Evaluation of the Effectiveness of Aeration and Chlorination during Washing to Reduce E. coli O157:H7, Salmonella enterica, and L. innocua on Cucumbers and Bell Peppers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inoculum Preparation
2.2. Inoculation of Produce
2.3. Aeration System Design
2.4. Chlorine Treatment
2.5. Sample Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Efficacy of Aeration during Washing of Cucumbers and Bell Peppers against L. innocua
3.2. Efficacy of Aeration during Washing of Cucumbers and Bell Peppers against E. coli O157:H7
3.3. Efficacy of Aeration during the Washing of Cucumbers and Bell Peppers against Salmonella enterica
3.4. Level of Contamination of L. innocua, E. coli O157:H7, and Salmonella enterica in Wash Water and Chlorine Solution
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CDC. Foodborne Illness and Outbreaks. Available online: https://www.cdc.gov/foodsafety/outbreaks/lists/outbreaks-list.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Ffoodsafety%2Foutbreaks%2Fmultistate-outbreaks%2Foutbreaks-list.html (accessed on 14 October 2021).
- Alegbeleye, O.O.; Singleton, I.; Sant’Ana, A.S. Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: A review. Food Microbiol. 2018, 73, 177–208. [Google Scholar] [CrossRef] [PubMed]
- Balali, G.I.; Yar, D.D.; Afua Dela, V.G.; Adjei-Kusi, P. Microbial contamination, an increasing threat to the consumption of fresh fruits and vegetables in today’s world. Int. J. Microbiol. 2020, 2020, 3029295. [Google Scholar] [CrossRef] [PubMed]
- Moreira, J.; McCarter, K.; Benitez, J.A.; Fontenot, K.; King, J.M.; Adhikari, A. Effect of type of mulch on microbial food safety risk on cucumbers irrigated with contaminated water. J. Food Prot. 2023, 86, 100164. [Google Scholar] [CrossRef] [PubMed]
- Bell, R.L.; Kase, J.A.; Harrison, L.M.; Balan, K.V.; Babu, U.; Chen, Y.; Macarisin, D.; Kwon, H.J.; Zheng, J.; Stevens, E.L.; et al. The persistence of bacterial pathogens in surface water and its impact on global food safety. Pathogens 2021, 10, 1391. [Google Scholar] [CrossRef]
- CDC. Multistate Outbreak of Listeriosis Linked to Packaged Salads Produced at Springfield, Ohio Dole Processing Facility (Final Update). Available online: https://www.cdc.gov/listeria/outbreaks/bagged-salads-01-16/index.html (accessed on 14 October 2021).
- CDC. Salmonella outbreak Linked to Alfalfa Sprouts. Available online: https://www.cdc.gov/salmonella/typhimurium-12-22/index.html (accessed on 26 October 2023).
- CDC. Multistate Outbreak of Salmonella Poona Infections Linked to Imported Cucumbers (Final Update). Available online: https://www.cdc.gov/salmonella/poona-09-15/index.html (accessed on 14 October 2021).
- Kaczmarek, M.; Avery, S.V.; Singleton, I. Microbes associated with fresh produce: Sources, types, and methods to reduce spoilage and contamination. Adv. Appl. Microbiol. 2019, 107, 29–82. [Google Scholar] [CrossRef]
- Patange, A.; Lu, P.; Boehm, D.; Cullen, P.J.; Bourke, P. Efficacy of cold plasma functionalised water for improving microbiological safety of fresh produce and wash water recycling. Food Microbiol. 2019, 84, 103226. [Google Scholar] [CrossRef]
- Rizou, M.; Galanakis, I.M.; Aldawoud, T.M.S.; Galanakis, C.M. Safety of foods, food supply chain and environment within the COVID-19 pandemic. Trends Food Sci. Technol. 2020, 102, 293–299. [Google Scholar] [CrossRef]
- Chhetri, V.S.; Fontenot, K.; Strahan, R.; Yemmireddy, V.K.; Cason, C.; Kharel, K.; Adhikari, A. Attachment strength and on-farm die-off rate of Escherichia coli on watermelon surfaces. PLoS ONE 2019, 14, 0210115. [Google Scholar] [CrossRef]
- Sethi, S.; Nayak, S.L.; Joshi, A.; Sharma, R.R. Sanitizers for fresh-cut fruits and vegetables. In Fresh-Cut Fruits and Vegetables; Academic Press: Cambridge, MA, USA, 2020; pp. 99–119. [Google Scholar]
- FDA. Guidance for Industry: Guide to Minimize Microbial Food Safety Hazards of Fresh-Cut Fruits and Vegetables; U.S. Food and Drug Administration: College Park, MD, USA, 2008.
- Yoon, J.-H.; Lee, S.-Y. Review: Comparison of the effectiveness of decontaminating strategies for fresh fruits and vegetables and related limitations. Crit. Rev. Food Sci. Nutr. 2018, 58, 3189–3208. [Google Scholar] [CrossRef]
- Huang, R.; de Vries, D.; Chen, H. Strategies to enhance fresh produce decontamination using combined treatments of ultraviolet, washing and disinfectants. Int. J. Food Microbiol. 2018, 283, 37–44. [Google Scholar] [CrossRef]
- Aryal, J.; Chhetri, V.S.; Adhikari, A. Survival and attachment of Listeria monocytogenes on bell peppers and influence of attachment time on efficacy of chlorine. LWT 2023, 173, 114278. [Google Scholar] [CrossRef]
- Moreira, J.; Mera, E.; Singh Chhetri, V.; King, J.M.; Gentimis, T.; Adhikari, A. Effect of storage temperature and produce type on the survival or growth of Listeria monocytogenes on peeled rinds and fresh-cut produce. Front. Microbiol. 2023, 14, 1151819. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Sadiq, F.A.; Wang, N.; Yang, Z.; He, G. Recent advances in understanding the control of disinfectant-resistant biofilms by hurdle technology in the food industry. Crit. Rev. Food Sci. Nutr. 2021, 61, 3876–3891. [Google Scholar] [CrossRef] [PubMed]
- Ashrafudoulla, M.; Ulrich, M.S.I.; Toushik, S.H.; Nahar, S.; Roy, P.K.; Mizan, F.R.; Park, S.H.; Ha, S.-D. Challenges and opportunities of non-conventional technologies concerning food safety. World’s Poult. Sci. J. 2023, 79, 3–26. [Google Scholar] [CrossRef]
- Yemmireddy, V.; Adhikari, A.; Moreira, J. Effect of ultraviolet light treatment on microbiological safety and quality of fresh produce: An overview. Front. Nutr. 2022, 9, 871243. [Google Scholar] [CrossRef] [PubMed]
- Burfoot, D.; Limburn, R.; Busby, R. Assessing the effects of incorporating bubbles into the water used for cleaning operations relevant to the food industry. Int. J. Food Sci. Technol. 2017, 52, 1894–1903. [Google Scholar] [CrossRef]
- Agarwal, A.; Ng, W.J.; Liu, Y. Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere 2011, 84, 1175–1180. [Google Scholar] [CrossRef]
- Dallagi, H.; Jha, P.K.; Faille, C.; Le-Bail, A.; Rawson, A.; Benezech, T. Removal of biocontamination in the food industry using physical methods; an overview. Food Control 2023, 148, 109645. [Google Scholar] [CrossRef]
- Unger, P.; Sekhon, A.S.; Bhavnani, K.; Galland, A.; Ganjyal, G.M.; Michael, M. Impact of gas ultrafine bubbles on the efficacy of commonly used antimicrobials for apple washing. J. Food Saf. 2022, 42, e1300. [Google Scholar] [CrossRef]
- Mogren, L.; Windstam, S.; Boqvist, S.; Vagsholm, I.; Soderqvist, K.; Rosberg, A.K.; Linden, J.; Mulaosmanovic, E.; Karlsson, M.; Uhlig, E.; et al. The hurdle approach-a holistic concept for controlling food safety risks associated with pathogenic bacterial contamination of leafy green vegetables. A review. Front. Microbiol. 2018, 9, 1965. [Google Scholar] [CrossRef]
- Lee, J.J.; Eifert, J.D.; Jung, S.; Strawn, L.K. Cavitation bubbles remove and inactivate Listeria and Salmonella on the surface of fresh Roma tomatoes and cantaloupes. Front. Sustain. Food Syst. 2018, 2, 61. [Google Scholar] [CrossRef]
- Ruiz-Llacsahuanga, B.; Hamilton, A.M.; Anderson, K.; Critzer, F. Efficacy of cleaning and sanitation methods against Listeria innocua on apple packing equipment surfaces. Food Microbiol. 2022, 107, 104061. [Google Scholar] [CrossRef] [PubMed]
- Pietrysiak, E.; Smith, S.; Ganjyal, G.M. Food safety interventions to control Listeria monocytogenes in the fresh apple packing industry: A review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1705–1726. [Google Scholar] [CrossRef] [PubMed]
- Esmael, A.; Al-Hindi, R.R.; Albiheyri, R.S.; Alharbi, M.G.; Filimban, A.A.R.; Alseghayer, M.S.; Almaneea, A.M.; Alhadlaq, M.A.; Ayubu, J.; Teklemariam, A.D. Fresh produce as a potential vector and reservoir for human bacterial pathogens: Revealing the ambiguity of interaction and transmission. Microorganisms 2023, 11, 753. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Leveau, J.H.J.; Nitin, N. Role of multiscale leaf surface topography in antimicrobial efficacy of chlorine-based sanitizers. J. Food Eng. 2022, 332, 111118. [Google Scholar] [CrossRef]
- Faille, C.; Cunault, C.; Dubois, T.; Bénézech, T. Hygienic design of food processing lines to mitigate the risk of bacterial food contamination with respect to environmental concerns. Innov. Food Sci. Emerg. Technol. 2018, 46, 65–73. [Google Scholar] [CrossRef]
- Pietrysiak, E.; Ganjyal, G.M. Apple peel morphology and attachment of Listeria innocua through aqueous environment as shown by scanning electron microscopy. Food Control 2018, 92, 362–369. [Google Scholar] [CrossRef]
- Park, E.J.; Alexander, E.; Taylor, G.A.; Costa, R.; Kang, D.H. The decontaminative effects of acidic electrolyzed water for Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on green onions and tomatoes with differing organic demands. Food Microbiol. 2009, 26, 386–390. [Google Scholar] [CrossRef]
- Zheng, S.; Bawazir, M.; Dhall, A.; Kim, H.E.; He, L.; Heo, J.; Hwang, G. Implication of surface properties, bacterial motility, and hydrodynamic conditions on bacterial surface sensing and their initial adhesion. Front. Bioeng. Biotechnol. 2021, 9, 643722. [Google Scholar] [CrossRef]
- Li, K.W.; Chiu, Y.-C.; Jiang, W.; Jones, L.; Etienne, X.; Shen, C. Comparing the efficacy of two triple-wash procedures with sodium hypochlorite, a lactic–citric acid blend, and a mix of peroxyacetic acid and hydrogen peroxide to inactivate Salmonella, Listeria monocytogenes, and surrogate Enterococcus faecium on cucumbers and tomatoes. Front. Sustain. Food Syst. 2020, 4, 19. [Google Scholar] [CrossRef]
- Bermúdez-Aguirre, D.; Barbosa-Cánovas, G.V. Disinfection of selected vegetables under nonthermal treatments: Chlorine, acid citric, ultraviolet light and ozone. Food Control 2013, 29, 82–90. [Google Scholar] [CrossRef]
- Zhang, H.; Tikekar, R.V. Air microbubble assisted washing of fresh produce: Effect on microbial detachment and inactivation. Postharvest Biol. Technol. 2021, 181, 111687. [Google Scholar] [CrossRef]
- Boyer, R. Mechanisms Associated with Attachment of Escherichia coli O157:H7 to Lettuce Surfaces. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2006. [Google Scholar]
- Palma-Salgado, S.; Ku, K.-M.; Dong, M.; Nguyen, T.H.; Juvik, J.A.; Feng, H. Adhesion and removal of E. coli K12 as affected by leafy green produce epicuticular wax composition, surface roughness, produce and bacterial surface hydrophobicity, and sanitizers. Int. J. Food Microbiol. 2020, 334, 108834. [Google Scholar] [CrossRef] [PubMed]
- Boyer, R.R.; Sumner, S.S.; Williams, R.C.; Kniel, K.E.; McKinney, J.M. Role of O-antigen on the Escherichia coli O157:H7 cells hydrophobicity, charge and ability to attach to lettuce. Int. J. Food Microbiol. 2011, 147, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Brandl, M.T. Plant lesions promote the rapid multiplication of Escherichia coli O157:H7 on postharvest lettuce. Appl. Environ. Microbiol. 2008, 74, 5285–5289. [Google Scholar] [CrossRef] [PubMed]
- Ding, T.; Ge, Z.; Shi, J.; Xu, Y.-T.; Jones, C.L.; Liu, D.-H. Impact of slightly acidic electrolyzed water (SAEW) and ultrasound on microbial loads and quality of fresh fruits. LWT 2015, 60, 1195–1199. [Google Scholar] [CrossRef]
- Banach, J.L.; Sampers, I.; Van Haute, S.; Van der Fels-Klerx, H.J. Effect of disinfectants on preventing the cross-contamination of pathogens in fresh produce washing water. Int. J. Environ. Res. Public Health 2015, 12, 8658–8677. [Google Scholar] [CrossRef] [PubMed]
- Shih Hui, S.; Su Jin, K.; Soo Jin, K.; Ki Sun, Y. Efficacy of sodium hypochlorite and acidified sodium chlorite in preventing browning and microbial growth on fresh-cut produce. Prev. Nutr. Food Sci. 2012, 17, 210–216. [Google Scholar]
- Machado-Moreira, B.; Richards, K.; Brennan, F.; Abram, F.; Burgess, C.M. Microbial contamination of fresh produce: What, where, and how? Compr. Rev. Food Sci. Food Saf. 2019, 18, 1727–1750. [Google Scholar] [CrossRef]
- López-Gálvez, F.; Allende, A.; Gil, M.I. Recent progress on the management of the industrial washing of fresh produce with a focus on microbiological risks. Curr. Opin. Food Sci. 2021, 38, 46–51. [Google Scholar] [CrossRef]
- Truchado, P.; Gomez-Galindo, M.; Gil, M.I.; Allende, A. Cross-contamination of Escherichia coli O157:H7 and Listeria monocytogenes in the viable but non-culturable (VBNC) state during washing of leafy greens and the revival during shelf-life. Food Microbiol. 2023, 109, 104155. [Google Scholar] [CrossRef] [PubMed]
- Khan, P.; Zhu, W.; Huang, F.; Gao, W.; Khan, N.A. Micro–nanobubble technology and water-related application. Water Supply 2020, 20, 2021–2035. [Google Scholar] [CrossRef]
- Lu, J.; Jones, O.G.; Yan, W.; Corvalan, C.M. Microbubbles in food technology. Annu. Rev. Food Sci. Technol. 2023, 14, 495–515. [Google Scholar] [CrossRef] [PubMed]
- Ukuku, D.O.; Fett, W.F. Relationship of cell surface charge and hydrophobicity to strength of attachment of bacteria to cantaloupe rind. J. Food Prot. 2002, 65, 1093–1099. [Google Scholar] [CrossRef] [PubMed]
- Jung, J. Understanding and Managing the Risk from Salmonella on Cucumbers. Ph.D. Thesis, Rutgers University, New Brunswick–Piscataway, NJ, USA, 2018. [Google Scholar]
- Yuk, H.-G.; Bartz, J.A.; Schneider, K.R. The effectiveness of sanitizer treatments in inactivation of Salmonella spp. from bell pepper, cucumber, and strawberry. J. Food Sci. 2006, 71, 95–99. [Google Scholar] [CrossRef]
- Burris, K.P.; Simmons, O.D.; Webb, H.M.; Deese, L.M.; Moore, R.G.; Jaykus, L.A.; Zheng, J.; Reed, E.; Ferreira, C.M.; Brown, E.W.; et al. Colonization and internalization of Salmonella enterica and its prevalence in cucumber plants. Front. Microbiol. 2020, 11, 1135. [Google Scholar] [CrossRef]
- Sinde, E.; Carballo, J. Attachment of Salmonella spp. and Listeria monocytogenes to stainless steel, rubber and polytetrafluorethylene: The influence of free energy and the effect of commercial sanitizers. Food Microbiol. 2000, 17, 439–447. [Google Scholar] [CrossRef]
- Cabrera-Díaz, E.; Castillo, A.; Martínez-Chávez, L.; Beltrán-Huerta, J.; Gutiérrez-González, P.; Orozco-García, A.G.; García-Frutos, R.; Martínez-Gonzáles, N.E. Attachment and survival of Salmonella enterica and Listeria monocytogenes on Tomatoes (Solanum lycopersicum) as affected by relative humidity, temperature, and storage time. J. Food Prot. 2022, 85, 1044–1052. [Google Scholar] [CrossRef]
Treatment * | L. innocua | E. coli O157:H7 | Salmonella enterica | |||
---|---|---|---|---|---|---|
Bell Peppers | Cucumbers | Bell Peppers | Cucumbers | Bell Peppers | Cucumbers | |
Non-chlorinated water without bubbles | 1.41 ± 0.12 A | 2.20 ± 0.03 A | 2.21 ± 0.06 A | <1.20 B | 1.90 ± 0.26 A | 2.00 ± 0.70 A |
Non-chlorinated water with bubbles | 1.35 ± 0.60 A | 2.33 ± 0.11 A | <1.10 B | 2.57 ± 0.14 A | 1.98 ± 0.66 A | 2.11 ± 1.09 A |
Chlorine without bubbles | <1.10 B | <1.20 B | <1.10 B | <1.20 B | <1.10 B | <1.20 B |
Chlorine with bubbles | <1.10 B | <1.20 B | <1.10 B | <1.20 B | <1.10 B | <1.20 B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benitez, J.A.; Aryal, J.; Lituma, I.; Moreira, J.; Adhikari, A. Evaluation of the Effectiveness of Aeration and Chlorination during Washing to Reduce E. coli O157:H7, Salmonella enterica, and L. innocua on Cucumbers and Bell Peppers. Foods 2024, 13, 146. https://doi.org/10.3390/foods13010146
Benitez JA, Aryal J, Lituma I, Moreira J, Adhikari A. Evaluation of the Effectiveness of Aeration and Chlorination during Washing to Reduce E. coli O157:H7, Salmonella enterica, and L. innocua on Cucumbers and Bell Peppers. Foods. 2024; 13(1):146. https://doi.org/10.3390/foods13010146
Chicago/Turabian StyleBenitez, Julysa A., Jyoti Aryal, Ivannova Lituma, Juan Moreira, and Achyut Adhikari. 2024. "Evaluation of the Effectiveness of Aeration and Chlorination during Washing to Reduce E. coli O157:H7, Salmonella enterica, and L. innocua on Cucumbers and Bell Peppers" Foods 13, no. 1: 146. https://doi.org/10.3390/foods13010146
APA StyleBenitez, J. A., Aryal, J., Lituma, I., Moreira, J., & Adhikari, A. (2024). Evaluation of the Effectiveness of Aeration and Chlorination during Washing to Reduce E. coli O157:H7, Salmonella enterica, and L. innocua on Cucumbers and Bell Peppers. Foods, 13(1), 146. https://doi.org/10.3390/foods13010146