Determination of Pesticide Residues in IV Range Artichoke (Cynara cardunculus L.) and Its Industrial Wastes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Samples Collection and Processing
2.3. Sample Preparation
2.4. UHPLC-MS/MS Analysis
2.5. Method Validation
2.6. Processing Factor
3. Results and Discussion
3.1. Method Validation
3.2. Analysis of Fresh and Processed Artichoke and Artichoke by-Products
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sonnate, G.; Pignone, D.; Hammer, K. The Domestication of Artichoke and Cardoon: From Roman Times to the Genomic Age. Ann. Bot. 2007, 100, 1095–1100. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization of the United Nations; FAO: Rome, Italy, 2021; Available online: http://faostat.fao.org (accessed on 20 February 2023).
- Petropoulos, S.A.; Pereira, C.; Tzortzakis, N.; Barros, L.; Ferreira, I.C.F.R. Nutritional value and bioactive compounds characterization of plant parts from Cynara cardunculus L. (Asteraceae) cultivated in central Greece. Front. Plant Sci. 2018, 9, 459. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G.; Graziani, G.; Ritieni, A.; Cardarelli, M.; De Pascale, S. Phenolic composition, antioxidant activity, and mineral profile in two seed-propagated artichoke cultivars as affected by microbial inoculants and planting time. Food Chem. 2017, 234, 10–19. [Google Scholar] [CrossRef]
- Gostin, A.I.; Waisundara, V.Y. Edible flowers as functional food: A review on artichoke (Cynara cardunculus L.). Trends Food Sci. Technol. 2019, 86, 381–391. [Google Scholar] [CrossRef]
- Órbenes, G.; Rodríguez-Seoane, P.; Torres, M.D.; Chamy, R.; Zúñiga, M.E.; Domínguez, E. Valorization of Artichoke Industrial By-Products Using Green Extraction Technologies: Formulation of Hydrogels in Combination with Paulownia Extracts. Molecules 2021, 26, 4386. [Google Scholar] [CrossRef]
- Francavilla, M.; Marone, M.; Marasco, P.; Contillo, F.; Monteleone, M. Artichoke Biorefinery: From Food to Advanced Technological Applications. Foods 2021, 10, 112. [Google Scholar] [CrossRef]
- Giménez-Berenguer, M.; García-Pastor, M.E.; García-Martínez, S.; Giménez, M.J.; Zapata, P.J. Evaluation of ‘Lorca’ Cultivar Aptitude for Minimally Processed Artichoke. Agronomy 2022, 12, 515. [Google Scholar] [CrossRef]
- Acquadro, A.; Papanice, M.A.; Lanteri, S.; Bottalico, G.; Portis, E.; Campanale, A.; Finetti-Sialer, M.M.; Mascia, T.; Sumerano, P. Production and fingerprinting of virus-free clones in a reflowering globe artichoke. Plant Cell Tiss. Organ. Cult. 2010, 100, 329–337. [Google Scholar] [CrossRef]
- Amenduni, M.; Cirulli, M.; D’acute, M.; Colella, C. Verticillium wilt of artichoke caused by Verticillium dahliae kleb. Acta Hortic. 2005, 681, 603–606. [Google Scholar] [CrossRef]
- Bratsch, A. Specialty Crop Profile: Globe Artichoke. Virginia Cooperative Extension. Publication 438-108. 2005. Available online: http://hdl.handle.net/10919/55169 (accessed on 8 February 2023).
- Almela, L.; García-Martínez, N.; Andreo-Martínez, P. Zero-residue artichoke production by integrated pest management. Acta Hortic. ISHS 2020, 1284, 157–163. [Google Scholar] [CrossRef]
- Shadma Wahab, S.; Muzammil, K.; Nasir, N.; Khan, M.S.; Ahmad, M.F.; Khalid, M.; Ahmad, W.; Dawria, A.; Reddy, L.K.V.; Busayli, A.M. Advancement and New Trends in Analysis of Pesticide Residues in Food: A Comprehensive Review. Plants 2022, 11, 1106. [Google Scholar] [CrossRef]
- Alister, C.; Araya, M.; Becerra, K.; Volosky, C.; Saavedra, J.; Kogan, M. Industrial prune processing and its effect on pesticide residue concentrations. Food Chem. 2018, 268, 264–270. [Google Scholar] [CrossRef]
- Bajwa, U.; Sandhu, K.S. Effect of handling and processing on pesticide residues in food—A review. J. Food Sci. Technol. 2014, 51, 201–220. [Google Scholar] [CrossRef]
- Hendawi, M.Y.; Romeh, A.A.; Mekky, T.M. Effect of Food Processing on Residue of Imidacloprid in Strawberry Fruits. J. Agric. Sci. Technol. 2018, 15, 951–959. [Google Scholar] [CrossRef]
- Graziela, C.R.; Andrade, M.; Monteiro, S.H.; Francisco, J.G.; Figueiredo, L.A.; Rocha, A.A.; Tornisielo, V.L. Effects of types of washing and peeling in relation to pesticide residues in tomatoes. J. Braz. Chem. Soc. 2015, 26, 10. [Google Scholar] [CrossRef]
- Angioni, A.; Schirra, M.; Garau, V.L.; Melis, M.; Tuberoso, C.I.; Cabras, P. Residues of azoxystrobin, fenhexamid and pyrimethanil in strawberry following field treatments and the effect of domestic washing. Food Addit. Contam. 2004, 21, 1065–1070. [Google Scholar] [CrossRef]
- Amvrazi, E.G. Fate of Pesticide Residues on Raw Agricultural Crops after Postharvest Storage and Food Processing to Edible Portions. In Pesticides—Formulations, Effects, Fate; Stoytcheva, M., Ed.; InTech Europe: Rijeka, Croatia, 2011; pp. 575–594. [Google Scholar] [CrossRef]
- Li, C.; Zhu, H.; Li, C.; Qian, H.; Yao, W.; Guo, Y. The present situation of pesticide residues in China and their removal and transformation during food processing. Food Chem. 2021, 354, 129552. [Google Scholar] [CrossRef]
- Cengiz, M.F.; Certel, M. Effects of chlorine, hydrogen peroxide, and ozone on the reduction of mancozeb residues on tomatoes. Turk. J. Agric. For. 2014, 38, 371–376. [Google Scholar]
- Corrias, F.; Atzei, A.; Lai, C.; Dedola, F.; Ibba, E.; Zedda, G.; Canu, F.; Angioni, A. Effects of Industrial Processing on Pesticide Multiresidues Transfer from Raw Tomatoes to Processed Products. Foods 2020, 9, 1497. [Google Scholar] [CrossRef]
- Bonnechère, A.; Hanot, V.; Jolie, R.; Hendrickx, M.; Bragard, C.; Bedoret, T.; Van Loco, J. Effect of household and industrial processing on levels of five pesticide residues and two degradation products in spinach. Food Control 2012, 25, 397–406. [Google Scholar]
- Corrias, F.; Taddeo, R.; Arru, N.; Angioni, A. Effect of the Technological Process from Vine to Wine on Pesticide Residues in Vernaccia di Oristano Cultivar. Foods 2021, 10, 1295. [Google Scholar] [CrossRef]
- Viana, E.; Moltó, J.C.; Font, G. Optimization of a matrix solid-phase dispersion method for the analysis of pesticide residues in vegetables. J. Chromatogr. A 1996, 754, 437–444. [Google Scholar] [CrossRef]
- Machado, I.; Gérez, N.; Pistón, M.; Heinzen, H.; Cesio, M.V. Determination of pesticide residues in globe artichoke leaves and fruits by GC–MS and LC–MS/MS using the same QuEChERS procedure. Food Chem. 2017, 227, 227–236. [Google Scholar] [CrossRef]
- Cabras, P.; Angioni, A.; Garau, V.L.; Melis, M.; Pirisi, F.M.; Cabitza, F.; Cubeddu, M.; Minelli, E. Pesticide residues in artichokes; effect of different head shape. J. Environ. Sci. Health Part B 1996, 31, 1189–1199. Available online: https://hdl.handle.net/11584/104914 (accessed on 3 November 2022).
- SANTE/11312/2021; Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed SANTE 11312/2021. Available online: https://food.ec.europa.eu/system/files/2022-02/pesticides_mrl_guidelines_wrkdoc_2021-11312.pdf (accessed on 3 November 2022).
- Hakme, E.; Herrmann, S.S.; Poulsen, M.E. Processing factors of pesticide residues in biscuits and their relation to the physicochemical properties of pesticides. Food Addit. Contam. Part A 2020, 37, 1695–1706. [Google Scholar] [CrossRef]
- Hassen, W.; Neifar, M.; Cherif, H.; Mahjoubi, M.; Souissi, Y.; Raddadi, N.; Fava, F.; Cherif, A. Assessment of genetic diversity and bioremediation potential of pseudomonads isolated from pesticide-contaminated artichoke farm soils. 3 Biotech 2018, 8, 263. [Google Scholar] [CrossRef]
- Takacs, E.; Wojnarovits, L.; Horvath, E.K.; Fekete, T.; Borsa, J. Improvement of pesticide adsorption capacity of cellulose fibre by high-energy irradiation-initiated grafting of glycidyl methacrylate. Rad. Phys. Chem. 2012, 81, 1389–1392. [Google Scholar] [CrossRef]
- Armenova, N.; Tsigoriyna, L.; Arsov, A.; Petrov, K.; Petrova, P. Microbial Detoxification of Residual Pesticides in Fermented Foods: Current Status and Prospects. Foods 2023, 12, 1163. [Google Scholar] [CrossRef]
- Cabras, P.; Angioni, A.; Garau, V.L.; Pirisi, F.M.; Farris, G.A.; Madau, G.; Emonti, G. Pesticides in Fermentative Processes of Wine. J. Agric. Food Chem. 1999, 47, 3854–3857. [Google Scholar]
- Pizarro, D.M.; Trujillo, G.M.; Gómez, C.A. Effect of feeding artichoke bracts silage on production of confined dairy cattle. Livest. Res. Rural Dev. 2019, 31, 34. Available online: http://www.lrrd.org/lrrd31/3/dpiza31034.html (accessed on 21 February 2023).
- Jaramillo, D.P.; Buffa, M.N.; Rodríguez, M.; Pérez-Baena, I.; Guamis, B.; Trujillo, A.J. Effect of the inclusion of artichoke silage in the ration of lactating ewes on the properties of milk and cheese characteristics during ripening. J. Dairy Sci. 2010, 93, 1412–1419. [Google Scholar] [CrossRef]
- Sallam, S.M.A.; Bueno, I.C.S.; Godoy, P.B.; Nozella, E.F.; Vitti, D.M.S.S.; Abdall, A.L. Nutritive value assessment of the artichoke (Cynara scolymus) by-products as ana alternative feed resource for ruminants. Trop. Subtrop. Agroecosyst. 2008, 8, 181–189. [Google Scholar]
- Wu, J.; Li, X.; Hou, R.; Zhao, K.; Wang, Y.; Huang, S.; Cheng, D.; Zhang, Z. Examination of acephate absorption, transport, and accumulation in maize after root irrigation for Spodoptera frugiperda control. Environ. Sci. Pollut. Res. 2021, 28, 57361–57371. [Google Scholar] [CrossRef]
- Zain, S.; Dafaallah, A.; Zaroug, M. Efficacy and selectivity of pendimethalin for weed control in soybean (Glycine max (L.) Merr.), Gezirastate, Sudan. Agric. Sci. Pract. 2020, 7, 59–68. [Google Scholar] [CrossRef]
- Ali, A.A.I.; Ashour, B.A.; Tohamy, M.R.A.; Ragheb, D.A. Azoxystrobin residues in tomato leaves and fruits. Zagazig J. Agric. Res. 2015, 42, 1547–1553. [Google Scholar]
- Antonius, G.F. Residues and half-lives of Pyrethrins on field-grown pepper and tomato. J. Environ. 2011, 39, 491–503. [Google Scholar] [CrossRef]
- Ju, C.; Zhang, H.; Yao, S.; Dong, S.; Cao, D.; Wang, F.; Fang, H.; Yu, Y. Uptake, Translocation, and Subcellular Distribution of Azoxystrobin in Wheat Plant (Triticum aestivum L.). J. Agric. Food Chem. 2019, 67, 6691–6699. [Google Scholar] [CrossRef]
- Hardy, T.; Bopp, S.; Egsmose, M.; Fontier, H.; Mohimont, L.; Steinkellner, H.; Streissl, F. Risk Assessment of Plant Protection Products; EFSA Journal: Parma, Italy, 2012; Volume 10, p. s1010. [Google Scholar] [CrossRef]
Fresh Artichoke | Industrial Processing | Field Waste | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Compound | MRL | Stems | Outer Bracts | Leaves | Heads | Heads | Waste | Stalks and Leaves | Roots | PF * |
Pendimethalin | 0.05 | 0.004 ± 15.8 | 0.005 ± 8.8 | 0.046 ± 8.2 | <LOQ | <LOQ | <LOQ | 0.30 ± 6.7 | 0.038 ± 28.4 | |
Azoxystrobin | 5.00 | - | 0.18 ± 2.9 | - | - | - | 0.029 ± 15.2 | 0.007 ± 3.9 | 0.027 ± 11.0 | 0.16 |
Propyzamid | 0.02 | - | <LOQ | - | - | - | - | - | - | |
Tebuconazole | 0.6 | - | <LOQ | - | - | - | - | - | 0.004 ± 6.7 | |
Pyraclostrobin | 3 | - | <LOQ | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corrias, F.; Arru, N.; Atzei, A.; Milia, M.; Scano, E.; Angioni, A. Determination of Pesticide Residues in IV Range Artichoke (Cynara cardunculus L.) and Its Industrial Wastes. Foods 2023, 12, 1807. https://doi.org/10.3390/foods12091807
Corrias F, Arru N, Atzei A, Milia M, Scano E, Angioni A. Determination of Pesticide Residues in IV Range Artichoke (Cynara cardunculus L.) and Its Industrial Wastes. Foods. 2023; 12(9):1807. https://doi.org/10.3390/foods12091807
Chicago/Turabian StyleCorrias, Francesco, Nicola Arru, Alessandro Atzei, Massimo Milia, Efisio Scano, and Alberto Angioni. 2023. "Determination of Pesticide Residues in IV Range Artichoke (Cynara cardunculus L.) and Its Industrial Wastes" Foods 12, no. 9: 1807. https://doi.org/10.3390/foods12091807
APA StyleCorrias, F., Arru, N., Atzei, A., Milia, M., Scano, E., & Angioni, A. (2023). Determination of Pesticide Residues in IV Range Artichoke (Cynara cardunculus L.) and Its Industrial Wastes. Foods, 12(9), 1807. https://doi.org/10.3390/foods12091807