMed]
- Lage, J.; Wolterbeek, H.; Almeida, S.M. Contamination of surface soils from a heavy industrial area in the North of Spain. J. Radioanal. Nucl. Chem. 2016, 309, 429–437. [Google Scholar] [CrossRef]
- Querol, X.; Viana, M.; Alastuey, F.; Amato, F.; Moreno, T.; Castillo, S.; Pey, J.; de la Rosa, J.; Sánchez de la Campa, A.; Artíñano, B.; et al. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmos. Environ. 2007, 41, 7219–7231. [Google Scholar] [CrossRef]
- Bryselbout, C.; Henner, P.; Carsignol, J.; Lichtfouse, E. Polycyclic Aromatic Hydrocarbons in Highway Plants and Soils. Evidence for a Local Distillation Effect. Analusis 2000, 28, 290–293. [Google Scholar] [CrossRef]
- National Research Council & National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Beef Cattle, 8th ed.; The National Academies Press: Washington, DC, USA, 2016. [Google Scholar] [CrossRef]
- Yasotha, A.; Dabadé, D.S.; Singh, V.P.; Sivakumar, T. Risk Assessment of Heavy Metals in Milk from Cows Reared around Industrial Areas in India. Environ. Geochem. Health 2021, 43, 1799–1815. [Google Scholar] [CrossRef]
- Nicholson, F.A.; Chambers, B.J.; Williams, J.R.; Unwin, R.J. Heavy Metal Contents of Livestock Feeds and Animal Manures in England and Wales. Bioresour. Technol. 1999, 70, 23–31. [Google Scholar] [CrossRef]
- Commission Regulation (EU) No 1275/2013 of 6 December 2013 Amending Annex I to Directive 2002/32/EC of the European Parliament and of the Council as Regards Maximum Levels for arsenic, cadmium, lead, nitrites, volatile mustard oil and Harmful Botanical Impurities. 2013. Available online: https://eur-lex.europa.eu/eli/reg/2013/1275/oj (accessed on 12 December 2022).
- Commission Regulation (EU) No 2019/1869 of 7 November 2019 Amending and Correcting Annex I to Directive 2002/32/EC of the European Parliament and of the Council as Regards Maximum Levels for Certain Undesirable Substances in Animal Feed. 2019. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2019.289.01.0032.01.ENG (accessed on 12 December 2022).
- Griboff, J.; Baroni, M.V.; Horacek, M.; Wunderlin, D.A.; Monferran, M.V. Multielemental + isotopic Fingerprint Enables Linking Soil, Water, Forage and Milk Composition, Assessing the Geographical Origin of Argentinean Milk. Food Chem. 2019, 283, 549–558. [Google Scholar] [CrossRef]
- Patra, R.C.; Swarup, D.; Kumar, P.; Nandi, D.; Naresh, R.; Ali, S.L. Milk Trace Elements in Lactating Cows Environmentally Exposed to Higher Level of Lead and Cadmium around Different Industrial Units. Sci. Total Environ. 2008, 404, 36–43. [Google Scholar] [CrossRef]
- Commission Regulation (EU) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. 2006. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:364:0005:0024:EN:PDF (accessed on 12 December 2022).
- Werner, H. Metal Contaminants in Milk and Milk Products. Bull. Int. Dairy Fed. 1978, 105, 9–12. [Google Scholar]
- Miedico, O.; Iammarino, M.; Paglia, G.; Tarallo, M.; Magiacotti, M.; Chiaravalle, A.E. Environmental monitoring of the area surrounding oil wells in Val d’Agri (Italy): Element accumulation in bovine and ovine organs. Environ. Monit. Assess. 2016, 188, 338. [Google Scholar] [CrossRef] [PubMed]
- Grova, N.; Feidt, C.; Laurent, C.; Rychen, G. [14C] Milk, urine and faeces excretion kinetics in lactating goats after an oral administration of [14C] polycyclic aromatic hydrocarbons. Int. Dairy J. 2002, 12, 1025–1031. [Google Scholar] [CrossRef]
- Blüthgen, A. Contamination of Milk from Feed. Bull. Int. Dairy Fed. 2000, 356, 43–47. [Google Scholar]
- Nag, S.K. Contaminants in Milk: Routes of Contamination, Analytical Techniques and Methods of Control. In Improving the Safety and Quality of Milk; Griffiths, M.W., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2010; Volume 1, pp. 146–178. [Google Scholar]
- Kloke, A.; Sauerbeck, D.R.; Vetter, H. The Contamination of Plants and Soils with Heavy Metals and the Transport of Metals in Terrestrial Food Chains. In Changing Metal Cycles and Human Health; Nriagu, O.J., Ed.; Springer: Berlin/Heidelberg, Germany, 1984; Volume 28, pp. 113–141. [Google Scholar] [CrossRef]
- Puschenreiter, M.; Horak, O. Influence of Different Soil Parameters on the Transfer Factor Soil to Plant of Cd, Cu and Zn for Wheat and Rye. Bodenkultur 2000, 51, 3–10. [Google Scholar]
Farms < 5 km from Industrial Areas (n = 10) | Farms > 5 km from Industrial Areas (n = 6) | Total Median | V (%) | RBSSL | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Median | Min | Max | Mean | Median | Min | Max | ||||
Inorganic elements | |||||||||||
Na (g kg−1) | 3.10 | 2.81 | 0.08 | 9.55 | 3.24 | 2.95 | 0.35 | 14.6 | 2.94 | −5 | - |
Mg (%) | 0.44 | 0.22 | 0.08 | 1.34 | 0.32 | 0.17 | 0.1 | 0.79 | 0.20 | 27 | - |
K (%) | 0.77 | 0.64 | 0.24 | 2.11 | 0.63 | 0.53 | 0.34 | 1.7 | 0.59 | 19 | - |
Ca (%) | 0.73 | 0.55 | 0.1 | 2.34 | 0.62 | 0.35 | 0.14 | 2.3 | 0.43 | 15 | - |
Cr (mg kg−1) | 35.1 | 24.4 | 2.7 | 141.5 | 24.8 | 22.2 | 8.0 | 56.0 | 23.3 | 29 | - |
Fe (%) | 2.58 | 1.92 | 0.85 | 6.09 | 1.54 | 1.45 | 0.9 | 2.32 | 1.76 | 40 | - |
Cu (mg kg−1) | 20.8 | 19.9 | 4.6 | 56.0 | 17.0 | 11.0 | 7.1 | 71.8 | 15.4 | 18 | 55 |
Zn (mg kg−1) | 261 | 232 | 30 | 506 | 96 | 61 | 33 | 256 | 176 | 63 | 455 |
As (mg kg−1) | 17.8 | 11.3 | 4.9 | 46.1 | 10.3 | 10.4 | 4.3 | 14.5 | 11.1 | 42 | 40 |
Se (mg kg−1) | 1.75 | 1.59 | 1.1 | 3.09 | 1.42 | 1.43 | 0.95 | 1.86 | 1.50 | 19 | 25 |
Cd (mg kg−1) | 1.41 | 1.16 | 0.21 | 3.67 | 0.39 | 0.32 | 0.18 | 1.24 | 0.71 | 73 | 2 |
Hg (mg kg−1) | 0.97 | 0.41 | 0.06 | 6.11 | 0.57 | 0.19 | 0.06 | 3.2 | 0.39 | 41 | 1 |
Pb (mg kg−1) | 52 | 48 | 13 | 138 | 25 | 24 | 15 | 43 | 34 | 51 | 70 |
Polycyclic aromatic hydrocarbons (µg kg−1) | |||||||||||
Naphthalene | 2.75 | <0.1 | <0.1 | 13.86 | 1.45 | <0.1 | <0.1 | 5.61 | 3.73 | 47 | 1000 |
Acenaphthylene | 1.54 | 0.98 | <0.1 | 7.69 | 1.23 | 0.71 | <0.1 | 5.23 | 1.02 | 20 | - |
Acenaphthene | 0.63 | <0.1 | <0.1 | 7.81 | 0.81 | 0.55 | <0.1 | 2.59 | 1.19 | −28 | 6000 |
Fluorene | 2.36 | 2.03 | <0.1 | 9.61 | 1.06 | 1.13 | <0.1 | 2.47 | 1.41 | 55 | 5000 |
Anthracene | 28.8 | 25.9 | 0.67 | 85.2 | 17.5 | 12.8 | 2.78 | 49.19 | 20.83 | 39 | 45,000 |
Phenanthrene | 4.86 | 3.33 | <0.1 | 22.95 | 3.59 | 1.12 | <0.1 | 17.11 | 2.76 | 26 | - |
Fluoranthene | 57.9 | 45.7 | 2.7 | 172.8 | 28.9 | 18.8 | 4.4 | 109.5 | 34.6 | 50 | 8000 |
Pyrene | 38.5 | 30.5 | 1.4 | 100.6 | 24.0 | 15.1 | 3.7 | 94.6 | 25.7 | 38 | 6000 |
Benzo(a) anthracene | 36.7 | 26.0 | 3.7 | 95.4 | 15.5 | 9.1 | 3.2 | 58.3 | 19.7 | 58 | 200 |
Crysene | 48.2 | 35.5 | 4.1 | 116.4 | 18.6 | 10.3 | 3.1 | 55.7 | 27.4 | 61 | 20,000 |
Benzo(b) fluoranthene | 83.2 | 61.7 | 8.0 | 177.4 | 35.0 | 22.2 | 7.0 | 108.8 | 52.4 | 58 | 200 |
Benzo(k) fluoranthene | 25.2 | 17.5 | 2.3 | 56.1 | 9.5 | 4.8 | 1.5 | 27.5 | 14.2 | 62 | 2000 |
Benzo(a)pyrene | 45.4 | 30.3 | 3.8 | 105.3 | 16.7 | 8.8 | 2.9 | 50.0 | 22.3 | 63 | 20 |
Indene(1,2,3-c,d)pyrene | 30.5 | 26.6 | <0.1 | 81.9 | 7.4 | <0.1 | <0.1 | 38.8 | 32.4 | 76 | 300 |
Dibenz(a,h) anthracene | 10.4 | 6.1 | <0.1 | 47.5 | 1.2 | <0.1 | <0.1 | 9.4 | 10.7 | 89 | 30 |
Benzo(g,h,i) perylene | 39.7 | 29.8 | 6.5 | 91.7 | 13.2 | 8.6 | 3.6 | 42.9 | 21.3 | 67 | - |
Element | Principal Component | Communality | |||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
As | 0.922 | 0.125 | 0.158 | 0.019 | 0.891 |
Se | 0.862 | 0.242 | 0.125 | 0.126 | 0.833 |
Fe | 0.781 | 0.432 | 0.257 | −0.006 | 0.862 |
Pb | 0.719 | −0.020 | 0.626 | 0.050 | 0.913 |
Mg | 0.211 | 0.944 | −0.017 | 0.059 | 0.939 |
Ca | −0.006 | 0.926 | 0.190 | 0.151 | 0.917 |
K | 0.398 | 0.788 | −0.101 | 0.357 | 0.917 |
Cu | 0.306 | 0.727 | 0.489 | 0.099 | 0.872 |
Zn | 0.320 | 0.265 | 0.838 | 0.136 | 0.893 |
Sum PAHs | −0.035 | 0.044 | 0.807 | −0.154 | 0.678 |
Cd | 0.449 | −0.063 | 0.791 | 0.171 | 0.861 |
Hg | 0.093 | 0.207 | 0.539 | 0.464 | 0.557 |
Na | −0.095 | 0.138 | 0.029 | 0.887 | 0.816 |
Cr | 0.460 | 0.180 | 0.032 | 0.616 | 0.625 |
% VE | 45.840 | 63.970 | 73.852 | 82.653 |
Farms < 5 km from Industrial Areas (n = 10) | Farms > 5 km from Industrial Areas (n = 6) | Total Median | V (%) | ML | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Median | Min | Max | Mean | Median | Min | Max | ||||
Inorganic elements | |||||||||||
Na (g kg−1) | 3.61 | 3.9 | 0.44 | 6.48 | 2.71 | 2.92 | 0.2 | 5.68 | 3.16 | 25 | - |
Mg (g kg−1) | 2.32 | 2.34 | 1.2 | 3.15 | 2.28 | 1.94 | 1.32 | 4.15 | 2.30 | 2 | - |
K (g kg−1) | 17.5 | 15.13 | 4.91 | 40.95 | 15.56 | 13.2 | 10.07 | 29.59 | 13.75 | 11 | - |
Ca (g kg−1) | 7.72 | 7.63 | 3.05 | 10.52 | 8.23 | 7.74 | 5.42 | 16.05 | 7.63 | −7 | - |
Cr (mg kg−1) | 7.56 | 6.51 | 1.57 | 19.12 | 8.04 | 5.58 | 0.96 | 32.76 | 6.07 | −6 | - |
Fe (g kg−1) | 1.28 | 0.92 | 0.24 | 7.63 | 0.68 | 0.48 | 0.12 | 2.55 | 0.82 | 47 | - |
Cu (mg kg−1) | 8.86 | 7.41 | 4.44 | 18.96 | 10.58 | 9.4 | 5.12 | 22.8 | 7.48 | −19 | - |
Zn (mg kg−1) | 89.8 | 76.3 | 22.9 | 216.1 | 43.9 | 36.2 | 24.7 | 87.2 | 61.7 | 51 | - |
As (mg kg−1) | 0.8 | 0.53 | 0.15 | 3.94 | 0.85 | 0.3 | 0.06 | 7.87 | 0.42 | −7 | 2 a |
Se (µg kg−1) | 300 | 209 | 50 | 1077 | 287 | 242 | 38 | 729 | 220 | 4 | - |
Cd (µg kg−1) | 318 | 192 | 39 | 1313 | 94 | 87 | 10 | 314 | 115 | 70 | 1000 b |
Hg (µg kg−1) | 38.9 | 27.3 | 11.4 | 114.3 | 39.2 | 7.9 | 3.0 | 471.1 | 20.1 | −1 | 100 a |
Pb (mg kg−1) | 1.83 | 1.5 | 0.23 | 7.85 | 1.48 | 0.87 | 0.2 | 5.69 | 1.10 | 19 | 10 a |
Polycyclic aromatic hydrocarbons (µg kg−1) | |||||||||||
Phenanthrene | 7.68 | 7.4 | 3.3 | 14.7 | 6.69 | 6.9 | 3.5 | 10.4 | 7.1 | 13 | - |
Fluoranthene | 15.2 | 14.3 | 4.5 | 37.4 | 10.4 | 7.1 | 1.8 | 26.1 | 10.6 | 32 | - |
Pyrene | 34.0 | 23.9 | 3.4 | 120 | 23.5 | 15.7 | 1.1 | 75.3 | 19.6 | 31 | - |
Benzo(a)anthracene | 3.17 | 1.9 | <0.1 | 31.3 | 0.05 | <0.1 | <0.1 | 0.9 | 1.9 | 98 | - |
Crysene | 5.8 | 3.45 | 1.2 | 51.9 | 1.11 | 1.2 | <0.1 | 2.5 | 2.1 | 81 | - |
Benzo(b)fluoranthene | 6.91 | 3.2 | 1.5 | 71.3 | 0.68 | <0.1 | <0.1 | 3.2 | 2.1 | 90 | - |
Benzo(k)fluoranthene | 2.8 | 1.5 | <0.1 | 30 | 0.07 | <0.1 | <0.1 | 1.2 | 1.7 | 98 | - |
Benzo(a)pyrene | 4.28 | 2.15 | <0.1 | 48.7 | 0.06 | <0.1 | <0.1 | 1 | 2.3 | 99 | - |
Indene(1,2,3-c,d)pyrene | 3.92 | 1.9 | 0.9 | 41.6 | 0.24 | <0.1 | <0.1 | 1.5 | 1.6 | 94 | - |
Dibenz(a,h)anthracene | 0.68 | <0.1 | <0.1 | 10.2 | <0.1 | <0.1 | <0.1 | <0.1 | 1.4 | 100 | - |
Benzo(g,h,i)perylene | 4.76 | 2.25 | 1 | 54.9 | 0.19 | <0.1 | <0.1 | 1.5 | 1.9 | 96 | - |
Farms < 5 km from Industrial Areas (n = 10) | Farms > 5 km from Industrial Areas (n = 6) | Total Median | V (%) | ML | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Median | Min | Max | Mean | Median | Min | Max | ||||
Inorganic elements | |||||||||||
Na (g kg−1) | 0.39 | 0.39 | 0.29 | 0.52 | 0.41 | 0.41 | 0.34 | 0.50 | 0.40 | −5 | - |
Mg (g kg−1) | 0.11 | 0.11 | 0.08 | 0.13 | 0.12 | 0.11 | 0.1 | 0.15 | 0.11 | −8 | - |
K (g kg−1) | 1.66 | 1.69 | 1.37 | 1.89 | 1.71 | 1.72 | 1.51 | 1.97 | 1.70 | −3 | - |
Ca (g kg−1) | 1.15 | 1.15 | 1 | 1.27 | 1.23 | 1.21 | 1.16 | 1.53 | 1.19 | −7 | - |
Cr (µg kg−1) | 8.56 | 3.09 | <0.07 | 74.1 | 5.14 | 1.09 | <0.07 | 44.2 | 1.88 | 40 | - |
Fe (mg kg−1) | 0.27 | 0.18 | 0.05 | 1.22 | 0.25 | 0.19 | 0.08 | 1.19 | 0.18 | 9 | - |
Cu (µg kg−1) | 36.6 | 36.0 | 19.6 | 58.6 | 42.9 | 43.4 | 26.5 | 73.6 | 40.2 | −17 | - |
Zn (mg kg−1) | 3.52 | 3.46 | 2.92 | 4.24 | 4.04 | 4.12 | 3.02 | 5.57 | 3.67 | −15 | - |
As (µg kg−1) | 2.77 | 1.62 | 1.23 | 16.01 | 1.83 | 1.7 | 1.26 | 3.91 | 1.65 | 34 | - |
Se (µg kg−1) | 28.7 | 25.8 | 17.7 | 54.0 | 28.6 | 27.3 | 12.6 | 55.5 | 27.2 | 1 | - |
Cd (µg kg−1) | 0.03 | 0.02 | <0.002 | 0.12 | 0.02 | 0.02 | <0.002 | 0.03 | 0.019 | 38 | - |
Hg (µg kg−1) | 0.03 | <0.01 | <0.01 | 0.28 | 0.01 | <0.01 | <0.01 | 0.17 | <0.01 | 59 | - |
Pb (µg kg−1) | 1.17 | 0.95 | 0.2 | 2.7 | 0.54 | 0.51 | <0.06 | 1.44 | 0.70 | 54 | 20 a |
Polycyclic aromatic hydrocarbons (µg kg−1) | |||||||||||
Phenanthrene | 1.18 | 1.11 | 0.16 | 3.04 | 1.1 | 0.89 | 0.41 | 3.55 | 1.07 | 7 | - |
Fluoranthene | 1.91 | 1.1 | 0.22 | 7.22 | 1.44 | 0.92 | 0.32 | 6.29 | 1.03 | 25 | - |
Pyrene | 7.73 | 3.49 | 0.43 | 39.4 | 5.8 | 3.6 | 0.64 | 20.0 | 3.55 | 25 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forcada, S.; Menéndez-Miranda, M.; Boente, C.; Rodríguez Gallego, J.L.; Costa-Fernández, J.M.; Royo, L.J.; Soldado, A. Impact of Potentially Toxic Compounds in Cow Milk: How Industrial Activities Affect Animal Primary Productions. Foods 2023, 12, 1718. https://doi.org/10.3390/foods12081718
Forcada S, Menéndez-Miranda M, Boente C, Rodríguez Gallego JL, Costa-Fernández JM, Royo LJ, Soldado A. Impact of Potentially Toxic Compounds in Cow Milk: How Industrial Activities Affect Animal Primary Productions. Foods. 2023; 12(8):1718. https://doi.org/10.3390/foods12081718
Chicago/Turabian StyleForcada, Sergio, Mario Menéndez-Miranda, Carlos Boente, José Luis Rodríguez Gallego, José M. Costa-Fernández, Luis J. Royo, and Ana Soldado. 2023. "Impact of Potentially Toxic Compounds in Cow Milk: How Industrial Activities Affect Animal Primary Productions" Foods 12, no. 8: 1718. https://doi.org/10.3390/foods12081718
APA StyleForcada, S., Menéndez-Miranda, M., Boente, C., Rodríguez Gallego, J. L., Costa-Fernández, J. M., Royo, L. J., & Soldado, A. (2023). Impact of Potentially Toxic Compounds in Cow Milk: How Industrial Activities Affect Animal Primary Productions. Foods, 12(8), 1718. https://doi.org/10.3390/foods12081718