A Sensitive and Specific Monoclonal Antibody Based Enzyme-Linked Immunosorbent Assay for the Rapid Detection of Pretilachlor in Grains and the Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Synthesis and Computer Simulation of the Hapten PR-SC
2.3. Preparation of Complete Antigen
2.4. Production of the Monoclonal Antibody (mAb)
2.5. Ic-ELISA Procedure
2.6. Optimization of Ic-ELISA
2.7. Standard Curve and Cross-Reactivity of Ic-Elisa
2.8. Sample Preparation
2.9. Validation of the Ic-ELISA
3. Results
3.1. Identification of Hapten
3.2. Identification of Complete Antigens
3.3. Production and Identification of the mAb
3.4. Optimization of Ic-ELISA Conditions
3.4.1. Optimization of Dilution of mAb and Coating Antigen
3.4.2. Optimization of Drug Dilution Conditions
3.5. Evaluation of the Optimized Ic-ELISA
3.5.1. Ic-ELISA Calibration Curve
3.5.2. Cross-Reactivity
3.6. Validation of Ic-ELISA Method
3.6.1. Optimization of Sample Pretreatment
3.6.2. Comparison of Ic-ELISA and HPLC
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, C.; Lou, X.; Xu, X.; Huang, A.; Zhang, M.; Ma, L. Thermodynamics and Kinetics of Pretilachlor Adsorption on Organobentonites for Controlled Release. ACS Omega 2020, 5, 4191–4199. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Kim, D.U.; Park, S.; Yoon, J.H.; Ka, J.O. Massilia chloroacetimidivorans sp. nov., a chloroacetamide herbicide-degrading bacterium isolated from soil. Antonie Van Leeuwenhoek 2017, 110, 751–758. [Google Scholar] [CrossRef]
- Han, S.; Hatzios, K.K. Uptake, Translocation, and Metabolism of [C-14] Pretilachlor in Fenclorim-Safened and Unsafened Rice Seedlings. Pestic. Biochem. Physiol. 1991, 39, 281–290. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, Y.; Yu, R.; Zhao, X.; Wang, Q.; Cai, L. Pretilachlor has the potential to induce endocrine disruption, oxidative stress, apoptosis and immunotoxicity during zebrafish embryo development. Environ. Toxicol. Pharmacol. 2016, 42, 125–134. [Google Scholar] [CrossRef]
- Kumar, J.; Patel, A.; Tiwari, S.; Tiwari, S.; Srivastava, P.K.; Prasad, S.M. Pretilachlor toxicity is decided by discrete photo-acclimatizing conditions: Physiological and biochemical evidence from Anabaena sp. and Nostoc muscorum. Ecotoxicol. Environ. Saf. 2018, 156, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Soni, R.; Verma, S.K. Impact of herbicide pretilachlor on reproductive physiology of walking catfish, Clarias batrachus (Linnaeus). Fish Physiol. Biochem. 2020, 46, 2065–2072. [Google Scholar] [CrossRef]
- Cheng, Y.; Ge, J.; Hu, G.; Cai, L.; Chen, L.; Jiang, J. Acute Toxicity Effects of Three Amide Herbicides to Different Life Stages of Zebrafish (Danio rerio). Asian J. Ecotoxicol. 2017, 12, 171–178. [Google Scholar]
- Han, S.; Hatzios, K.K. Physiological Interactions between the Herbicide Pretilachlor and the Safener Fenclorim on Rice. Pestic. Biochem. Physiol. 1991, 39, 270–280. [Google Scholar] [CrossRef]
- Swatch, G.K.; Singh, D.P.; Khattar, J.S.; Mohapatra, P.K. Interaction of pretilachlor with PS-II activity of the cyanobacterium Desmonostoc muscorum PUPCCC 405.10. J. Basic Microbiol. 2020, 60, 532–542. [Google Scholar] [CrossRef]
- El-Baz, M.A.; ElDeek, S.M.; Amin, A.F.; Nassar, A.Y.; Aboelmaali, N.T. Prenatal Pesticide Exposure: Meconium as a Biomarker and Impact on Neonatal Weight. Fertil. Steril. 2013, 100, S421. [Google Scholar] [CrossRef]
- Wang, K.; Huang, X.-C.; Zhao, L.-Z.; Li, K.; Hua, Z.-X.; Yang, L.-L. Research progress on detection technology of amide herbicide residues. J. Food Saf. Qual. 2019, 10, 5590–5596. [Google Scholar]
- Coleman, S.; Linderman, R.; Hodgson, E.; Rose, R.L. Comparative metabolism of chloroacetamide herbicides and selected metabolites in human and rat liver microsomes. Environ. Health Perspect. 2000, 108, 1151–1157. [Google Scholar] [PubMed]
- Panzhihua Agriculture and Rural Bureau, China. National Food Safety Standards—Maximum Residue Limits for Pesticides in Food. 2021. Available online: http://nyncj.panzhihua.gov.cn/zfxxgk/fdzdgknr_2/lzyj/zcwj/4278727.shtml (accessed on 19 November 2023).
- Bai, S.-S.; Zhi, L.; Zang, X.-H.; Wang, C.; Wang, Z. Graphene-based Magnetic Solid Phase Extraction Dispersive Liquid-Liquid Microextraction Combined with Gas Chromatographic Method for Determination of Five Acetanilide Herbicides in Water and Green Tea Samples. Chin. J. Anal. Chem. 2013, 41, 1177–1182. [Google Scholar] [CrossRef]
- Chau, N.D.G.; Hop, N.; Long, H.; Duyen, N.; Raber, G. Multi-residue analytical method for trace detection of new-generation pesticides in vegetables using gas chromatography–tandem mass spectrometry. J. Environ. Sci. Health Part B 2019, 55, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Qin, D.; Chen, Z.; Bai, S.; Du, N.; Li, C.; Hao, Q.; Wang, P. Selective magnetic solid-phase extraction of amide herbicides from fish samples coupled with ultra-high-performance liquid chromatography with tandem mass spectrometry. J. Sep. Sci. 2022, 45, 896–907. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.J.; Yu, P.M.; Fang, S.; Fan, J.Q.; Wang, M.H. Development of an enzyme-linked immunosorbent assay for determination of pretilachlor in water and soil. Ecotoxicol. Environ. Saf. 2011, 74, 1595–1599. [Google Scholar] [CrossRef]
- Ascoli, C.A.; Aggeler, B. Overlooked benefits of using polyclonal antibodies. BioTechniques 2018, 65, 127–136. [Google Scholar] [CrossRef]
- Nelson, P.N.; Reynolds, G.M.; Waldron, E.E.; Ward, E.; Giannopoulos, K.; Murray, P.G. Monoclonal antibodies. Mol. Pathol. 2000, 53, 111–117. [Google Scholar] [CrossRef]
- Jain, D.; Salunke, D.M. Antibody specificity and promiscuity. Biochem. J. 2019, 476, 433–447. [Google Scholar] [CrossRef]
- Yin, X.; Li, H.; Wu, S.; Lu, Y.; Yang, Y.; Qin, L.; Li, L.; Xiao, J.; Liang, J.; Si, Y.; et al. A sensitive and specific enzyme-linked immunosorbent assay for the detection of pymetrozine in vegetable, cereal, and meat. Food Chem. 2023, 418, 135949. [Google Scholar] [CrossRef]
- Wu, S.; Li, H.; Yin, X.; Si, Y.; Qin, L.; Yang, H.; Xiao, J.; Peng, D. Preparation of Monoclonal Antibody against Pyrene and Benzo [a]pyrene and Development of Enzyme-Linked Immunosorbent Assay for Fish, Shrimp and Crab Samples. Foods 2022, 11, 3220. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.-K.; Huang, X.; Yang, L.-H.; Liao, Y.-J.; Gong, D.-X. Determination of Pretilachlor in Paddy Field by HPLC. Adm. Tech. Environ. Monit. 2014, 26, 32–34. [Google Scholar]
- Chen, Z.J.; Liu, X.X.; Xiao, Z.L.; Fu, H.J.; Huang, Y.P.; Huang, S.Y.; Shen, Y.D.; He, F.; Yang, X.X.; Hammock, B.; et al. Production of a specific monoclonal antibody for 1-naphthol based on novel hapten strategy and development of an easy-to-use ELISA in urine samples. Ecotoxicol. Environ. Saf. 2020, 196, 110533. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Bai, Y.; Tang, Q.; Liu, M.; Nan, L.; Wen, K.; Yu, X.; Yu, W.; Shen, J.; Wang, Z. Development of epitopephore-based rational hapten design strategy: A combination of theoretical evidence and experimental validation. J. Hazard. Mater. 2023, 445, 130615. [Google Scholar] [CrossRef]
Chloroacetamide Herbicides | Structure | IC50 (μg/L) | Cross-Reactivity (%) |
---|---|---|---|
PR | 31.47 | 100 | |
Alachlor | >3000 | <1 | |
Acetochlor | >3000 | <1 | |
Propisochlor | 1541 | 2.0 | |
Butachlor | >3000 | <1 | |
Metalaxyl | 1927 | 1.6 |
Samples | LOD (μg/L) | LOQ (μg/L) | Spiked (µg/L) | Recovery (C ± SD, %, n = 15) | Coefficient of Variation (CV) (%, n = 15) |
---|---|---|---|---|---|
Lake water | 4.83 | 10.13 | 10.00 | 89.7 ± 8.3 | 9.3 |
20.00 | 85.9 ± 7.0 | 8.1 | |||
40.00 | 83.9 ± 8.0 | 9.5 | |||
Rice | 3.04 | 5.68 | 10.00 | 81.3 ± 2.5 | 3.1 |
20.00 | 91.3 ± 3.0 | 3.3 | |||
40.00 | 78.3 ± 2.3 | 2.9 | |||
Soil | 2.37 | 4.46 | 10.00 | 86.5 ± 4.2 | 4.8 |
20.00 | 84.4 ± 2.3 | 2.7 | |||
40.00 | 86.6 ± 4.3 | 5.0 |
Spiked (μg/kg) | ic-ELISA (n = 5, μg/kg) | ic-ELISA Recovery (%) | HPLC (n = 5, μg/kg) | HPLC Recovery (%) |
---|---|---|---|---|
50 | 41.22 | 82.4 | 42.39 | 84.8 |
100 | 93.45 | 93.5 | 87.48 | 87.5 |
200 | 172.33 | 86.2 | 168.43 | 84.2 |
400 | 376.22 | 94.1 | 323.92 | 81.0 |
800 | 769.53 | 96.2 | 693.82 | 86.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Yin, X.; Yang, H.; Wen, H.; Han, S.; Pan, X.; Li, H.; Peng, D. A Sensitive and Specific Monoclonal Antibody Based Enzyme-Linked Immunosorbent Assay for the Rapid Detection of Pretilachlor in Grains and the Environment. Foods 2024, 13, 12. https://doi.org/10.3390/foods13010012
Zhang L, Yin X, Yang H, Wen H, Han S, Pan X, Li H, Peng D. A Sensitive and Specific Monoclonal Antibody Based Enzyme-Linked Immunosorbent Assay for the Rapid Detection of Pretilachlor in Grains and the Environment. Foods. 2024; 13(1):12. https://doi.org/10.3390/foods13010012
Chicago/Turabian StyleZhang, Linwei, Xiaoyang Yin, Hongfei Yang, Hao Wen, Shiyun Han, Xiaoming Pan, Huaming Li, and Dapeng Peng. 2024. "A Sensitive and Specific Monoclonal Antibody Based Enzyme-Linked Immunosorbent Assay for the Rapid Detection of Pretilachlor in Grains and the Environment" Foods 13, no. 1: 12. https://doi.org/10.3390/foods13010012
APA StyleZhang, L., Yin, X., Yang, H., Wen, H., Han, S., Pan, X., Li, H., & Peng, D. (2024). A Sensitive and Specific Monoclonal Antibody Based Enzyme-Linked Immunosorbent Assay for the Rapid Detection of Pretilachlor in Grains and the Environment. Foods, 13(1), 12. https://doi.org/10.3390/foods13010012