Transglutaminase-Catalyzed Glycosylation Improved Physicochemical and Functional Properties of Lentinus edodes Protein Fraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Lentinus Edodes Protein Fraction
2.2. TGase-Catalyzed Glycosylation of Lentinus Edodes Protein Fraction
2.3. Physicochemical Properties
2.3.1. Determination of Free Sulfydryl and Total Free Sulfydryl Group
2.3.2. Determination of Surface Hydrophobicity
2.3.3. Intrinsic Fluorescence Emission Spectrum
2.3.4. Fourier Transform Infrared (FTIR) Spectroscopy
2.3.5. Determination of Particle Size
2.3.6. Scanning Electron Microscopy (SEM) Analysis
2.3.7. Analysis of Apparent Viscosity
2.3.8. Thermal Stability
2.4. Processing Properties
2.4.1. Determination of Grafting Density
2.4.2. Determination of Solubility
2.4.3. Determination of Emulsibility and Emulsion Stability
2.4.4. Determination of Oil-Holding Capacity (OHC)
2.5. Statistical Analysis
3. Results
3.1. Effects of Different Treatments on Physicochemical Properties of Lentinus edodes Protein Fraction
3.1.1. Sulfydryl and Disulfide Bond
3.1.2. Surface Hydrophobicity
3.1.3. Intrinsic Fluorescence Spectrum Analysis
3.1.4. Secondary Structure
3.1.5. Particle Size
3.1.6. Microstructure
3.1.7. Apparent Viscosity
3.1.8. Thermal Stability
3.2. Effects of Different Treatments on Functional Properties of Lentinus edodes Protein Fraction
3.2.1. Grafting Degree
3.2.2. Solubility
3.2.3. Emulsibility and Emulsion Stability
3.2.4. Oil-holding capacity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.H.; Fan, X.Z.; Yao, F.; Yin, C.M.; Shi, D.F.; Gao, H.; Shen, W.Y. Extraction, characteristic analysis and amino acids evaluation of Lentinula edodes protein. Modern Food Sci. Technol. 2023, 39, 1–9. [Google Scholar] [CrossRef]
- Erjavec, J.; Kos, J.; Ravnikar, M.; Dreo, T.; Sabotiˇc, J. Proteins of higher fungi-from forest to application. Trends Biotechnol. 2012, 30, 259–273. [Google Scholar] [CrossRef]
- Hibino, Y.; Konishi, Y.; Koike, J.; Tabata, T.; Ohashi, Y.; Sugano, N. Productions of interferon-gamma and nitrite are induced in mouse splenic cells by a heteroglycan-protein fraction from culture-medium of lentinus edodes mycelia. Immunopharmacology 1994, 28, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Jiao, J.L.; Zhang, M.S.; Fang, Y.K.; Ning, A.H.; Zhong, M.T.; Huang, M. Anti-tumor effect of LP1 from lentinus edodes C91-3 in mice bearing hepatic carcinoma H22 cells. Chin. J. Microecol. 2018, 30, 895–899. [Google Scholar] [CrossRef]
- Barać, M.B.; Stanojević, S.P.; Jovanović, S.T.; Pešić, M.B. Soy protein modification: A review. Atca Period. Technol. 2004, 35, 3–16. [Google Scholar] [CrossRef]
- Heck, T.; Faccio, G.; Richter, M.; Thöny-Meyer, L. Enzyme-catalyzed protein crosslinking. Appl. Microbiol. Biotechnol. 2013, 97, 461–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.X.; Feng, Y.; Cheng, Q.Y.; Liu, J.Y.; Yun, S.J.; Cheng, Y.F.; Cheng, F.E.; Cao, J.L.; Feng, C.P. Investigation of consequences of high-voltage pulsed electric field and TGase cross-linking on the physicochemical and rheological properties of Pleurotus eryngii protein. Foods 2023, 12, 647. [Google Scholar] [CrossRef]
- Xu, Y.J.; Zhao, X.; Bian, G.L.; Yang, L.; Han, M.Y.; Xu, X.L.; Zhou, G.H. Structural and solubility properties of pale, soft and exudative (PSE)-like chicken breast myofibrillar protein: Effect of glycosylation. LWT 2018, 95, 209–215. [Google Scholar] [CrossRef]
- Lin, G.; Yuan, D.; Wang, Q.; Li, W.; Cai, J.; Li, S.; Lamikanra, O.; Qin, X. Maillard-reaction-functionalized egg ovalbumin stabilizes oil nanoemulsions. J. Agric. Food Chem. 2018, 66, 4251–4258. [Google Scholar] [CrossRef]
- Wang, Q.; Ismail, B. Effect of Maillard-induced glycosylation on the nutritional quality, solubility, thermal stability and molecular configuration of whey protein. Int. Dairy J. 2012, 25, 112–122. [Google Scholar] [CrossRef]
- Mengíbar, M.; Miralles, B.; Heras, Á. Use of soluble chitosans in Maillard reaction products with β-lactoglobulin. Emulsifying and antioxidant properties. LWT 2017, 75, 440–446. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Guo, X.; Ai, C.; Zhang, T.; Yu, S. Genipin crosslinked sugar beet pectin-whey protein isolate/bovine serum albumin conjugates with enhanced emulsifying properties. Food Hydrocoll. 2020, 105, 105802. [Google Scholar] [CrossRef]
- Macierzanka, A.; Bordron, F.; Rigby, N.M. Transglutaminase cross-linking kinetics of sodium caseinate is changed after emulsification. Food Hydrocoll. 2011, 25, 843–850. [Google Scholar] [CrossRef]
- Hrynets, Y.; Ndagijimana, M.; Betti, M. Transglutaminase-catalyzed glycosylation of natural actomyosin (NAM) using glucosamine as amine donor: Functionality and gel microstructure. Food Hydrocoll. 2014, 36, 26–36. [Google Scholar] [CrossRef]
- Gottardi, D.; Hong, P.K.; Ndagijimana, M.; Betti, M. Conjugation of gluten hydrolysates with glucosamine at mild temperatures enhances antioxidant and antimicrobial properties. LWT 2014, 57, 181–187. [Google Scholar] [CrossRef]
- Yang, M.; Shi, Y.; Liang, Q. Effect of microbial transglutaminase crosslinking on the functional properties of yak caseins: A comparison with cow caseins. Dairy Sci. Technol. 2016, 96, 39–51. [Google Scholar] [CrossRef] [Green Version]
- Abdelrahee, A.N.; Hashim, A.S.; Ahmed, M.E.S. Changes in functional properties by transglutaminase cross linking as a function of pH of legumes protein isolate. Innov. Rom. Food Biotechnol. 2010, 7, 12–20. [Google Scholar] [CrossRef]
- Black, C.; Clar, C.; Henderson, R.; MacEachern, C.; McNamee, P.; Quayyum, Z.; Thomas, S. The clinical effectiveness of glucosamine and chondroitin supplements in slowing or arresting progression of osteoarthritis of the knee: A systematic review and economic evaluation. Health Technol. Asses. 2009, 13, 1–148. [Google Scholar] [CrossRef] [Green Version]
- Chung, Y.C.; Tsai, C.F.; Li, C.F. Preparation and characterization of water-soluble chitosan produced by Maillard reaction. Fish. Sci. 2006, 72, 1096–1103. [Google Scholar] [CrossRef]
- Fan, H.B.; Zou, Y.; Huang, S.Y.; Liu, Y.L.; Zheng, Q.W.; Guo, L.Q.; Lin, J.F. Study on the physicochemical and emulsifying property of proteins extracted from Pleurotus tuoliensis. LWT 2021, 151, 112185. [Google Scholar] [CrossRef]
- Chelh, I.; Gatellier, P.; Santé-Lhoutellier, V. A simplified procedure for myofibril hydrophobicity determination. Meat Sci. 2006, 74, 681–683. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.Y.; Ma, L.J.; Wang, L.J.; Jiang, W. Effect of pulsed electric field on structural properties of protein in solid state. LWT 2016, 74, 331–337. [Google Scholar] [CrossRef]
- Song, X.Z.; Zhou, C.J.; Fu, F.; Chen, Z.L.; Wu, Q.L. Effect of high-pressure homogenization on particle size and film properties of soy protein isolate. Ind. Crop. Prod. 2013, 43, 538–544. [Google Scholar] [CrossRef]
- Miao, F.; Xin, H.Z. Modified properties of a glycated and cross-linked soy protein isolate by transglutaminase and an oligochitosan of 5 kDa. J. Sci. Food Agric. 2017, 97, 58–64. [Google Scholar] [CrossRef]
- Simonian, M.H.; Smith, J.A. Spectrophotometric and colorimetric determination of protein concentration. Curr. Protoc. Mol. Biol. 2006, 76, 10–10.1A. [Google Scholar] [CrossRef]
- Amza, T.; Balla, A.; Tounkara, F.; Man, L.; Zhou, H.M. Effect of hydrolysis time on nutritional, functional and antioxidant properties of protein hydrolysates prepared from gingerbread plum (Neocarya macrophylla) seeds. Int. Food Res. J. 2013, 20, 2081–2090. [Google Scholar] [CrossRef] [Green Version]
- Mao, X.; Hua, Y. Composition structure and functional properties of protein concentrates and isolates produced from walnut (Juglans regia L.). Int. J. Mol. Sci. 2012, 13, 1561–1581. [Google Scholar] [CrossRef] [Green Version]
- Wen, X.Y.; Jin, F.; Joe, M. Regenstein and Fengjun Wang, Transglutaminase induced gels using bitter apricot kernel protein: Chemical, textural and release properties. Food Biosci. 2018, 26, 15. [Google Scholar] [CrossRef]
- Chen, L.; Ullah, N.; Li, C.Y.; Hackman, R.M.; Li, Z.X.; Xu, X.L.; Zhou, G.H.; Feng, X.C. Incorporated glucosamine adversely affects the emulsifying properties of whey protein isolate polymerized by transglutaminase. J. Dairy Sci. 2017, 100, 3413–3423. [Google Scholar] [CrossRef] [Green Version]
- van Teeffelen, A.M.; Broersen, K.; de Jongh, H.H. Glucosylation of blactoglobulin lowers the heat capacity change of unfolding; a unique way to affect protein thermodynamics. Protein Sci. 2005, 14, 2187–2194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mu, L.X.; Zhao, H.F.; Zhao, M.M.; Cui, C.; Liu, L.Y. Physicochemical properties of soy protein isolates-acacia gum conjugates. Czech J. Food Sci. 2011, 29, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Abhishek, S. Fluorescence study of the curcumin-casein micelle complexation and its application as a drug nanocarrier to cancer cells. Macromolecules 2008, 9, 2905–2912. [Google Scholar] [CrossRef]
- Yu, J.; Wang, G.; Wang, X.; Xu, Y.; Chen, S.; Wang, X.; Jiang, L. Improving the freeze-thaw stability of soy protein emulsions via combing limited hydrolysis and Maillard-induced glycation. LWT 2018, 91, 63–69. [Google Scholar] [CrossRef]
- Spotti, M.J.; Martinez, M.J.; Pilosof, A.M.R.; Candioti, M.; Rubiolo, A.C.; Carrara, C.R. Rheological properties of whey protein and dextran conjugates at different reaction times. Food Hydrocoll. 2014, 38, 76–84. [Google Scholar] [CrossRef]
- Song, C.L.; Zhao, X.H. Structure and property modification of an oligochitosan-glycosylated and crosslinked soybean protein generated by microbial transglutaminase. Food Chem. 2014, 163, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Tu, Z.; Wang, H.; Zhang, L.; Huang, T.; Ma, D. Monitoring of the functional properties and unfolding change of ovalbumin after DHPM treatment by HDX and FTICR MS: Functionality and unfolding of oval after DHPM by HDX and FTICR MS. Food Chem. 2017, 227, 413–421. [Google Scholar] [CrossRef]
- Kong, J.; Yu, S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim. Biophys. Sin. 2007, 39, 549–559. [Google Scholar] [CrossRef] [Green Version]
- Kudre, T.G.; Benjakul, S.; Kishimura, H. Comparative study on chemical compositions and properties of protein isolates from mung bean black, bean and bambara groundnut. J. Sci. Food Agric. 2013, 93, 2429–2436. [Google Scholar] [CrossRef]
- Mu, L.; Zhao, M.; Yang, B.; Zhao, H.; Cui, C.; Zhao, Q. Effect of ultrasonic treatment on the graft reaction between soy protein isolate and gum acacia and on the physicochemical properties of conjugates. J. Agric. Food Chem. 2010, 58, 4494–4499. [Google Scholar] [CrossRef]
- Zhang, W.; Leong, S.; Zhao, F.; Zhao, F.; Yang, T.; Liu, S. Viscozyme L pretreatment on palm kernels improved the aroma of palm kernel oil after kernel roasting. Food Res. Int. 2018, 107, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Pinto, M.S.; Léonil, J.; Henry, G.; Cauty, C.; Carvalho, A.F.; Bouhallab, S. Heating and glycation of β-lactoglobulin and β-casein: Aggregation and in vitro digestion. Food Res. Int. 2014, 55, 70–76. [Google Scholar] [CrossRef]
- Ma, Q.P.; Wang, H.; Tu, Z.C.; Wen, P.W.; Hu, Y.M. Effects of ultrasound-assisted glycation on the allergenicity of β-lactoglobulin during digestion. Food Mach. 2021, 37, 6–11. [Google Scholar] [CrossRef]
- Djoullah, A.; Krechiche, G.; Husson, F.; Saurel, R. Size measuring techniques as tool to monitor pea proteins intramolecular crosslinking by transglutaminase treatment. Food Chem. 2016, 190, 197–200. [Google Scholar] [CrossRef]
- Zou, P.R.; Hu, F.; Ni, Z.J.; Zhang, F.; Thakur, K.; Zhang, J.G.; Wei, Z.J. Effects of phosphorylation pretreatment and subsequent transglutaminase cross-linking on physicochemical, structural, and gel properties of wheat gluten. Food Chem. 2022, 392, 133296. [Google Scholar] [CrossRef]
- Hu, X.; Hu, W.X.; Lu, H.Y.; Liu, S.; Rao, S.Q.; Yang, Z.Q.; Jiao, X.A. Glycosylated cross-linked ovalbumin by transglutaminase in the presence of oligochitosan: Effect of enzyme action time and enhanced functional properties. Food Hydrocoll. 2023, 138, 108462. [Google Scholar] [CrossRef]
- Zhang, F.; Cai, X.; Ding, L.; Wang, S. Effect of pH, ionic strength, chitosan deacetylation on the stability and rheological properties of O/W emulsions formulated with chitosan/casein complexes. Food Hydrocoll. 2021, 111, 106211. [Google Scholar] [CrossRef]
- Bönisch, M.P.; Huss, M.; Weitl, K.; Kulozik, U. Transglutaminase cross-linking of milk proteins and impact on yoghurt gel properties. Int. Dairy J. 2007, 17, 1360–1371. [Google Scholar] [CrossRef]
- Boostani, S.; Aminlari, M.; Moosavi-Nasab, M.; Niakosari, M.; Mesbahi, G. Fabrication and characterisation of soy protein isolate-grafted dextran biopolymer: A novel ingredient in spray-dried soy beverage formulation. Int. J. Biol. Macromol. 2017, 102, 297–307. [Google Scholar] [CrossRef]
- Ter, H.R.; Schols, H.A.; Gruppen, H. Effect of saccharide structure and size on the degree of substitution and product dispersity of α-lactalbumin glycated via the Maillard reaction. J. Agric. Food Chem. 2011, 59, 9378–9385. [Google Scholar] [CrossRef]
- Hosseinzadeh, H. Ceric-initiated free radical graft copolymerization of acrylonitrile onto kappa carrageenan. J. Appl. Polym Sci. 2010, 114, 404–412. [Google Scholar] [CrossRef]
- Jiang, S.J.; Zhao, X.H. Transglutaminase-induced cross-linking and glucosamine conjugation of casein and some functional properties of the modified product. Int. Dairy J. 2011, 21, 198–205. [Google Scholar] [CrossRef]
- Resendiz-Vazquez, J.A.; Ulloa, J.A.; Urias-Silvas, J.E.; Bautista-Rosales, P.U.; Ramirez-Ramirez, J.C.; Rosas-Ulloa, P.; Gonzalez-Torres, L. Effect of high-intensity ultrasound on the technofunctional properties and structure of jackfruit (Artocarpus heterophyllus) seed protein isolate. Ultrason. Sonochem. 2017, 37, 436–444. [Google Scholar] [CrossRef]
- Li, B.; Bao, Z.; Xu, W.; Chi, Y. Influence of glycation extent on the physicochemical and gelling properties of soybean β-conglycinin. Eur. Food Res. Technol. 2015, 240, 399–411. [Google Scholar] [CrossRef]
- Tang, C.H.; Sun, X.; Foegeding, E.A. Modulation of physicochemical and conformational properties of kidney bean vicilin (phaseolin) by glycation with glucose: Implications for structure-function relationships of legume vicilins. J. Agric. Food Chem. 2011, 59, 10114–10123. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Han, F.; Sui, X.; Qi, B.; Yang, Y.; Zhang, H.; Wang, R.; Li, Y.; Jiang, L. Effect of ultrasound treatment on the wet heating Maillard reaction between mung bean (Vigna radiate L.) protein isolates and glucose and on structural and physico-chemical properties of conjugates. J. Sci. Food Agric. 2016, 96, 1532–1540. [Google Scholar] [CrossRef] [PubMed]
- Kihlberg, J.; Elofsson, M. Solid-phase synthesis of glycopeptides: Immunological studies with T cell stimulating glycopeptides. Curr. Med. Chem. 1997, 4, 85–117. [Google Scholar] [CrossRef]
- Liu, G.; Zhong, Q. Glycation of whey protein to provide steric hindrance against thermal aggregation. J. Agric. Food Chem. 2012, 60, 9754–9762. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Sun, X.; Yang, J.; Ren, J.; Vardhanabhuti, B.; Liu, X.; Fu, Y. TGase-induced glycosylated soy protein products with limited enzymatic hydrolysis showed enhanced foaming property. Eur. Food Res. Technol. 2021, 247, 2557–2563. [Google Scholar] [CrossRef]
- Song, Y.; Babiker, E.E.; Usui, M.; Saito, A.; Kato, A. Emulsifying properties and bactericidal action of chitosan–lysozyme conjugates. Food Res. Int. 2002, 35, 459–466. [Google Scholar] [CrossRef]
- Anuradha, S.N.; Prakash, V. Altering functional attributes of proteins through cross linking by transglutaminase–a case study with whey and seed proteins. Food Res. Int. 2009, 42, 1259–1265. [Google Scholar] [CrossRef]
- Zhu, C.Y.; Wang, X.P.; Zhao, X.H. Property modification of caseinate responsible to transglutaminase-induced glycosylation and crosslinking in the presence of a degraded chitosan. Food Sci. Biotechnol. 2015, 24, 843–850. [Google Scholar] [CrossRef]
- Gordon, M.H. World oilseeds: Chemistry, technology, and utilization. Food Chem. 1993, 47, 219. [Google Scholar] [CrossRef]
- Matemu, A.O.; Kayahara, H.; Murasawa, H.; Nakamura, S. Importance of size and charge of carbohydrate chains in the preparation of functional glycoproteins with excellent emulsifying properties from tofu whey. Food Chem. 2009, 114, 1328–1334. [Google Scholar] [CrossRef]
- Ren, J.; Song, C.; Wang, P.; Li, S.; Zheng, X.Q. Modification of structural and functional properties of sunflower 11S globulin hydrolysates. Czech J. Food Sci. 2015, 33, 474–479. [Google Scholar] [CrossRef] [Green Version]
- Lv, L.; Chi, Y.; Chen, C.; Xu, W. Structural and functional properties of ovalbumin glycated by dry-heating in the presence of maltodextrin. Int. J. Food Prop. 2015, 18, 1326–1333. [Google Scholar] [CrossRef]
Time (min) | Sulfydryl | Free Sulfydryl | Disulfide Bond | Surface Hydrophobicity | ||||
---|---|---|---|---|---|---|---|---|
GlcN | GlcN + TGase | GlcN | GlcN + TGase | GlcN | GlcN + TGase | GlcN | GlcN + TGase | |
0 | 5.06 ± 0.09 a | 15.06 ± 0.09 a | 10.56 ± 0.11 a | 10.56 ± 0.11 a | 2.25 ± 0.07 a | 2.25 ± 0.07 a | 45.07 ± 0.93 a | 45.07 ± 0.93 a |
30 | 10.83 ± 0.06 b | 9.58 ± 0.16 b | 6.66 ± 0.10 b | 6.76 ± 0.04 b | 2.11 ± 0.05 a | 1.41 ± 0.10 b | 43.78 ± 0.20 ab | 45.06 ± 0.98 a |
60 | 4.88 ± 0.09 e | 5.33 ± 0.03 d | 4.01 ± 0.11 c | 4.53 ± 0.16 c | 0.44 ± 0.09 c | 0.39 ± 0.08 d | 36.77 ± 1.00 c | 41.64 ± 0.60 b |
90 | 4.46 ± 0.35 e | 4.72 ± 0.12 e | 3.94 ± 0.07 d | 3.97 ± 0.12 d | 0.26 ± 0.04 d | 0.37 ± 0.11 d | 37.65 ± 1.40 c | 38.48 ± 0.88 c |
120 | 5.77 ± 0.06 d | 4.53 ± 0.11 e | 4.28 ± 0.26 d | 3.39 ± 0.11 e | 0.75 ± 0.11 bc | 0.57 ± 0.12 d | 35.60 ± 1.41 c | 38.01 ± 1.38 d |
150 | 7.36 ± 0.06 c | 6.81 ± 0.06 c | 5.59 ± 0.39 d | 4.57 ± 0.06 c | 0.88 ± 0.16 b | 1.12 ± 0.01 c | 41.37 ± 1.22 b | 32.32 ± 0.84 d |
Protein | Secondary Structure Content/% | |||
---|---|---|---|---|
α-Helix | β-Fold | β-Turn | Random Coil | |
Control | 13.97 ± 0.35 a | 29.37 ± 1.31 a | 32.97 ± 2.25 c | 23.69 ± 2.03 c |
GlcN 30 min | 11.17 ± 0.26 a | 26.95 ± 1.64 b | 34.69 ± 1.87 c | 27.19 ± 1.98 b |
GlcN 60 min | 10.00 ± 0.33 b | 24.39 ± 1.23 b | 38.01 ± 2.73 ab | 27.61 ± 1.64 b |
GlcN 90 min | 8.39 ± 0.35 c | 23.91 ± 2.01 c | 39.00 ± 2.19 a | 28.70 ± 1.83 ab |
GlcN 120 min | 6.97 ± 0.12 c | 20.54 ± 1.11 c | 42.93 ± 2.17 a | 29.56 ± 1.44 a |
GlcN 150 min | 7.00 ± 0.15 c | 26.91 ± 1.53 b | 38.31 ± 2.18 b | 27.78 ± 1.21 b |
GlcN-TGase 30 min | 10.40 ± 0.28 a | 22.39 ± 1.23 c | 36.12 ± 2.14 b | 31.09 ± 2.53 bc |
GlcN-TGase 60 min | 10.01 ± 0.19 a | 21.75 ± 1.42 d | 36.52 ± 2.55 a | 31.72 ± 2.02 a |
GlcN-TGase 90 min | 9.00 ± 0.19 a | 21.48 ± 1.54 d | 38.14 ± 1.96 a | 31.38 ± 1.89 ab |
GlcN-TGase 120 min | 4.21 ± 0.06 b | 20.35 ± 1.19 d | 40.13 ± 2.11 b | 35.31 ± 1.23 b |
GlcN-TGase 150 min | 5.99 ± 0.09 b | 22.71 ± 1.52 d | 36.01 ± 2.13 a | 35.29 ± 1.56 a |
Samples | K | N | R2 |
---|---|---|---|
Control | 0.004213 | 0.9285 | 0.99743 |
GlcN 30 min | 0.005921 | 0.9886 | 0.99400 |
GlcN 60 min | 0.006355 | 1.0939 | 0.99097 |
GlcN 90 min | 0.007915 | 1.0691 | 0.99651 |
GlcN 120 min | 0.005075 | 1.0137 | 0.99593 |
GlcN 150 min | 0.005082 | 1.0235 | 0.99216 |
GlcN-TGase 30 min | 0.007132 | 1.0408 | 0.99532 |
GlcN-TGase 60 min | 0.007790 | 1.0263 | 0.99584 |
GlcN-TGase 90 min | 0.008607 | 1.1098 | 0.99421 |
GlcN-TGase 120 min | 0.026241 | 1.5105 | 0.99776 |
GlcN-TGase 150 min | 0.025493 | 1.2657 | 0.99512 |
Sample | T0 (°C) | Td (°C) | ΔH (J/g) |
---|---|---|---|
Control | 191.64 ± 1.21 | 196.09 ± 1.01 | 2.34 ± 0.21 |
GlcN-treated protein | 287.72 ± 1.91 | 306.85 ± 1.98 | 35.20 ± 0.37 |
GlcN-TGase-treated protein | 346.45 ± 2.01 | 426.06 ± 2.52 | 116.37 ± 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.-s.; Han, W.; Cheng, Y.-f.; Yun, S.-j.; Chang, M.-c.; Cheng, F.-e.; Cao, J.-l.; Feng, C.-p. Transglutaminase-Catalyzed Glycosylation Improved Physicochemical and Functional Properties of Lentinus edodes Protein Fraction. Foods 2023, 12, 1849. https://doi.org/10.3390/foods12091849
Wu S-s, Han W, Cheng Y-f, Yun S-j, Chang M-c, Cheng F-e, Cao J-l, Feng C-p. Transglutaminase-Catalyzed Glycosylation Improved Physicochemical and Functional Properties of Lentinus edodes Protein Fraction. Foods. 2023; 12(9):1849. https://doi.org/10.3390/foods12091849
Chicago/Turabian StyleWu, Shan-shan, Wei Han, Yan-fen Cheng, Shao-jun Yun, Ming-chang Chang, Fei-er Cheng, Jin-ling Cao, and Cui-ping Feng. 2023. "Transglutaminase-Catalyzed Glycosylation Improved Physicochemical and Functional Properties of Lentinus edodes Protein Fraction" Foods 12, no. 9: 1849. https://doi.org/10.3390/foods12091849
APA StyleWu, S. -s., Han, W., Cheng, Y. -f., Yun, S. -j., Chang, M. -c., Cheng, F. -e., Cao, J. -l., & Feng, C. -p. (2023). Transglutaminase-Catalyzed Glycosylation Improved Physicochemical and Functional Properties of Lentinus edodes Protein Fraction. Foods, 12(9), 1849. https://doi.org/10.3390/foods12091849