Estimating In Vitro Protein Digestion and Protein Digestibility Corrected Amino Acid Score of Chicken Breasts Affected by White Striping and Wooden Breast Abnormalities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Cooking Procedure
2.3. Oxidation of Protein
2.4. Oxidation of Lipids
2.5. Myofibril Fragmentation Index
2.6. In Vitro Protein Digestion
2.7. Free Amino (NH2) Content
2.8. Amino Acid Composition
2.9. Free Amino Acids
2.10. In Vitro Protein Digestibility-Corrected Amino Acid Score
2.11. Statistical Analysis
3. Results and Discussions
3.1. Protein Content and Cooking Loss
3.2. Oxidation of Protein
3.3. Oxidation of Lipid
3.4. Myofibril Fragmentation Index
3.5. In Vitro Protein Digestibility
3.6. Free Amino Acids Released during In Vitro Protein Digestion
3.7. Essential Amino Acids and Amino Acid Scores in Cooked Chicken Breast
3.8. In Vitro Protein Digestibility-Corrected Amino Acid Score
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Global Agriculture towards 2050. In High Level Expert Forum—How to Feed the World in 2050; FAO: Rome, Italy, 2009. [Google Scholar]
- Jach, M.E.; Malm, A. Yarrowia Lipolytica as an Alternative and Valuable Source of Nutritional and Bioactive Compounds for Humans. Molecules 2022, 27, 2300. [Google Scholar] [CrossRef]
- Akande, O.A.; Oluwamukomi, M.; Osundahunsi, O.F.; Ijarotimi, O.S.; Mukisa, I.M. Evaluating the Potential for Utilising Migratory Locust Powder (Locusta Migratoria) as an Alternative Protein Source in Peanut-Based Ready-to-Use Therapeutic Foods. Food Sci. Technol. Int. 2023, 29, 204–216. [Google Scholar] [CrossRef] [PubMed]
- Malla, N.; Nørgaard, J.V.; Lærke, H.N.; Heckmann, L.-H.L.; Roos, N. Some Insect Species Are Good-Quality Protein Sources for Children and Adults: Digestible Indispensable Amino Acid Score (DIAAS) Determined in Growing Pigs. J. Nutr. 2022, 152, 1042–1051. [Google Scholar] [CrossRef]
- Onwezen, M.C.; Bouwman, E.P.; Reinders, M.J.; Dagevos, H. A Systematic Review on Consumer Acceptance of Alternative Proteins: Pulses, Algae, Insects, Plant-Based Meat Alternatives, and Cultured Meat. Appetite 2021, 159, 105058. [Google Scholar] [CrossRef] [PubMed]
- USDA. Livestock and Poultry: World Markets and Trade. Glob. Mark. Anal. 2023. Available online: https://apps.fas.usda.gov/psdonline/circulars/livestock_poultry.pdf (accessed on 1 December 2023).
- Zuidhof, M.J.; Schneider, B.L.; Carney, V.L.; Korver, D.R.; Robinson, F.E. Growth, Efficiency, and Yield of Commercial Broilers from 1957, 1978, and 2005. Poult Sci. 2014, 93, 2970–2982. [Google Scholar] [CrossRef]
- Barbut, S. Recent Myopathies in Broiler’s Breast Meat Fillets. Worlds Poult. Sci. J. 2019, 75, 559–582. [Google Scholar] [CrossRef]
- Petracci, M.; Soglia, F.; Madruga, M.; Carvalho, L.; Ida, E.; Estévez, M. Wooden-Breast, White Striping, and Spaghetti Meat: Causes, Consequences and Consumer Perception of Emerging Broiler Meat Abnormalities. Compr. Rev. Food Sci. Food Saf. 2019, 18, 565–583. [Google Scholar] [CrossRef]
- Kuttappan, V.A.; Hargis, B.M.; Owens, C.M. White Striping and Woody Breast Myopathies in the Modern Poultry Industry: A Review. Poult. Sci. 2016, 95, 2724–2733. [Google Scholar] [CrossRef] [PubMed]
- Malila, Y.; U-Chupaj, J.; Srimarut, Y.; Chaiwiwattrakul, P.; Uengwetwanit, T.; Arayamethakorn, S.; Punyapornwithaya, V.; Sansamur, C.; Kirschke, C.P.; Huang, L.; et al. Monitoring of White Striping and Wooden Breast Cases and Impacts on Quality of Breast Meat Collected from Commercial Broilers (Gallus gallus). Asian-Australas. J. Anim. Sci. 2018, 31, 1807–1817. [Google Scholar] [CrossRef]
- Sihvo, H.-K.; Airas, N.; Lindén, J.; Puolanne, E. Pectoral Vessel Density and Early Ultrastructural Changes in Broiler Chicken Wooden Breast Myopathy. J. Comp. Pathol. 2018, 161, 1–10. [Google Scholar] [CrossRef]
- Che, S.; Wang, C.; Iverson, M.; Varga, C.; Barbut, S.; Bienzle, D.; Susta, L. Characteristics of Broiler Chicken Breast Myopathies (Spaghetti Meat, Woody Breast, White Striping) in Ontario, Canada. Poult. Sci. 2022, 101, 101747. [Google Scholar] [CrossRef] [PubMed]
- Bordignon, F.; Xiccato, G.; Boskovic, C.M.; Birolo, M.; Trocino, A. Factors Affecting Breast Myopathies in Broiler Chickens and Quality of Defective Meat: A Meta-Analysis. Front. Physiol. 2022, 13, 933235. [Google Scholar] [CrossRef] [PubMed]
- Kuttappan, V.A.; Lee, Y.S.; Erf, G.F.; Meullenet, J.-F.C.; McKee, S.R.; Owens, C.M. Consumer Acceptance of Visual Appearance of Broiler Breast Meat with Varying Degrees of White Striping. Poult. Sci. 2012, 91, 1240–1247. [Google Scholar] [CrossRef] [PubMed]
- Petracci, M.; Mudalal, S.; Babini, E.; Cavani, C. Effect of White Striping on Chemical Composition and Nutritional Value of Chicken Breast Meat. Ital. J. Anim. Sci. 2014, 13, 3138. [Google Scholar] [CrossRef]
- Zanetti, M.A.; Tedesco, D.C.; Schneider, T.; Teixeira, S.T.F.; Daroit, L.; Pilotto, F.; Dickel, E.L.; Santos, S.P.; Santos, L.R. dos Economic Losses Associated with Wooden Breast and White Striping in Broilers. Semin. Cienc. Agrar. 2018, 39, 887–892. [Google Scholar] [CrossRef]
- Baldi, G.; Soglia, F.; Mazzoni, M.; Sirri, F.; Canonico, L.; Babini, E.; Laghi, L.; Cavani, C.; Petracci, M. Implications of White Striping and Spaghetti Meat Abnormalities on Meat Quality and Histological Features in Broilers. Animal 2018, 12, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Mudalal, S.; Babini, E.; Cavani, C.; Petracci, M. Quantity and Functionality of Protein Fractions in Chicken Breast Fillets Affected by White Striping. Poult. Sci. 2014, 93, 2108–2116. [Google Scholar] [CrossRef]
- Kuttappan, V.A.; Owens, C.M.; Coon, C.; Hargis, B.M.; Vazquez-Añon, M. Incidence of Broiler Breast Myopathies at 2 Different Ages and Its Impact on Selected Raw Meat Quality Parameters. Poult. Sci. 2017, 96, 3005–3009. [Google Scholar] [CrossRef]
- Cai, K.; Shao, W.; Chen, X.; Campbell, Y.L.; Nair, M.N.; Suman, S.P.; Beach, C.M.; Guyton, M.C.; Schilling, M.W. Meat Quality Traits and Proteome Profile of Woody Broiler Breast (Pectoralis Major) Meat. Poult. Sci. 2018, 97, 337–346. [Google Scholar] [CrossRef]
- Praud, C.; Jimenez, J.; Pampouille, E.; Couroussé, N.; Godet, E.; Le Bihan-Duval, E.; Berri, C. Molecular Phenotyping of White Striping and Wooden Breast Myopathies in Chicken. Front. Physiol. 2020, 11, 633. [Google Scholar] [CrossRef]
- Li, B.; Lindén, J.; Puolanne, E.; Ertbjerg, P. Effects of Wooden Breast Syndrome in Broiler Chicken on Sarcoplasmic, Myofibrillar, and Connective Tissue Proteins and Their Association with Muscle Fiber Area. Foods 2023, 12, 3360. [Google Scholar] [CrossRef] [PubMed]
- Dalle Zotte, A.; Ricci, R.; Cullere, M.; Serva, L.; Tenti, S.; Marchesini, G. Research Note: Effect of Chicken Genotype and White Striping–Wooden Breast Condition on Breast Meat Proximate Composition and Amino Acid Profile. Poult. Sci. 2020, 99, 1797–1803. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Puolanne, E.; Ertbjerg, P. Changes of Raw Texture, Intramuscular Connective Tissue Properties and Collagen Profiles in Broiler Wooden Breast during Early Storage. Foods 2023, 12, 1530. [Google Scholar] [CrossRef] [PubMed]
- Soglia, F.; Silva, A.K.; Lião, L.M.; Laghi, L.; Petracci, M. Effect of Broiler Breast Abnormality and Freezing on Meat Quality and Metabolites Assessed by 1 H-NMR Spectroscopy. Poult. Sci. 2019, 98, 7139–7150. [Google Scholar] [CrossRef] [PubMed]
- Thanatsang, K.V.; Malila, Y.; Arayamethakorn, S.; Srimarut, Y.; Tatiyaborworntham, N.; Uengwetwanit, T.; Panya, A.; Rungrassamee, W.; Visessanguan, W. Nutritional Properties and Oxidative Indices of Broiler Breast Meat Affected by Wooden Breast Abnormality. Animals 2020, 10, 2272. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Dong, X.; Puolanne, E.; Ertbjerg, P. Effect of Wooden Breast Degree on Lipid and Protein Oxidation and Citrate Synthase Activity of Chicken Pectoralis Major Muscle. LWT 2022, 154, 112884. [Google Scholar] [CrossRef]
- Soladoye, O.P.; Juárez, M.L.; Aalhus, J.L.; Shand, P.; Estévez, M. Protein Oxidation in Processed Meat: Mechanisms and Potential Implications on Human Health. Compr. Rev. Food Sci. Food Saf. 2015, 14, 106–122. [Google Scholar] [CrossRef] [PubMed]
- Estévez, M.; Xiong, Y. Intake of Oxidized Proteins and Amino Acids and Causative Oxidative Stress and Disease: Recent Scientific Evidences and Hypotheses. J. Food Sci. 2019, 84, 387–396. [Google Scholar] [CrossRef]
- Hardbower, D.M.; de Sablet, T.; Chaturvedi, R.; Wilson, K.T. Chronic Inflammation and Oxidative Stress. Gut Microbes 2013, 4, 475–481. [Google Scholar] [CrossRef]
- Huang, X.; Ahn, D.U. Lipid Oxidation and Its Implications to Meat Quality and Human Health. Food Sci. Biotechnol. 2019, 28, 1275–1285. [Google Scholar] [CrossRef]
- Trithavisup, T.; Krobthong, S.; Yingchutrakul, Y.; Sanpinit, P.; Malila, Y. Impact of Wooden Breast Myopathy on in Vitro Protein Digestibility, Metabolomic Profile, and Cell Cytotoxicity of Cooked Chicken Breast Meat. Poult. Sci. 2024, 103, 103261. [Google Scholar] [CrossRef] [PubMed]
- Barbut, S.; Leishman, E.M. Quality and Processability of Modern Poultry Meat. Animals 2022, 12, 2766. [Google Scholar] [CrossRef] [PubMed]
- Marinangeli, C.P.F.; House, J.D. Potential Impact of the Digestible Indispensable Amino Acid Score as a Measure of Protein Quality on Dietary Regulations and Health. Nutr. Rev. 2017, 75, 658–667. [Google Scholar] [CrossRef] [PubMed]
- Schaafsma, G. Advantages and Limitations of the Protein Digestibility-Corrected Amino Acid Score (PDCAAS) as a Method for Evaluating Protein Quality in Human Diets. Br. J. Nutr. 2012, 108, S333–S336. [Google Scholar] [CrossRef] [PubMed]
- Tavano, O.L.; Neves, V.A.; da Silva Júnior, S.I. In Vitro versus in Vivo Protein Digestibility Techniques for Calculating PDCAAS (Protein Digestibility-Corrected Amino Acid Score) Applied to Chickpea Fractions. Food Res. Int. 2016, 89, 756–763. [Google Scholar] [CrossRef]
- Latimer, G.W. Official Methods of Analysis of AOAC International, 20th ed.; Latimer, G.W., Ed.; AOAC International: Rockville, MD, USA, 2016; ISBN 0935584870. [Google Scholar]
- Hopkins, D.L.; Littlefield, P.J.; Thompson, J.M. A Research Note on Factors Affecting the Determination of Myofibrillar Fragmentation. Meat Sci. 2000, 56, 19–22. [Google Scholar] [CrossRef] [PubMed]
- Olson, D.G.; Parrish, F.C.P., Jr.; Stromer, M.H. Myofibril Fragmentation and Shear Resistance of Three Bovine Muscles during Postmortem Storage. J. Food Sci. 1976, 41, 1036–1041. [Google Scholar] [CrossRef]
- Trithavisup, T.; Sanpinit, P.; Sakulwech, S.; Klamchuen, A.; Malila, Y. In Vitro Protein Digestion of Cooked Spent Commercial Laying Hen and Commercial Broilers Breast Meat. Foods 2022, 11, 1853. [Google Scholar] [CrossRef]
- Kristoffersen, K.A.; Afseth, N.K.; Böcker, U.; Lindberg, D.; de Vogel-van den Bosch, H.; Ruud, M.L.; Wubshet, S.G. Average Molecular Weight, Degree of Hydrolysis and Dry-Film FTIR Fingerprint of Milk Protein Hydrolysates: Intercorrelation and Application in Process Monitoring. Food Chem. 2020, 310, 125800. [Google Scholar] [CrossRef]
- Adler-Nissen, J. Enzymic Hydrolysis of Food Proteins; Elsevier Applied Science Publishers: London, UK, 1986; ISBN 0853343861. [Google Scholar]
- Nielsen, P.M.; Petersen, D.; Dambmann, C. Improved Method for Determining Food Protein Degree of Hydrolysis. J. Food Sci. 2001, 66, 642–646. [Google Scholar] [CrossRef]
- Soglia, F.; Zampiga, M.; Baldi, G.; Malila, Y.; Thanatsang, K.V.; Srimarut, Y.; Tatiyaborworntham, N.; Unger, O.; Klamchuen, A.; Laghi, L.; et al. Lysine Depletion during Different Feeding Phases: Effects on Growth Performances and Meat Quality of Broiler Chickens. Animals 2021, 11, 1499. [Google Scholar] [CrossRef]
- FAO/WHO Protein Quality Evaluation: Report of the Joint FAO/WHO Expert Consultation; Food and Agriculture Organization of the United Nations: Rome, Italy, 1991.
- Soglia, F.; Mudalal, S.; Babini, E.; Di Nunzio, M.; Mazzoni, M.; Sirri, F.; Cavani, C.; Petracci, M. Histology, Composition, and Quality Traits of Chicken Pectoralis Major Muscle Affected by Wooden Breast Abnormality. Poult. Sci. 2016, 95, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Tasoniero, G.; Cullere, M.; Cecchinato, M.; Puolanne, E.; Dalle Zotte, A. Technological Quality, Mineral Profile, and Sensory Attributes of Broiler Chicken Breasts Affected by White Striping and Wooden Breast Myopathies. Poult. Sci. 2016, 95, 2707–2714. [Google Scholar] [CrossRef] [PubMed]
- Sihvo, H.-K.; Immonen, K.; Puolanne, E. Myodegeneration with Fibrosis and Regeneration in the Pectoralis Major Muscle of Broilers. Vet. Pathol. 2014, 51, 619–623. [Google Scholar] [CrossRef] [PubMed]
- Malila, Y. In Vivo Oxidative Stress Associated with Growth-Related Myopathies in Chicken and Potential Health Impact: An Opinion Paper. Front. Physiol. 2023, 14, 1291323. [Google Scholar] [CrossRef] [PubMed]
- Costa Filho, D.V.; Rocha, T.C.d.; de Carvalho, J.M.; de Carvalho, L.M.; Galvão, M.d.S.; Pedrao, M.R.; Estévez, M.; Madruga, M.S. Oxidative Stability of White Striping Chicken Breasts: Effect of Cold Storage and Heat Treatments. Poult. Sci. 2023, 102, 102826. [Google Scholar] [CrossRef]
- Malila, Y.; Uengwetwanit, T.; Arayamethakorn, S.; Srimarut, Y.; Thanatsang, K.V.; Soglia, F.; Strasburg, G.M.; Rungrassamee, W.; Visessanguan, W. Transcriptional Profiles of Skeletal Muscle Associated with Increasing Severity of White Striping in Commercial Broilers. Front. Physiol. 2020, 11, 580. [Google Scholar] [CrossRef] [PubMed]
- Malila, Y.; Uengwetwanit, T.; Thanatsang, K.V.; Arayamethakorn, S.; Srimarut, Y.; Petracci, M.; Soglia, F.; Rungrassamee, W.; Visessanguan, W. Insights into Transcriptome Profiles Associated with Wooden Breast Myopathy in Broilers Slaughtered at the Age of 6 or 7 Weeks. Front. Physiol. 2021, 12, 691194. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Agriculture FoodData Central Search—Chicken, Broiler or Fryers, Breast, Skinless, Boneless, Meat Only, Raw. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/171077/nutrients (accessed on 23 November 2023).
- Franca, M.; Giovanni, C.; Claudio, C.; Nicola, F.; Andrea, G.; Lucio, L.; Andrea, P. Role of Poultry Meat in a Balanced Diet Aimed at Maintaining Health and Wellbeing: An Italian Consensus Document. Food Nutr. Res. 2015, 59, 27606. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A Standardised Static in Vitro Digestion Method Suitable for Food—An International Consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef]
- Bordoni, A.; Laghi, L.; Babini, E.; Di Nunzio, M.; Picone, G.; Ciampa, A.; Valli, V.; Danesi, F.; Capozzi, F. The Foodomics Approach for the Evaluation of Protein Bioaccessibility in Processed Meat upon in Vitro Digestion. Electrophoresis 2014, 35, 1607–1614. [Google Scholar] [CrossRef]
- Wu, G. Dietary Protein Intake and Human Health. Food Funct. 2016, 7, 1251–1265. [Google Scholar] [CrossRef]
Essential Amino Acid | Normal | WS | WS + WB | p-Value |
---|---|---|---|---|
Histidine | 12.55 ± 0.39 | 12.29 ± 0.78 | 12.03 ± 0.68 | 0.94 |
Isoleucine | 13.09 a ± 0.34 | 10.24 b ± 0.66 | 11.20 ab ± 1.02 | 0.01 |
Leucine | 22.96 ± 0.48 | 21.05 ± 1.25 | 20.96 ± 1.45 | 0.25 |
Lysine | 13.02 b ± 1.10 | 11.62 b ± 0.36 | 16.99 a ± 0.41 | 0.002 |
Methionine + cysteine | 23.03 a ± 1.67 | 21.43 a ± 1.24 | 14.08 b ± 1.90 | 0.002 |
Phenylalanine + tyrosine | 19.43 a ± 0.31 | 17.47 b ± 0.56 | 17.46 ab ± 0.87 | 0.03 |
Threonine | 15.47 a ± 0.12 | 14.38 b ± 0.33 | 14.20 b ± 0.34 | 0.02 |
Valine | 13.94 ± 0.37 | 12.07 ± 0.91 | 12.29 ± 0.72 | 0.06 |
Essential Amino Acid | Reference 1 (mg/g Food Protein) | Normal | WS | WS + WB |
---|---|---|---|---|
Pre-school children (2–5 years old) | ||||
Histidine | 19 | 0.66 ± 0.02 | 0.65 ± 0.04 | 0.63 ± 0.04 |
Isoleucine | 28 | 0.47 ± 0.01 | 0.37 ± 0.02 | 0.40 ± 0.04 |
Leucine | 66 | 0.35 ± 0.01 | 0.32 ± 0.02 | 0.32 ± 0.02 |
Lysine | 58 | 0.22 ± 0.02 | 0.20 ± 0.01 | 0.29 ± 0.01 |
Methionine + cysteine | 25 | 0.92 ± 0.27 | 0.86 ± 0.05 | 0.56 ± 0.08 |
Phenylalanine + tyrosine | 63 | 0.31 ± 0.00 | 0.28 ± 0.01 | 0.28 ± 0.01 |
Threonine | 34 | 0.45 ± 0.00 | 0.42 ± 0.01 | 0.42 ± 0.01 |
Valine | 35 | 0.40 ± 0.01 | 0.34 ± 0.03 | 0.35 ± 0.02 |
School children (10–12 years old) | ||||
Histidine | 19 | 0.66 ± 0.02 | 0.65 ± 0.04 | 0.63 ± 0.04 |
Isoleucine | 28 | 0.47 ± 0.01 | 0.37 ± 0.02 | 0.40 ± 0.04 |
Leucine | 44 | 0.52 ± 0.01 | 0.48 ± 0.03 | 0.48 ± 0.03 |
Lysine | 44 | 0.30 ± 0.02 | 0.26 ± 0.01 | 0.39 ± 0.01 |
Methionine + cysteine | 22 | 1.05 ± 0.08 | 0.97 ± 0.06 | 0.64 ± 0.09 |
Phenylalanine + tyrosine | 22 | 0.88 ± 0.01 | 0.79 ± 0.03 | 0.79 ± 0.04 |
Threonine | 28 | 0.55 ± 0.00 | 0.51 ± 0.01 | 0.51 ± 0.01 |
Valine | 25 | 0.56 ± 0.01 | 0.48 ± 0.04 | 0.49 ± 0.13 |
Adults (>18 years old) | ||||
Histidine | 16 | 0.78 ± 0.02 | 0.77 ± 0.05 | 0.75 ± 0.04 |
Isoleucine | 13 | 1.01 ± 0.03 | 0.79 ± 0.05 | 0.86 ± 0.08 |
Leucine | 19 | 1.21 ± 0.03 | 1.11 ± 0.07 | 1.10 ± 0.08 |
Lysine | 16 | 0.81 ± 0.07 | 0.73 ± 0.02 | 1.06 ± 0.03 |
Methionine + cysteine | 17 | 1.35 ± 0.10 | 1.26 ± 0.07 | 0.83 ± 0.11 |
Phenylalanine + tyrosine | 19 | 1.02 ± 0.02 | 0.92 ± 0.03 | 0.92 ± 0.05 |
Threonine | 9 | 1.72 ± 0.01 | 1.60 ± 0.04 | 1.58 ± 0.04 |
Valine | 13 | 1.07 ± 0.03 | 0.93 ± 0.07 | 0.95 ± 0.06 |
Parameter | Normal | WS | WS + WB |
---|---|---|---|
Pre-school children(2–5 years old) | |||
Limiting EAA | Lysine | Lysine | Phenylalanine + tyrosine |
Amino acid score | 0.22 ± 0.02 | 0.20 ± 0.01 | 0.28 ± 0.01 |
In vitro protein digestion (%) | 42.32 ± 0.96 | 51.42 ± 1.24 | 57.02 ± 2.61 |
In vitro PDCAAS (%) | 9.50 b ± 0.80 | 10.31 b ± 0.32 | 15.80 a ± 0.79 |
School children(10–12 years old) | |||
Limiting EAA | Lysine | Lysine | Lysine |
Amino acid score | 0.30 ± 0.02 | 0.26 ± 0.01 | 0.39 ± 0.01 |
In vitro protein digestion (%) | 42.32 ± 0.96 | 51.42 ± 1.24 | 57.02 ± 2.61 |
In vitro PDCAAS (%) | 12.53 b ± 1.05 | 13.58 b ± 0.43 | 22.02 a ± 0.53 |
Adults(>18 years old) | |||
Limiting EAA | Histidine | Lysine | Histidine |
Amino acid score | 0.78 ± 0.02 | 0.73 ± 0.02 | 0.75 ± 0.04 |
In vitro protein digestion (%) | 42.32 ± 0.96 | 51.42 ± 1.24 | 57.02 ± 2.61 |
In vitro PDCAAS (%) | 33.20 c ± 1.04 | 37.36 b ± 1.17 | 42.89 a ± 2.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srimarut, Y.; Phanphuet, A.; Trithavisup, T.; Rattanawongsa, W.; Saenmuangchin, R.; Klamchuen, A.; Malila, Y. Estimating In Vitro Protein Digestion and Protein Digestibility Corrected Amino Acid Score of Chicken Breasts Affected by White Striping and Wooden Breast Abnormalities. Foods 2024, 13, 159. https://doi.org/10.3390/foods13010159
Srimarut Y, Phanphuet A, Trithavisup T, Rattanawongsa W, Saenmuangchin R, Klamchuen A, Malila Y. Estimating In Vitro Protein Digestion and Protein Digestibility Corrected Amino Acid Score of Chicken Breasts Affected by White Striping and Wooden Breast Abnormalities. Foods. 2024; 13(1):159. https://doi.org/10.3390/foods13010159
Chicago/Turabian StyleSrimarut, Yanee, Apinya Phanphuet, Thanatorn Trithavisup, Wachiraya Rattanawongsa, Rattaporn Saenmuangchin, Annop Klamchuen, and Yuwares Malila. 2024. "Estimating In Vitro Protein Digestion and Protein Digestibility Corrected Amino Acid Score of Chicken Breasts Affected by White Striping and Wooden Breast Abnormalities" Foods 13, no. 1: 159. https://doi.org/10.3390/foods13010159
APA StyleSrimarut, Y., Phanphuet, A., Trithavisup, T., Rattanawongsa, W., Saenmuangchin, R., Klamchuen, A., & Malila, Y. (2024). Estimating In Vitro Protein Digestion and Protein Digestibility Corrected Amino Acid Score of Chicken Breasts Affected by White Striping and Wooden Breast Abnormalities. Foods, 13(1), 159. https://doi.org/10.3390/foods13010159