Capillary-Assisted Monitoring of Milk Freshness via a Porous Cellulose-Based Label with High pH Sensitivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Modification of RSPs
2.3. Adsorption Experiments
2.4. Preparation of the Cellulose-Based Label
2.5. Characterizations
2.6. Thermal Stability
2.7. Mechanical Properties
2.8. Ventilation Capacity
2.9. Response to pH
2.10. Response to Acetic Acid (HAc)
2.11. Monitoring of MF
2.12. Statistical Analysis
3. Results and Discussion
3.1. Preparation of Cationic RSPs (BC-RSPs) and Adsorption of BP
3.2. SEM Images of Fibers
3.3. Preparation of the Cellulose-Based Label
3.4. Chemical Structures
3.5. Crystalline Structure and Thermal Stability
3.6. Air Permeability and Mechanical Properties
3.7. Responses to pH and HAc
3.8. Monitoring of MF
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Li, L.; Xia, L.; Xiao, F.; Xiao, Y.; Liu, L.; Jiang, S.; Wang, H. Colorimetric active carboxymethyl chitosan/oxidized sodium alginate-Oxalis triangularis ssp. papilionacea anthocyanins film@gelatin/zein-linalool membrane for milk freshness monitoring and preservation. Food Chem. 2023, 405 Pt B, 134994. [Google Scholar] [CrossRef] [PubMed]
- Kapse, S.; Kedia, P.; Kumar, A.; Kausley, S.; Pal, P.; Rai, B. A non-invasive method for detection of freshness of packaged milk. J. Food Eng. 2023, 346, 111424. [Google Scholar] [CrossRef]
- Liang, X.; Cheng, J.; Sun, J.; Yang, M.; Luo, X.; Yang, H.; Wu, J.; Wang, Z.; Yue, X.; Zheng, Y. Reduction of immunoreactivity and improvement of the nutritional qualities in cow milk products by enzymatic hydrolysis. LWT 2021, 150, 111994. [Google Scholar] [CrossRef]
- Romero, A.; Sharp, J.L.; Dawson, P.L.; Darby, D.; Cooksey, K. Evaluation of two intelligent packaging prototypes with a pH indicator to determine spoilage of cow milk. Food Packag. Shelf Life 2021, 30, 100720. [Google Scholar] [CrossRef]
- Lu, M.; Shiau, Y.; Wong, J.; Lin, R.; Kravis, H.; Blackmon, T.; Pakzad, T.; Jen, T.; Cheng, A.; Chang, J.; et al. Milk Spoilage: Methods and Practices of Detecting Milk Quality. Food Nutr. Sci. 2013, 04, 113–123. [Google Scholar] [CrossRef]
- Hwang, J.H.; Jung, A.H.; Yu, S.S.; Park, S.H. Rapid freshness evaluation of cow milk at different storage temperatures using in situ electrical conductivity measurement. Innov. Food Sci. Emerg. Technol. 2022, 81, 103113. [Google Scholar] [CrossRef]
- Kan, J.; Liu, J.; Xu, F.; Yun, D.; Yong, H.; Liu, J. Development of pork and shrimp freshness monitoring labels based on starch/polyvinyl alcohol matrices and anthocyanins from 14 plants: A comparative study. Food Hydrocoll. 2022, 124 Pt A, 107293. [Google Scholar] [CrossRef]
- Tirtashi, F.E.; Moradi, M.; Tajik, H.; Forough, M.; Ezati, P.; Kuswandi, B. Cellulose/chitosan pH-responsive indicator incorporated with carrot anthocyanins for intelligent food packaging. Int. J. Biol. Macromol. 2019, 136, 920–926. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Wang, L. Preparation of a visual pH-sensing film based on tara gum incorporating cellulose and extracts from grape skins. Sens. Actuators B Chem. 2016, 235, 401–407. [Google Scholar] [CrossRef]
- Kari, N.; Koxmak, S.; Wumaier, K.; Nizamidin, P.; Abliz, S.; Yimit, A. Application of bromocresol purple nanofilm and laser light to detect mutton freshness. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 244, 118863. [Google Scholar] [CrossRef]
- Gavrilenko, N.A.; Saranchina, N.V.; Sukhanov, A.V.; Fedan, D.A. Reversible pH-sensitive element based on bromocresol purple immobilized into the polymethacrylate matrix. Mendeleev Commun. 2018, 28, 450–452. [Google Scholar] [CrossRef]
- Zakaria, S.A.; Ahmadi, S.H.; Amini, M.H. Alginate/dye composite film-based colorimetric sensor for ammonia sensing: Chicken spoilage. Food Control 2023, 147, 109575. [Google Scholar] [CrossRef]
- Magnaghi, L.R.; Zanoni, C.; Alberti, G.; Quadrelli, P.; Biesuz, R. Towards intelligent packaging: BCP-EVOH@ optode for milk freshness measurement. Talanta 2022, 241, 123230. [Google Scholar] [CrossRef] [PubMed]
- Yun, T.; Tao, Y.; Li, Q.; Cheng, Y.; Lu, J.; Lv, Y.; Du, J.; Wang, H. Superhydrophobic modification of cellulosic paper-based materials: Fabrication, properties, and versatile applications. Carbohydr. Polym. 2023, 305, 120570. [Google Scholar] [CrossRef]
- Khan, M.N.; Rehman, N.; Sharif, A.; Ahmed, E.; Farooqi, Z.H.; Din, M.I. Environmentally benign extraction of cellulose from dunchi fiber for nanocellulose fabrication. Int. J. Biol. Macromol. 2020, 153, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Ramos, M.; Laveriano, E.; Sebastián, L.S.; Perez, M.; Jiménez, A.; Lamuela-Raventos, R.M.; Garrigós, M.C.; Vallverdú-Queralt, A. Rice straw as a valuable source of cellulose and polyphenols: Applications in the food industry. Trends Food Sci. Technol. 2023, 131, 14–27. [Google Scholar] [CrossRef]
- Islam, M.S.; Kao, N.; Bhattacharya, S.N.; Gupta, R.; Choi, H.J. Potential aspect of rice husk biomass in Australia for nanocrys-talline cellulose production. Chin. J. Chem. Eng. 2018, 26, 465–476. [Google Scholar] [CrossRef]
- Liu, R.; Chi, W.; Jin, H.; Li, J.; Wang, L. Fabricating κ-carrageenan/carboxymethyl cellulose films encapsulating bromothymol blue fixed rice straw fiber for monitoring meat freshness. Ind. Crop. Prod. 2022, 187, 115420. [Google Scholar] [CrossRef]
- Jiang, Z.; Hu, D. Molecular mechanism of anionic dyes adsorption on cationized rice husk cellulose from agricultural wastes. J. Mol. Liq. 2019, 276, 105–114. [Google Scholar] [CrossRef]
- Pal, P.; Li, H.; Saravanamurugan, S. Removal of lignin and silica from rice straw for enhanced accessibility of holocellulose for the production of high-value chemicals. Bioresour. Technol. 2022, 361, 127661. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Wang, L. Adsorption of Reactive blue 21 onto functionalized cellulose under ultrasonic pretreatment: Kinetic and equilibrium study. J. Taiwan Inst. Chem. Eng. 2015, 50, 229–235. [Google Scholar] [CrossRef]
- Hu, D.; Wang, L. Adsorption of amoxicillin onto quaternized cellulose from flax noil: Kinetic, equilibrium and thermodynamic study. J. Taiwan Inst. Chem. Eng. 2016, 64, 227–234. [Google Scholar] [CrossRef]
- Feng, B.; Liu, J.; Lu, Z.; Zhang, M.; Tan, X. Study on properties and durability of alkali activated rice straw fibers cement composites. J. Build. Eng. 2023, 63, 105515. [Google Scholar] [CrossRef]
- Momayez, F.; Karimi, K.; Karimi, S.; Horváth, I.S. Efficient hydrolysis and ethanol production from rice straw by pretreatment with organic acids and effluent of biogas plant. RSC Adv. 2017, 7, 50537–50545. [Google Scholar] [CrossRef]
- Li, W.; Hu, J.; Cheng, L.; Chen, L.; Zhou, L.; Zhang, J.; Yuan, Y. Study on thermal behavior of regenerated micro-crystalline cellulose containing slight amount of water induced by hydrogen-bonds transformation. Polymer 2019, 185, 121989. [Google Scholar] [CrossRef]
- Toscano, G.; Maceratesi, V.; Leoni, E.; Stipa, P.; Laudadio, E.; Sabbatini, S. FTIR spectroscopy for determination of the raw materials used in wood pellet production. Fuel 2022, 313, 123017. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, F.; Lu, Y.; Wei, S.; Xu, H.; Zhang, J.; Ge, Y.; Li, Z. Lignin microparticles-reinforced cellulose filter paper for simultaneous removal of emulsified oils and dyes. Int. J. Biol. Macromol. 2023, 230, 123120. [Google Scholar] [CrossRef]
- Adel, A.M.; El-Wahab, Z.H.A.; Ibrahim, A.A.; Al-Shemy, M.T. Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part II: Physicochemical properties. Carbohydr. Polym. 2011, 83, 676–687. [Google Scholar] [CrossRef]
- Song, X.; Chen, F.; Liu, F. Preparation and characterization of alkyl ketene dimer (AKD) modified cellulose composite membrane. Carbohydr. Polym. 2012, 88, 417–421. [Google Scholar] [CrossRef]
- Lee, H.-G.; Jeong, S.; Yoo, S. Development of a calcium hydroxide–dye kimchi ripening indicator and its application in kimchi packaging. Food Chem. 2023, 400, 134039. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, Y.; Zhang, L.; Zhang, R.; Liu, G.; Cheng, G. Understanding changes in cellulose crystalline structure of lig-nocellulosic biomass during ionic liquid pretreatment by XRD. Bioresour. Technol. 2014, 151, 402–405. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Feng, Z.; Wang, D.; Wu, J.; Qiu, J.; Zhu, P. Highly-efficient isolation of cellulose microfiber from rice straw via gentle low-temperature phase transition. Cellulose 2021, 28, 7021–7031. [Google Scholar] [CrossRef]
- Sun, C.; Tan, H.; Zhang, Y. Simulating the pyrolysis interactions among hemicellulose, cellulose and lignin in wood waste under real conditions to find the proper way to prepare bio-oil. Renew. Energy 2023, 205, 851–863. [Google Scholar] [CrossRef]
- Jamroz, E.; Kulawik, P.; Krzysciak, P.; Talaga-Cwiertnia, K.; Juszczak, L. Intelligent and active furcellaran-gelatin films con-taining green or pu-erh tea extracts: Characterization, antioxidant and antimicrobial potential. Int. J. Biol. Macromol. 2019, 122, 745–757. [Google Scholar] [CrossRef] [PubMed]
Beating Degrees (°SR) | Air Permeability (mm/s) | σ (N) | TS (MPa) |
---|---|---|---|
30 | 73.22 ± 0.19 a | 18.88 ± 0.05 b | 7.38 ± 0.08 a |
40 | 40.16 ± 0.37 a | 20.18 ± 0.13 a | 8.40 ± 0.21 a |
50 | 15.18 ± 0.14 b | 21.63 ± 0.24 a | 9.12 ± 0.18 a |
BP-BCRP Ratios (%) | Air Permeability (mm/s) | σ (N) | TS (MPa) |
---|---|---|---|
10 | 3.76 ± 0.12 c | 42.54 ± 0.20 b | 18.25 ± 0.15 c |
20 | 5.04 ± 0.24 b | 32.95 ± 0.14 c | 14.27 ± 0.19 a |
30 | 5.91 ± 0.10 a | 29.73 ± 0.01 a | 13.63 ± 0.13 a |
40 | 15.01 ± 0.26 a | 21.97 ± 0.13 b | 9.87 ± 0.07 a |
pHs | L* | a* | b* | ΔE | Color Changes |
---|---|---|---|---|---|
3.0 | 79.32 ± 0.05 a | −1.35 ± 0.03 a | 16.19 ± 0.01 a | 17.06 ± 0.02 a | |
4.0 | 77.73 ± 0.01 b | −1.92 ± 0.02 c | 12.02 ± 0.01 c | 13.54 ± 0.08 b | |
5.0 | 74.04 ± 0.02 a | −2.71 ± 0.01 a | 10.82 ± 0.03 c | 14.42 ± 0.01 c | |
5.5 | 73.07 ± 0.03 b | −4.08 ± 0.07 a | −2.24 ± 0.02 b | 9.47 ± 0.01 a | |
6.0 | 73.55 ± 0.05 c | −3.11 ± 0.01 c | −3.13 ± 0.07 a | 8.90 ± 0.04 a | |
6.5 | 78.2 ± 0.05 b | −3.42 ± 0.03 a | −5.88 ± 0.01 c | 6.29 ± 0.03 a | |
7.0 | 69.01 ± 0.04 a | −1.32 ± 0.03 a | −14.90 ± 0.06 a | 20.01 ± 0.05 b | |
8.0 | 65.70 ± 0.02 b | 0.86 ± 0.02 c | −22.10 ± 0.09 a | 27.72 ± 0.01 a | |
9.0 | 62.90 ± 0.01 b | 2.64 ± 0.04 a | −22.64 ± 0.06 a | 30.13 ± 0.02 a |
HAc Volume (mL) | L* | a* | b* | ΔE | Color Changes |
---|---|---|---|---|---|
0.1 | 79.87 ± 0.12 b | −1.53 ± 0.08 a | 17.55 ± 0.07 a | 19.05 ± 0.10 a | |
0.2 | 80.19 ± 0.11 a | −1.76 ± 0.06 a | 20.00 ± 0.07 c | 21.46 ± 0.16 b | |
0.4 | 82.30 ± 0.15 a | −1.73 ± 0.06 a | 22.45 ± 0.01 a | 23.82 ± 0.18 a | |
0.8 | 83.11 ± 0.18 a | −1.56 ± 0.02 a | 23.44 ± 0.04 c | 24.83 ± 0.09 a | |
1.0 | 84.80 ± 0.17 b | −1.62 ± 0.09 b | 26.11 ± 0.06 b | 27.61 ± 0.24 a |
Milk Storage Time (h) | pH | Acidity (°T) | Lactic Acid Content (%) | Discolorations |
---|---|---|---|---|
0 | 6.42 | 17.24 | 0.16 | |
4 | 6.37 | 18.81 | 0.17 | |
6 | 6.21 | 19.80 | 0.18 | |
8 | 5.74 | 22.77 | 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.; Chi, W.; Zhu, Q.; Jin, H.; Li, J.; Wang, L. Capillary-Assisted Monitoring of Milk Freshness via a Porous Cellulose-Based Label with High pH Sensitivity. Foods 2023, 12, 1857. https://doi.org/10.3390/foods12091857
Liu R, Chi W, Zhu Q, Jin H, Li J, Wang L. Capillary-Assisted Monitoring of Milk Freshness via a Porous Cellulose-Based Label with High pH Sensitivity. Foods. 2023; 12(9):1857. https://doi.org/10.3390/foods12091857
Chicago/Turabian StyleLiu, Ruoting, Wenrui Chi, Qihao Zhu, Hailan Jin, Jian Li, and Lijuan Wang. 2023. "Capillary-Assisted Monitoring of Milk Freshness via a Porous Cellulose-Based Label with High pH Sensitivity" Foods 12, no. 9: 1857. https://doi.org/10.3390/foods12091857
APA StyleLiu, R., Chi, W., Zhu, Q., Jin, H., Li, J., & Wang, L. (2023). Capillary-Assisted Monitoring of Milk Freshness via a Porous Cellulose-Based Label with High pH Sensitivity. Foods, 12(9), 1857. https://doi.org/10.3390/foods12091857