Integral Use of Red Wine Pomace after Hydrostatic High Pressure: Application of Two Consecutive Cycles of Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Red Grape Pomace Sampling and Preparation
2.2. Treatment of Red Grape Pomace by HHP
2.3. Determination of Moisture, Fiber, Protein, Fat, pH, and aw
2.4. Volatile Compounds
2.5. Microbiology
2.6. Instrumental Color Measurement
2.7. Polyphenoloxidase (PPO) Enzyme Activity
2.8. Total Content of Phenolic Compounds
2.9. Statistical Analysis of Data
3. Results and Discussion
3.1. Proximate Analysis, pH, and aw of the Original RGP
3.2. Effect of HHP Treatments of Volatile Compounds in RGP
3.3. Microbiological Changes in High-Pressure-Treated RGP
3.4. Instrumental Color Measurement of High-Pressure-Treated RGP
3.5. Enzymatic Activity of Polyphenoloxidase (PPO) and Total Phenolic Compounds Content (PCC) of RGP Treated by High Hydrostatic Pressure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beres, C.; Costa, G.N.S.; Cabezudo, I.; da Silva-James, N.K.; Teles, A.S.C.; Cruz, A.P.G.; Mellinger-Silva, C.; Tonon, R.V.; Cabral, L.M.C.; Freitas, S.P. Towards Integral Utilization of Grape Pomace from Winemaking Process: A Review. Waste Manag. 2017, 68, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, K.; Hosseinian, F.; Rod, M.R.M. The Market Potential of Grape Waste Alternatives. J. Field Robot. 2014, 3, 91–106. [Google Scholar] [CrossRef]
- Jin, Q.; O’Hair, J.; Stewart, A.C.; O’Keefe, S.F.; Neilson, A.P.; Kim, Y.-T.; McGuire, M.; Lee, A.; Wilder, G.; Huang, H. Compositional Characterization of Different Industrial White and Red Grape Pomaces in Virginia and the Potential Valorization of the Major Components. Foods 2019, 8, 667. [Google Scholar] [CrossRef]
- Antonić, B.; Jančíková, S.; Dordević, D.; Tremlová, B. Grape Pomace Valorization: A Systematic Review and Meta-Analysis. Foods 2020, 9, 1627. [Google Scholar] [CrossRef] [PubMed]
- Vilanova, M.; Rodríguez, I.; Canosa, P.; Otero, I.; Gamero, E.; Moreno, D.; Talaverano, I.; Valdés, E. Variability in Chemical Composition of Vitis vinifera cv Mencía from Different Geographic Areas and Vintages in Ribeira Sacra (NW Spain). Food Chem. 2015, 169, 187–196. [Google Scholar] [CrossRef] [PubMed]
- González-Centeno, M.R. Caracterización de Los Subproductos de La Industria Vitivinícola Como Fuente de Fibra Dietética y Compuestos Fenólicos. Uso de Los Ultrasonidos de Potencia Para La Extracción de La Fracción Fenólica. Ph.D. Thesis, Universitat de Les Illes Balears, Palma de Mallorca, Spain, 2013. [Google Scholar]
- Barba, F.J.; Esteve, M.J.; Frígola, A. High Pressure Treatment Effect on Physicochemical and Nutritional Properties of Fluid Foods During Storage: A Review. Compr. Rev. Food Sci. Food Saf. 2012, 11, 307–322. [Google Scholar] [CrossRef]
- Corrales, M.; Toepfl, S.; Butz, P.; Knorr, D.; Tauscher, B. Extraction of Anthocyanins from Grape By-Products Assisted by Ultrasonics, High Hydrostatic Pressure or Pulsed Electric Fields: A Comparison. Innov. Food Sci. Emerg. Technol. 2008, 9, 85–91. [Google Scholar] [CrossRef]
- Corrales, M.; García, A.F.; Butz, P.; Tauscher, B. Extraction of Anthocyanins from Grape Skins Assisted by High Hydrostatic Pressure. J. Food Eng. 2009, 90, 415–421. [Google Scholar] [CrossRef]
- Casazza, A.A.; Aliakbarian, B.; Mantegna, S.; Cravotto, G.; Perego, P. Extraction of Phenolics from Vitis Vinifera Wastes Using Non-Conventional Techniques. J. Food Eng. 2010, 100, 50–55. [Google Scholar] [CrossRef]
- Casazza, A.A.; Aliakbarian, B.; Sannita, E.; Perego, P. High-Pressure High-Temperature Extraction of Phenolic Compounds from Grape Skins. Int. J. Food Sci. Technol. 2012, 47, 399–405. [Google Scholar] [CrossRef]
- Ramirez, R.; Saraiva, J.; Lamela, C.P.; Torres, J.A. Reaction Kinetics Analysis of Chemical Changes in Pressure-Assisted Thermal Processing. Food Eng. Rev. 2009, 1, 16–30. [Google Scholar] [CrossRef]
- González-Cebrino, F.; Durán, R.; Delgado-Adámez, J.; Contador, R.; Ramírez, R. Changes after High-Pressure Processing on Physicochemical Parameters, Bioactive Compounds, and Polyphenol Oxidase Activity of Red Flesh and Peel Plum Purée. Innov. Food Sci. Emerg. Technol. 2013, 20, 34–41. [Google Scholar] [CrossRef]
- Martín-Mateos, M.J.; Delgado-Adámez, J.; Moreno-Cardona, D.; Valdés-Sánchezm, M.E.; Ramírez-Bernabé, M.R. Application of an Ingredient Made of White Wine Pomace for the Preservation of Fresh Pork Burgers. Foods 2023, 12, 4468. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.W.; Lung, H.M.; Yang, B.B.; Wang, C.Y. Responses of Microorganisms to High Hydrostatic Pressure Processing. Food Control 2014, 40, 250–259. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Dougherty, R.H.; Kang, D.-H. Inhibitory Effects of High Pressure and Heat on Alicyclobacillus Acidoterrestris Spores in Apple Juice. Appl. Environ. Microbiol. 2002, 68, 4158–4161. [Google Scholar] [CrossRef] [PubMed]
- Rocha-Pimienta, J.; Martillanes, S.; Ramírez, R.; Garcia-Parra, J.; Delgado-Adamez, J. Bacillus Cereus Spores and Staphylococcus Aureus Sub. Aureus Vegetative Cells Inactivation in Human Milk by High-Pressure Processing. Food Control 2020, 113, 107212. [Google Scholar] [CrossRef]
- Timón, M.L.; Palacios, I.; López-Parra, M.; Delgado-Adámez, J.; Ramírez, R. Effect of Single and Two-Cycles of High Hydrostatic Pressure Treatment on the Safety and Quality of Chicken Burgers. Foods 2023, 12, 3820. [Google Scholar] [CrossRef]
- Ramírez, R.; Delgado, J.; Rocha-Pimienta, J.; Valdés, M.E.; Martín-Mateos, M.J.; Ayuso-Yuste, M.C. Preservation of White Wine Pomace by High Hydrostatic Pressure. Heliyon 2023, 9, e21199. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Villanueva, M.J.; Barragán, R. Determinación Cuantitativa de La Fracción Hidrocarbonada En Alimentos. Anal. Bromatol. 1985, 37, 61–77. [Google Scholar]
- ISO 4833-1:2013; Microbiología de la Cadena Alimentaria. Método Horizontal Para el Recuento de Microorganismos. Parte 1: Recuento de Colonias a 30 °C Mediante la Técnica de Siembra en Profundidad. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0052559 (accessed on 28 November 2023).
- Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds—Part 2: Colony Count Technique in Products with Water Activity Less than or Equal to 0.95. Available online: https://www.iso.org/standard/38276.html#:~:text=ISO%2021527%2D2%3A2008%20specifies,fish%2C%20grains%2C%20cereals%20and%20cereals(accessed on 28 November 2023).
- Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Enterobacteriaceae—Part 2: Colony-Count Technique. Available online: https://www.iso.org/standard/63504.html(accessed on 28 November 2023).
- Terefe, N.S.; Matthies, K.; Simons, L.; Versteeg, C. Combined High Pressure-Mild Temperature Processing for Optimal Retention of Physical and Nutritional Quality of Strawberries (Fragaria × Ananassa). Innov. Food Sci. Emerg. Technol. 2009, 10, 297–307. [Google Scholar] [CrossRef]
- Lima, V.L.A.G.; Mélo, E.A.; Maciel, M.I.S.; Prazeres, F.G.; Musser, R.S.; Lima, D.E.S. Total Phenolic and Carotenoid Contents in Acerola Genotypes Harvested at Three Ripening Stages. Food Chem. 2005, 90, 565–568. [Google Scholar] [CrossRef]
- Teles, A.S.C.; Chávez, D.W.H.; Dos Santos Gomes, F.; Cabral, L.M.C.; Tonon, R.V. Effect of Temperature on the Degradation of Bioactive Compounds of Pinot Noir Grape Pomace during Drying. Braz. J. Food Technol. 2018, 21. [Google Scholar] [CrossRef]
- Xu, Y.; Sismour, E.; Abraha-Eyob, Z.; McKinney, A.; Jackson, S. Physicochemical, Microstructural, and Antioxidant Properties of Skins from Pomaces of Five Virginia-Grown Grape Varieties and Their Response to High Hydrostatic Pressure Processing. J. Food Meas. Charact. 2021, 15, 5547–5555. [Google Scholar] [CrossRef]
- Deng, Q.; Penner, M.H.; Zhao, Y. Chemical Composition of Dietary Fiber and Polyphenols of Five Different Varieties of Wine Grape Pomace Skins. Food Res. Int. 2011, 44, 2712–2720. [Google Scholar] [CrossRef]
- Theagarajan, R.; Malur Narayanaswamy, L.; Dutta, S.; Moses, J.A.; Chinnaswamy, A. Valorisation of Grape Pomace (cv. Muscat) for Development of Functional Cookies. Int. J. Food Sci. Technol. 2019, 54, 1299–1305. [Google Scholar] [CrossRef]
- Sousa, E.C.; Uchôa-Thomaz, A.M.A.; Carioca, J.O.B.; de Morais, S.M.; de Lima, A.; Martins, C.G.; Alexandrino, C.D.; Ferreira, P.A.T.; Rodrigues, A.L.M.; Rodrigues, S.P.; et al. Chemical Composition and Bioactive Compounds of Grape Pomace (Vitis vinifera L.), Benitaka Variety, Grown in the Semiarid Region of Northeast Brazil. Food Sci. Technol. 2014, 34, 135–142. [Google Scholar] [CrossRef]
- García-Lomillo, J.; González-SanJosé, M.L. Applications of Wine Pomace in the Food Industry: Approaches and Functions. Compr. Rev. Food Sci. Food Saf. 2017, 16, 3–22. [Google Scholar] [CrossRef]
- Taşeri, L.; Aktaş, M.; Şevik, S.; Gülcü, M.; Uysal Seçkin, G.; Aktekeli, B. Determination of Drying Kinetics and Quality Parameters of Grape Pomace Dried with a Heat Pump Dryer. Food Chem. 2018, 260, 152–159. [Google Scholar] [CrossRef]
- Silva, M.L.; Malcata, F.X. Relationships between Storage Conditions of Grape Pomace and Volatile Composition of Spirits Obtained Therefrom. Am. J. Enol. Vitic. 1998, 49, 56–64. [Google Scholar] [CrossRef]
- Sokołowska, B.; Skaąpska, S.; Niezgoda, J.; Rutkowska, M.; Dekowska, A.; Rzoska, S.J. Inactivation and Sublethal Injury of Escherichia Coli and Listeria Innocua by High Hydrostatic Pressure in Model Suspensions and Beetroot Juice. High Press. Res. 2014, 34, 147–155. [Google Scholar] [CrossRef]
- Cilli, L.P.; Contini, L.R.F.; Sinnecker, P.; Lopes, P.S.; Andreo, M.A.; Neiva, C.R.P.; Nascimento, M.S.; Yoshida, C.M.P.; Venturini, A.C. Effects of Grape Pomace Flour on Quality Parameters of Salmon Burger. J. Food Process. Preserv. 2020, 44, e14329. [Google Scholar] [CrossRef]
- Patras, A.; Brunton, N.P.; Da Pieve, S.; Butler, F. Impact of High Pressure Processing on Total Antioxidant Activity, Phenolic, Ascorbic Acid, Anthocyanin Content and Colour of Strawberry and Blackberry Purées. Innov. Food Sci. Emerg. Technol. 2009, 10, 308–313. [Google Scholar] [CrossRef]
- Cao, X.; Zhang, Y.; Zhang, F.; Wang, Y.; Yi, J.; Liao, X. Effects of High Hydrostatic Pressure on Enzymes, Phenolic Compounds, Anthocyanins, Polymeric Color and Color of Strawberry Pulps. J. Sci. Food Agric. 2011, 91, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Varela-Santos, E.; Ochoa-Martinez, A.; Tabilo-Munizaga, G.; Reyes, J.E.; Pérez-Won, M.; Briones-Labarca, V.; Morales-Castro, J. Effect of High Hydrostatic Pressure (HHP) Processing on Physicochemical Properties, Bioactive Compounds and Shelf-Life of Pomegranate Juice. Innov. Food Sci. Emerg. Technol. 2012, 13, 13–22. [Google Scholar] [CrossRef]
- García-Parra, J.; Contador, R.; Delgado-Adámez, J.; González-Cebrino, F.; Ramírez, R. The Applied Pretreatment (Blanching, Ascorbic Acid) at the Manufacture Process Affects the Quality of Nectarine Purée Processed by Hydrostatic High Pressure. Int. J Food. Sci. Technol. 2014, 49, 1203–1214. [Google Scholar] [CrossRef]
- Delgado Adámez, J.; Gamero Samino, E.; Valdés Sánchez, E.; González-Gómez, D. In Vitro Estimation of the Antibacterial Activity and Antioxidant Capacity of Aqueous Extracts from Grape-Seeds (Vitis vinifera L.). Food Control 2012, 24, 136–141. [Google Scholar] [CrossRef]
- Sheng, K.; Qu, H.; Liu, C.; Yan, L.; You, J.; Shui, S.; Zheng, L. A Comparative Assess of High Hydrostatic Pressure and Superfine Grinding on Physicochemical and Antioxidant Properties of Grape Pomace. Int. J. Food Sci. Technol. 2017, 52, 2106–2114. [Google Scholar] [CrossRef]
- Tseng, A.; Zhao, Y. Effect of Different Drying Methods and Storage Time on the Retention of Bioactive Compounds and Antibacterial Activity of Wine Grape Pomace (Pinot Noir and Merlot). J. Food Sci. 2012, 77, H192–H201. [Google Scholar] [CrossRef]
- Wang, S.; Amigo-Benavent, M.; Mateos, R.; Bravo, L.; Sarriá, B. Effects of in Vitro Digestion and Storage on the Phenolic Content and Antioxidant Capacity of a Red Grape Pomace. Int. J. Food Sci. Nutr. 2017, 68, 188–200. [Google Scholar] [CrossRef]
Red Grape Pomace | |
---|---|
Moisture | 52.8 ± 0.3 |
Fiber | 35.7 ± 1.8 |
Protein | 4.5 ± 0.2 |
Fat | 3.6 ± 0.5 |
pH | 4.05 ± 0.01 |
aw | 0.95 ± 0.01 |
Control | HHP1 | HHP2 | 2 Cycles (a) | 2 Cycles (b) | p-Value | |
---|---|---|---|---|---|---|
Aldehydes | ||||||
Acetaldehyde | 381.2 ± 56.6 | 366.0 ± 34.7 | 356.2 ± 24.2 | 347.7 ± 32.4 | 291.9 ± 145.0 | 0.330 |
Alcohols | ||||||
Methanol | 278.6 ± 169.8 3 | 348.4 ± 67.9 2,3 | 325.3 ± 33.2 2,3 | 789.0 ± 237.0 1 | 586.4 ± 217.3 1,2 | 0.000 |
1-Propanol | 22.0 ± 3.7 | 17.1 ± 8.6 | 35.6 ± 47.7 | 7.3 ± 11.4 | 0.0 ± 0.0 | 0.104 |
2-Methyl-1-propanol | 3.4 ± 3.8 | 2.6 ± 1.9 | 3.9 ± 1.1 | 1.6 ± 1.9 | 2.1 ± 2.0 | 0.427 |
3-Methyl-1-butanol | 133.1 ± 36.9 | 118.4 ± 19.0 | 139.1 ± 63.8 | 90.8 ± 19.3 | 84.6 ± 27.6 | 0.066 |
2-Phenylethanol | 57.4 ± 4.3 1 | 54.9 ± 2.3 1,2 | 55.7 ± 5.8 1,2 | 48.8 ± 2.2 2 | 49.5 ± 6.2 1,2 | 0.010 |
Ethanol | 36,812.6 ± 8538.2 | 33,175.6 ± 5892.4 | 32,741.6 ± 2063.9 | 29,528.5 ± 4111.6 | 28,180.6 ± 8240.9 | 0.193 |
Probability | |||||||
---|---|---|---|---|---|---|---|
P1 | P2 | P3 | P1 × P2 | P1 × P3 | P2 × P3 | P1 × P2 × P3 | |
Mesophilic | *** | *** | *** | * | *** | *** | * |
Molds and Yeasts | *** | *** | *** | ns | *** | *** | * |
Enterobacteriaceae | *** | ns | *** | ns | *** | ns | ns |
CIE L* | ns | *** | *** | ns | ** | *** | ns |
CIE a* | ns | ns | *** | ns | * | ** | ns |
CIE b* | * | *** | *** | ns | ns | *** | ns |
PPO | ns | ** | *** | ns | ns | ns | ns |
PPC | ** | *** | *** | ns | *** | *** | * |
Refrigeration (4 °C) | Room (20 °C) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | HHP1 | HHP2 | 2 Cycles (a) | 2 Cycles (b) | p-Value | Control | HHP1 | HHP2 | 2 Cycles (a) | 2 Cycles (b) | p-Value | |
Mesophilics | ||||||||||||
1 d | 2.9 ± 0.9 | 2.7 ± 0.3 ab | 2.6 ± 0.1 | 2.6 ± 0.4 | 2.5 ± 0.0 b | 0.763 | 2.9 ± 0.9 c | 2.7 ± 0.3 b | 2.6 ± 0.1 | 2.6 ± 0.4 b | 2.5 ± 0.0 b | 0.763 |
30 d | 2.9 ± 0.2 1 | 2.2 ± 0.3 b 2 | 2.6 ± 0.2 1,2 | 2.5 ± 0.2 1,2 | 2.4 ± 0.1 b 1,2 | 0.020 | 4.8 ± 0.1 b 1 | 3.2 ± 0.2 b 2 | 3.4 ± 0.3 2 | 3.3 ± 0.3 b 2 | 3.1 ± 0.2 ab 2 | 0.000 |
90 d | 3.6 ± 0.7 | 2.9 ± 0.1 a | 3.0 ± 0.5 | 2.3 ± 0.8 | 2.9 ± 0.1 a | 0.141 | 5.3 ± 0.3 b | 3.0 ± 0.0 b | 4.6 ± 1.7 | 3.0 ± 0.0 b | 5.8 ± 2.7 a | 0.118 |
180 d | 4.3 ± 0.2 1 | 2.7 ± 0.1 ab 2 | 2.7 ± 0.2 2 | 2.9 ± 0.1 2 | 2.3 ± 0.0 b2 | 0.000 | 6.4 ± 0.4 a 1 | 3.3 ± 0.2 b 2 | 3.3 ± 0.3 2 | 3.2 ± 0.2 b 2 | 2.9 ± 0.1 ab 2 | 0.000 |
270 d | 4.4 ± 0.4 1 | 2.8 ± 0.3 ab 2 | 2.4 ± 0.3 2 | 2.5 ± 0.3 2 | 2.2 ± 0.4 b2 | 0.000 | 7.3 ± 0.3 a 1 | 5.0 ± 0.5 a 2 | 4.7 ± 0.2 2,3 | 4.1 ± 0.1 a 3 | 3.1 ± 0.1 ab 4 | 0.000 |
p-storage | 0.018 | 0.051 | 0.155 | 0.584 | 0.009 | 0.000 | 0.000 | 0.040 | 0.001 | 0.052 | ||
Molds and yeasts | ||||||||||||
1 d | 2.0 ± 0.9 b | <1 | <1 | <1 | <1 | 0.038 | 2.0 ± 0.9 c | <1 | <1 b | <1 b | <1 | 0.038 |
30 d | 2.2 ± 0.2 b 1 | <1 2 | <1 2 | <1 2 | <1 2 | 0.000 | 3.7 ± 0.2 b1 | <2 2 | <2 a 2 | <2 a 2 | <2 2 | 0.000 |
90 d | 2.6 ± 0.2 b 1 | 1.1 ± 0.2 2 | <1 2 | <1 2 | 1.2 ± 0.3 2 | 0.000 | 5.0 ± 0.2 a1 | <2 2 | <2 a 2 | <2 a 2 | <2 2 | 0.000 |
180 d | 4.6 ± 0.2 a | 1.3 ± 0.6 2 | 1.4 ± 0.7 2 | <1 2 | <1 2 | 0.000 | 4.5 ± 0.4 ab1 | <1 2 | <1 b 2 | <1 b 2 | <1 2 | 0.000 |
270 d | 5.1 ± 0.1 a | <1 2 | <1 2 | <1 2 | <1 2 | 0.000 | 5.0 ± 0.1 a1 | <1 2 | 1.4 ± 0.7 ab 2 | 1.3 ± 0.6 b 2 | <1 2 | 0.000 |
p-storage | 0.000 | 0.519 | 0.452 | 0.788 | 0.452 | 0.000 | ns | 0.005 | 0.001 | ns | ||
Enterobacteriaceae | ||||||||||||
1 d | 2.1 ± 0.7a 1 | <1 2 | <1 2 | 1.2 ± 0.3 2 | 1.2 ± 0.3 2 | 0.021 | 2.1 ± 0.7 a1 | <1 2 | <1 2 | 1.2 ± 0.3 2 | 1.2 ± 0.3 2 | 0.021 |
30 d | 1.2 ± 0.3 b | <1 | <1 | <1 | <1 | 0.452 | <<1 b | <1 | <1 | <1 | <1 | 0.365 |
90 d | <1 b | <1 | <1 | <1 | <1 | 0.751 | <1 b | <1 | <1 | <1 | <1 | 0.333 |
180 d | <1 b | <1 | <1 | <1 | <1 | 0.421 | <1 b | <1 | <1 | <1 | <1 | 0.451 |
270d | <1 b | <1 | <1 | <1 | <1 | 0.444 | 1.6 ± 0.5 ab | <1 | <1 | <1 | <1 | 0.035 |
p-storage | 0.012 | 0.888 | 0.828 | 0.452 | 0.452 | 0.019 | 0.888 | 0.901 | 0.452 | 0.452 |
Refrigeration (4 °C) | Room (20 °C) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | HHP1 | HHP2 | 2 Cycles (a) | 2 Cycles (b) | p-Value | Control | HHP1 | HHP2 | 2 Cycles (a) | 2 Cycles (b) | p-Value | |
L* | ||||||||||||
1 d | 36.3 ± 0.1 b | 36.4 ± 0.5 | 36.8 ± 0.2 | 36.9 ± 0.4 | 36.9 ± 0.1 | 0.171 | 36.3 ± 0.1 c | 36.4 ± 0.5 b | 36.8 ± 0.2 bc | 36.9 ± 0.4 ab | 36.9 ± 0.1 b | 0.171 |
30 d | 36.7 ± 0.4 ab | 36.7 ± 0.3 | 36.7 ± 0.4 | 36.4 ± 0.5 | 36.7 ± 0.5 | 0.913 | 36.5 ± 0.3 c | 36.3 ± 0.4 b | 36.6 ± 0.4 c | 36.3 ± 0.5 b | 36.2 ± 0.3 c | 0.745 |
90 d | 36.8 ± 0.2 ab | 36.8 ± 0.1 | 36.9 ± 0.0 | 37.1 ± 0.3 | 37.1 ± 0.2 | 0.181 | 37.2 ± 0.3 bc | 37.3 ± 0.1 a | 37.4 ± 0.2 ab | 37.5 ± 0.2 a | 37.7 ± 0.2 a | 0.096 |
180 d | 36.9 ± 0.5 ab | 36.9 ± 0.5 | 36.7 ± 0.4 | 36.8 ± 0.3 | 37.1 ± 0.3 | 0.863 | 38.4 ± 0.7 a | 37.7 ± 0.1 a | 37.5 ± 0.3 a | 37.6 ± 0.0 a | 37.9 ± 0.3 a | 0.055 |
270 d | 37.4 ± 0.2 a | 37.3 ± 0.2 | 37.0 ± 0.1 | 37.2 ± 0.1 | 37.1 ± 0.2 | 0.180 | 38.0 ± 0.4 ab | 38.0 ± 0.1 a | 37.9 ± 0.2 a | 37.6 ± 0.6 a | 37.6 ± 0.2 a | 0.373 |
p | 0.031 | 0.136 | 0.702 | 0.146 | 0.449 | 0.001 | 0.000 | 0.001 | 0.005 | 0.000 | ||
a* | ||||||||||||
1 d | 4.0 ± 0.1 a | 3.8 ± 0.5 ab | 3.9 ± 0.1 ab | 3.7 ± 0.2 ab | 3.6 ± 0.2 b | 0.480 | 4.0 ± 0.1 ab | 3.8 ± 0.5 ab | 3.9 ± 0.1 a | 3.7 ± 0.2 ab | 3.6 ± 0.2 b | 0.480 |
30 d | 4.1 ± 0.1 a | 4.1 ± 0.1 a | 4.1 ± 0.11 a | 4.1 ± 0.2 a | 4.2 ± 0.1 a | 0.928 | 4.5 ± 0.2 a | 4.1 ± 0.2 a | 4.0 ± 0.2 a | 4.1 ± 0.2 a | 4.2 ± 0.1 a | 0.050 |
90 d | 4.1 ± 0.1 a | 3.8 ± 0.1 ab | 3.9 ± 0.1 ab | 3.8 ± 0.1 ab | 4.0 ± 0.3 ab | 0.270 | 4.1 ± 0.3 ab 1 | 3.7 ± 0.2 ab 2 | 3.5 ± 0.1 bc 2 | 3.4 ± 0.2 b 2 | 3.6 ± 0.1 b 2 | 0.004 |
180 d | 3.3 ± 0.2 b | 3.5 ± 0.2 ab | 3.4 ± 0.2 c | 3.7 ± 0.3 ab | 3.5 ± 0.2 b | 0.368 | 3.8 ± 0.3 ab | 3.6 ± 0.1 ab | 3.8 ± 0.3 ab | 3.7 ± 0.1 ab | 3.6 ± 0.1 b | 0.539 |
270 d | 3.2 ± 0.2 b2 | 3.3 ± 0.1 b 1,2 | 3.5 ± 0.0 bc 1,2 | 3.3 ± 0.2 b 1,2 | 3.6 ± 0.1 b 1 | 0.021 | 3.6 ± 0.3 b | 3.3 ± 0.1 b | 3.4 ± 0.0 b | 3.4 ± 0.4 b | 3.5 ± 0.3 b | 0.782 |
p | 0.000 | 0.019 | 0.001 | 0.016 | 0.004 | 0.033 | 0.048 | 0.004 | 0.025 | 0.003 | ||
b* | ||||||||||||
1 d | 0.4 ± 0.1 c | 0.3 ± 0.1 | 0.3 ± 0.1 c | 0.3 ± 0.0 c | 0.3 ± 0.0 b | 0.809 | 0.4 ± 0.1 b | 0.3 ± 0.1 d | 0.3 ± 0.1 d | 0.3 ± 0.0 b | 0.3 ± 0.0 c | 0.809 |
30 d | 0.4 ± 0.1 bc | 0.4 ± 0.1 | 0.4 ± 0.1 bc | 0.4 ± 0.1 bc | 0.4 ± 0.1 b | 0.952 | 0.6 ± 0.1 b | 0.5 ± 0.1 cd | 0.5 ± 0.0 c | 0.6 ± 0.1 b | 0.6 ± 0.11 bc | 0.561 |
90 d | 0.7 ± 0.1 ab | 0.6 ± 0.2 | 0.6 ± 0.2 ab | 0.7 ± 0.2 a | 0.7 ± 0.2 a | 0.879 | 0.8 ± 0.1 ab | 0.7 ± 0.1 bc | 0.8 ± 0.1 b | 0.7 ± 0.1 b | 0.8 ± 0.2 b | 0.529 |
180 d | 0.8 ± 0.1 a | 0.6 ± 0.1 | 0.8 ± 0.2 a | 0.7 ± 0.1 a | 0.8 ± 0.1 a | 0.251 | 1.4 ± 0.4 a | 0.8 ± 0.1 b | 1.1 ± 0.0 a | 1.1 ± 0.1 ab | 1.0 ± 0.1 ab | 0.073 |
270 d | 0.6 ± 0.2 abc | 0.5 ± 0.1 | 0.7 ± 0.1 ab | 0.6 ± 0.1 ab | 0.8 ± 0.1 a | 0.142 | 1.4 ± 0.1 a | 1.1 ± 0.1 a | 1.2 ± 0.0 a | 1.5 ± 0.7 a | 1.3 ± 0.3 a | 0.556 |
p | 0.015 | 0.064 | 0.005 | 0.002 | 0.000 | 0.002 | 0.000 | 0.000 | 0.009 | 0.000 |
Refrigeration (4 °C) | Room (20 °C) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | HHP1 | HHP2 | 2 Cycles (a) | 2 Cycles (b) | p-Value | Control | HHP1 | HHP2 | 2 Cycles (a) | 2 Cycles (b) | p-Value | |
PPO (%) | ||||||||||||
1 d | 100.0 ± 9.1 | 125.0 ± 21.7 a | 145.8 ± 25.7 a | 151.7 ± 35.5 a | 139.2 ± 55.1 a | 0.266 | 100 ± 9.1 a | 125.0 ± 21.7 a | 145.8 ± 25.7 a | 151.7 ± 35.5 a | 139.2 ± 55.1 a | 0.266 |
90 d | 65.8 ± 19.1 | 66.7 ± 17.6 ab | 78.3 ± 23.1 b | 58.3 ± 27.5 b | 70.0 ± 13.2 ab | 0.825 | 46.7 ± 24.7 b | 49.2 ± 18.1 b | 45.0 ± 13.2 b | 45.0 ± 15 b | 36.7 ± 5.8 b | 0.908 |
180 d | 45.0 ± 22.9 | 46.7 ± 47.5 ab | 26.7 ± 2.9 b | 36.7 ± 35.1 b | 43.3 ± 17.6 b | 0.914 | 1.7 ± 2.9 c 2 | 30.0 ± 5 b c 1,2 | 38.3 ± 15.3 b 1 | 26.7 ± 16.1 b 1,2 | 18.3 ± 17.6 b 1,2 | 0.050 |
270 d | 45.0 ± 39.1 | 25.0 ± 31.2 b | 27.5 ± 31.9 b | 7.5 ± 13.0 b | 22.5 ± 39.0 b | 0.726 | 5.0 ± 8.7 c | 8.3 ± 14.4 c | 8.3 ± 7.6 b | 6.7 ± 5.8 b | 10.0 ± 10 b | 0.975 |
p | 0.039 | 0.024 | 0.001 | 0.002 | 0.018 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | ||
PCC | ||||||||||||
1 d | 633.3 ± 53.8 a 1 | 468. 8 ± 13 a 3 | 588.3 ± 20.6 a 1,2 | 626.3 ± 16.8 a 1 | 516.5 ± 69.4 a 23 | 0.002 | 633.3 ± 53.8 a 1 | 468.8 ± 13 a 3 | 588.3 ± 20.6 a 1,2 | 626.3 ± 16.8 a 1 | 516.5 ± 69.4 a 23 | 0.002 |
30 d | 467.0 ± 31.8 b 1 | 217.2 ± 21.21 2 | 476.2 ± 39.2 ab 1 | 461.3 ± 33 b 1 | 455.0 ± 83 a 1 | 0.000 | 403.0 ± 54.1 b | 391.3 ± 86.3 a | 341.4 ± 43.2 b | 283.7 ± 47.3 b | 330.8 ± 37.4 b | 0.141 |
90 d | 262.2 ± 11.7 c | 297.4 ± 13.7 b | 429.7 ± 98.7 b | 334.3 ± 76 c | 323.1 ± 25 b | 0.231 | 241.6 ± 73.3 c | 189.3 ± 10.6 b | 204.7 ± 47.7 c | 167.5 ± 63.4 c | 148.7 ± 8.7 c | 0.246 |
180 d | 290.6 ± 5.6 c | 334.6 ± 24.6 ab | 275.0 ± 73.6 c | 328.9 ± 8.9 c | 330.7 ± 23.6 b | 0.392 | 59.4 ± 27.8 d 2 | 169.8 ± 47.5 b 1 | 172.9 ± 11.9 c 1 | 150.7 ± 56.9 c 1 | 130.9 ± 15.1 c 1,2 | 0.015 |
270 d | 264.5 ± 7.9 c 1,2 | 261.5 ± 15.6 b 2 | 266.1 ± 12.8 c 1,2 | 264.2 ± 34.6 c 1,2 | 311.2 ± 3.3 b 1 | 0.034 | 36.1 ± 8.7 d | 52.4 ± 31 c | 72.1 ± 15.2 d | 63.0 ± 26.9 c | 85.5 ± 5.6 c | 0.097 |
p | 0.000 | 0.006 | 0.000 | 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Arrigo, M.; Delgado-Adámez, J.; Rocha-Pimienta, J.; Valdés-Sánchez, M.E.; Ramírez-Bernabé, M.R. Integral Use of Red Wine Pomace after Hydrostatic High Pressure: Application of Two Consecutive Cycles of Treatment. Foods 2024, 13, 149. https://doi.org/10.3390/foods13010149
D’Arrigo M, Delgado-Adámez J, Rocha-Pimienta J, Valdés-Sánchez ME, Ramírez-Bernabé MR. Integral Use of Red Wine Pomace after Hydrostatic High Pressure: Application of Two Consecutive Cycles of Treatment. Foods. 2024; 13(1):149. https://doi.org/10.3390/foods13010149
Chicago/Turabian StyleD’Arrigo, Matilde, Jonathan Delgado-Adámez, Javier Rocha-Pimienta, M. Esperanza Valdés-Sánchez, and M. Rosario Ramírez-Bernabé. 2024. "Integral Use of Red Wine Pomace after Hydrostatic High Pressure: Application of Two Consecutive Cycles of Treatment" Foods 13, no. 1: 149. https://doi.org/10.3390/foods13010149
APA StyleD’Arrigo, M., Delgado-Adámez, J., Rocha-Pimienta, J., Valdés-Sánchez, M. E., & Ramírez-Bernabé, M. R. (2024). Integral Use of Red Wine Pomace after Hydrostatic High Pressure: Application of Two Consecutive Cycles of Treatment. Foods, 13(1), 149. https://doi.org/10.3390/foods13010149