Valorization of the Salmon Frame as a High-Calcium Ingredient in the Formulation of Nuggets: Evaluation of the Nutritional and Sensory Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Elaboration of Salmon Nuggets
- N: nugget without addition of food ingredient (control);
- N1: nugget with 0.75% of food ingredient (BF/PH; 1:1);
- N2: nugget with 1.25% of food ingredient (BF/PH; 1:1).
- (A)
- Uncooked or raw nuggets: N (control); N1 (0.75% BF/PH; 1:1); N2: (1.25% BF/PH; 1:1).
- (B)
- Fried nuggets: FN (control); FN1 (0.75% BF/PH; 1:1); FN2 (1.25% BF/PH; 1:1). Nuggets were shallow fried using 10 g of sunflower oil Natura ® (AGD, Córdoba, Argentina) in a pan frying at 170–180 °C for 3 min on each side of the nugget.
- (C)
- Baked nuggets: BN (control); BN1 (0.75% BF/PH; 1:1); BN2 (1.25% BF/PH; 1:1). Nuggets were baked in an industrial oven at 180 °C for 5 min per side reaching a final internal temperature greater than 80 °C (IPX 5, Electrolux, Porcia, Italy).
2.2.2. Proximal Chemical Analysis
2.2.3. Fatty Acids Composition
2.2.4. Determination of Calcium Content
2.2.5. Sensory Evaluation of Salmon Nuggets
Sensory Tests
2.2.6. Statistical Analysis
3. Results and Discussion
3.1. Proximate Chemical Composition of the Salmon Frame and Food Ingredient (BF/PH)
3.2. Proximate Chemical Composition of Raw, Fried, and Baked Salmon Nuggets
3.3. Determination of Calcium Content of Nuggets
3.4. Fatty Acid Composition
3.5. Sensory Evaluation of Salmon Nuggets
3.5.1. Consumer Profile
3.5.2. Acceptability Test
3.5.3. Check-All-That-Apply (CATA) Questions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture; FAO: Rome, Italy, 2022. [Google Scholar]
- Aas, T.S.; Åsgård, T.; Ytrestøyl, T. Chemical composition of whole body and fillet of slaughter sized Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) farmed in Norway in 2020. Aquac. Rep. 2022, 25, 101252. [Google Scholar] [CrossRef]
- Bastías, J.M.; Balladares, P.; Acuña, S.; Quevedo, R.; Muñoz, O. Determining the effect of different cooking methods on the nutritional composition of salmon (Salmo salar) and chilean jack mackerel (Trachurus murphyi) fillets. PLoS ONE 2017, 12, e0180993. [Google Scholar] [CrossRef]
- Sernapesca. Anuarios Estadísticos de Pesca y Acuicultura. 2022. Available online: https://www.sernapesca.cl/informacion-utilidad/anuarios-estadisticos-de-pesca-y-acuicultura/ (accessed on 25 April 2024).
- Subrei Comercio Exterior de Chile Total Acumulado al 4º Trimestre de 2021. 2022. Available online: https://www.subrei.gob.cl/docs/default-source/estudios-y-documentos/reporte-trimestral/comercio-exterior-de-chile-t4-2021.pdf?sfvrsn=758484c2_1 (accessed on 30 March 2024).
- Subpesca. Establecimiento de las Condiciones Necesarias Para el Tratamiento y Disposición de Desechos Generados por Actividades de Acuicultura. 2018. Available online: www.greentouch.cl (accessed on 5 May 2023).
- Vera, Ó. Evaluación económica de la operación de un reactor enzimático para la hidrólisis de proteínas de subproductos de la industria pesquera. In Memoria Para Optar al Título de Ingeniero Civil Ambiental; Universidad Técnica Federico Santa María: Valparaíso, Chile, 2016. [Google Scholar]
- Liaset, B.; Julshamn, K.; Espe, M. Chemical composition and theoretical nutritional evaluation of the produced fractions from enzymic hydrolysis of salmon frames with Protamex™. Process Biochem. 2003, 38, 1747–1759. [Google Scholar] [CrossRef]
- Garner, S.; Anderson, J. Skeletal Tissues and Mineralization. In Diet, Nutrients, and Bone Health, 1st ed.; Anderson, J.B., Garner, S.C., Klemmer, P.J., Eds.; CRC Press Taylor & Francis Group: Boca Ratón, FL, USA, 2012; pp. 33–52. [Google Scholar]
- Toppe, J.; Albrektsen, S.; Hope, B.; Aksnes, A. Chemical composition, mineral content and amino acid and lipid profiles in bones from various fish species. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2007, 146, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Balk, E.M.; Adam, G.P.; Langberg, V.N.; Earley, A.; Clark, P.; Ebeling, P.R.; Mithal, A.; Rizzoli, R.; Zerbini, C.A.F.; Pierroz, D.D.; et al. Global dietary calcium intake among adults: A systematic review. Osteoporos. Int. 2017, 28, 3315–3324. [Google Scholar] [CrossRef] [PubMed]
- ENCA Encuesta Nacional de Consumo Alimentario; Informe Final; Minsal: Santiago, Chile, 2010.
- FDA. Valor Diario y Porcentaje de Valor Diario: Cambios en las Nuevas Etiquetas de Información Nutricional y Complementaria. 2020. Available online: https://www.fda.gov/food/nutrition-education-resources-materials/nutrition-facts-label (accessed on 15 June 2022).
- Titchenal, C.A.; Dobbs, J. A system to assess the quality of food sources of calcium. J. Food Compos. Anal. 2007, 20, 717–724. [Google Scholar] [CrossRef]
- Trailokya, A.; Srivastava, A.; Bhole, M.; Zalte, N. Calcium and Calcium Salts. JAPI 2017, 65, 100–103. [Google Scholar]
- Vavrusova, M.; Skibsted, L.H. Calcium nutrition. Bioavailability and fortification. LWT—Food Sci Technol. 2014, 59 Pt 2, 1198–1204. [Google Scholar] [CrossRef]
- Benjakul, S.; Karnjanapratum, S. Characteristics and nutritional value of whole wheat cracker fortified with tuna bone bio-calcium powder. Food Chem. 2018, 259, 181–187. [Google Scholar] [CrossRef]
- Bonfim, B.d.C.; Monteiro, M.L.G.; Neves dos Santos, A.F.G.N.; dos Santos, J.; Conte-Junior, C.A. Nutritional Improvement and Consumer Perspective of Fish Nuggets with Partial Substitution of Wheat Flour Coating by Fish (Priacanthus arenatus, Cuvier, 1829) Waste Flour. J. Aquat. Food Prod. Technol. 2020, 29, 28–42. [Google Scholar] [CrossRef]
- Daengprok, W.; Garnjanagoonchorn, W.; Mine, Y. Fermented pork sausage fortified with commercial or hen eggshell calcium lactate. Meat Sci. 2002, 62, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Afzal, F.; Mueen-ud-Din, G.; Nadeem, M.; Murtaza, M.A.; Mahmood, S. Effect of eggshell powder fortification on the physicochemical and organoleptic characteristics of muffins. Pure Appl. Biol. 2020, 9, 1488–1496. [Google Scholar] [CrossRef]
- Vázquez, A.; Gallegos, A.; Bernal, H.; López, M.; Méndez, A. Physicochemical, nutritional and sensory properties of deep fat-fried fortified tortilla chips with broccoli (Brassica oleracea L. convar. italica Plenck) flour. J. Food Nutr. Res. 2014, 53, 313–323. [Google Scholar]
- Idowu, A.T.; Benjakul, S.; Sinthusamran, S.; Sae-leaw, T.; Suzuki, N.; Kitani, Y.; Sookchoo, P. Effect of alkaline treatment on characteristics of bio-calcium and hydroxyapatite powders derived from Salmon Bone. Appl. Sci. 2020, 10, 4141. [Google Scholar] [CrossRef]
- Bubel, F.; Dobrzański, Z.; Bykowski, P.J.; Chojnacka, K.; Opaliński, S.; Trziszka, T. Production of calcium preparations by technology of saltwater fish by product processing. Open Chem. 2015, 13, 1333–1340. [Google Scholar] [CrossRef]
- Malde, M.K.; Graff, I.E.; Siljander-Rasi, H.; Venäläinen, E.; Julshamn, K.; Pedersen, J.I.; Valaja, J. Fish bones—A highly available calcium source for growing pigs. J. Anim. Physiol. Anim. Nutr. 2009, 94, e66–e76. [Google Scholar] [CrossRef] [PubMed]
- Benjakul, S.; Mad-Ali, S.; Senphan, T.; Sookchoo, P. Biocalcium powder from precooked skipjack tuna bone: Production and its characteristics. J. Food Biochem. 2017, 41, e12412. [Google Scholar] [CrossRef]
- Idowu, A.T.; Benjakul, S.; Sinthusamran, S.; Pongsetkul, J.; Sae-Leaw, T.; Sookchoo, P. Whole wheat cracker fortified with biocalcium and protein hydrolysate powders from salmon frame: Characteristics and nutritional value. Food Qual. Saf. 2019, 3, 191–199. [Google Scholar] [CrossRef]
- Valencia, P.; Valdivia, S.; Nuñez, S.; Ovissipour, R.; Pinto, M.; Ramirez, C.; Perez, A.; Ruz, M.; Garcia, P.; Jimenez, P.; et al. Assessing the Enzymatic Hydrolysis of Salmon Frame Proteins through Different By-Product/Water Ratios and pH Regimes. Foods 2021, 10, 3045. [Google Scholar] [CrossRef]
- Resolución Exenta-Chile 393. 2002. Available online: https://www.bcn.cl/leychile/navegar?idNorma=194952 (accessed on 5 May 2023).
- AOAC. Official Methods of Analysis, 17th ed.; The Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Schmidt-Hebbel, H.; Pennacchiotti, I.; Masson, L.; Mella, M.A. Tabla de Composición Química de Alimentos Chilenos, 8th ed.; Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile: Santiago, Chile, 1992; pp. 781–786. [Google Scholar]
- Rincón Cervera, M.A.; González Barriga, V.; Valenzuela, R.; López Arana, S.; Romero, J.; Valenzuela, A. Profile and distribution of fatty acids in edible parts of commonly consumed marine fishes in Chile. Food Chem. 2019, 274, 123–129. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis, 15th ed.; Method 985.35; AOAC: Arlington, VA, USA, 1990. [Google Scholar]
- Dave, D.; Liu, Y.; Clark, L.; Dave, N.; Trenholm, S.; Westcott, J. Availability of marine collagen from Newfoundland fisheries and aquaculture waste resources. Bioresour. Technol. Rep. 2019, 7, 100271. [Google Scholar] [CrossRef]
- Opheim, M.; Šližyte, R.; Sterten, H.; Provan, F.; Larssen, E.; Kjos, N.P. Hydrolysis of Atlantic salmon (Salmo salar) rest raw materials—Effect of raw material and processing on composition, nutritional value, and potential bioactive peptides in the hydrolysates. Process Biochem. 2015, 50, 1247–1257. [Google Scholar] [CrossRef]
- Fellows, P.J. Food Processing Technology. In Woodhead Publishing Series in Food Science, Technology and Nutrition, 4th ed.; Elsevier: Exeter, UK, 2017; pp. 1–1108. [Google Scholar]
- Karimian-Khosroshahi, N.; Hosseini, H.; Rezaei, M.; Khaksar, R.; Mahmoudzadeh, M. Effect of Different Cooking Methods on Minerals, Vitamins, and Nutritional Quality Indices of Rainbow Trout (Oncorhynchus mykiss). Int. J. Food Prop. 2016, 19, 2471–2480. [Google Scholar] [CrossRef]
- Ersoy, B.; Özeren, A. The effect of cooking methods on mineral and vitamin contents of African catfish. Food Chem. 2009, 115, 419–422. [Google Scholar] [CrossRef]
- Oppong, D.; Panpipat, W.; Cheong, L.Z.; Chaijan, M. Comparative effect of frying and baking on chemical, physical, and microbiological characteristics of frozen fish nuggets. Foods 2021, 10, 3158. [Google Scholar] [CrossRef] [PubMed]
- Suaterna, A.C. La fritura de los alimentos: Pérdida y ganancia de nutrientes en los alimentos fritos. Perspect. En Nutr. Humana 2008, 10, 77–88. [Google Scholar] [CrossRef]
- Alexi, N.; Kogiannou, D.; Oikonomopoulou, I.; Kalogeropoulos, N.; Byrne, D.V.; Grigorakis, K. Culinary preparation effects on lipid and sensory quality of farmed gilthead seabream (Sparus aurata) and meagre (Argyrosomus regius): An inter-species comparison. Food Chem. 2019, 301, 125263. [Google Scholar] [CrossRef] [PubMed]
- Felici, A.; Vittori, S.; Meligrana, M.C.T.; Roncarati, A. Quality traits of raw and cooked cupped oysters. Eur. Food Res. Technol. 2019, 246, 349–353. [Google Scholar] [CrossRef]
- Gokoglu, N.; Yerlikaya, P.; Cengiz, E. Effects of cooking methods on the proximate composition and mineral contents of rainbow trout (Oncorhynchus mykiss). Food Chem. 2004, 84, 19–22. [Google Scholar] [CrossRef]
- Dangal, A.; Tahergorabi, R.; Acharya, D.; Timsina, P.; Rai, K.; Dahal, S.; Acharya, P.; Giuffrè, A.M. Review on deep-fat fried foods: Physical and chemical attributes, and consequences of high consumption. Eur. Food Res. Technol. 2024, 250, 1537–1550. [Google Scholar] [CrossRef]
- Goes, E.S.d.R.; de Souza, M.L.R.; Michka, J.M.G.; Kimura, K.S.; de Lara, J.A.F.; Delbem, A.C.B.; Gasparino, E. Fresh pasta enrichment with protein concentrate of tilapia: Nutritional and sensory characteristics. Food Sci. Technol. 2016, 36, 76–82. [Google Scholar] [CrossRef]
- Bastos, S.C.; Tavares, T.; de Sousa Gomes Pimenta, M.E.; Leal, R.; Fabrício, L.F.; Pimenta, C.J.; Nunes, C.A.; Pinheiro, A.C.M. Fish filleting residues for enrichment of wheat bread: Chemical and sensory characteristics. J. Food Sci. Technol. 2014, 51, 2240–2245. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Moemin, A.R. Healthy cookies from cooked fish bones. Food Biosci. 2015, 12, 114–121. [Google Scholar] [CrossRef]
- Prapasuwannakul, N. Consumer Acceptance of Nutritional Enrichment of Fish Crackers Used for Snacks with Fish Bones. In Advances in Physical Ergonomics & Human Factors; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 242–250. [Google Scholar] [CrossRef]
- Segovia, J. Efectos físico-químicos y nutricionales del horneado en los alimentos. MOLEQLA Rev. De Cienc. De La Univ. Pablo De Olavide 2014, 16, 80–85. [Google Scholar]
- Marimuthu, K.; Thilaga, M.; Kathiresan, S.; Xavier, R.; Mas, R.H.M.H. Effect of different cooking methods on proximate and mineral composition of striped snakehead fish (Channa striatus, Bloch). J. Food Sci. Technol. 2012, 49, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.B.; Love, M. The impact of food processing on the nutritional quality of vitamins and minerals. Adv. Exp. Med. Biol. 1999, 459, 99–106. [Google Scholar] [CrossRef]
- Servicio Nacional de Salud (Jun 1982) Reglamento Sanitario de los Alimentos [en Línea]. Available online: https://hdl.handle.net/20.500.14001/65092 (accessed on 17 May 2024).
- Sioen, I.; Haak, L.; Raes, K.; Hermans, C.; De Henauw, S.; De Smet, S.; Van Camp, J. Effects of pan-frying in margarine and olive oil on the fatty acid composition of cod and salmon. Food Chem. 2006, 98, 609–617. [Google Scholar] [CrossRef]
- Jensen, I.J.; Mæhre, H.K.; Tømmerås, S.; Eilertsen, K.E.; Olsen, R.L.; Elvevoll, E.O. Farmed Atlantic salmon (Salmo salar L.) is a good source of long chain omega-3 fatty acids. Nutr. Bull. 2012, 37, 25–29. [Google Scholar] [CrossRef]
- Molversmyr, E.; Devle, H.M.; Naess-Andresen, C.F.; Ekeberg, D. Identification and quantification of lipids in wild and farmed Atlantic salmon (Salmo salar), and salmon feed by GC-MS. Food Sci. Nutr. 2022, 10, 3117–3127. [Google Scholar] [CrossRef]
- Leung, K.S.; Galano, J.M.; Durand, T.; Lee, J.C.Y. Profiling of omega-polyunsaturated fatty acids and their oxidized products in salmon after different cooking methods. Antioxidants 2018, 7, 96. [Google Scholar] [CrossRef] [PubMed]
- Yanar, Y.; Küçükgülmez, A.; Ersoy, B.; Çelik, M. Cooking effects on fatty acid composition of cultured sea bass (Dicentrarchus labrax) fillets. J. Muscle Foods 2007, 18, 88–94. [Google Scholar] [CrossRef]
- Jayasena, D.D.; Fernando, K.; Awanthika, T. Effect of Frying in Different Cooking Oils on the Fatty Acid Profile of Nile Tilapia (Oreochromis niloticus) Fillets. JOAAT 2018, 5, 98–102. [Google Scholar] [CrossRef]
- Candela, M.; Astiasará, I.; Bello, J. Deep-Fat Frying Modifies High-Fat Fish Lipid Fraction. J. Agric. Food Chem. 1998, 46, 2793–2796. [Google Scholar] [CrossRef]
- Uthai, N. Effect of partially substituting wheat flour with fish bones powder on the properties and quality of noodles. Afr. J. Food Agric. Nutr. Dev. 2021, 21, 17313–17329. [Google Scholar] [CrossRef]
N | N1 | N2 | |
---|---|---|---|
Ingredients (%) | |||
Salmon fillets | 85.6 | 84.8 | 84.3 |
Ice | 9 | 9 | 9 |
Vegetal fiber | 3 | 3 | 3 |
Concentrated soy protein | 1 | 1 | 1 |
Salt | 1 | 1 | 1 |
Sodium tripolyphosphate | 0.3 | 0.3 | 0.3 |
Antioxidants | 0.1 | 0.1 | 0.1 |
BF/PH (1:1) | - | 0.75 | 1.25 |
Salmon Frame (g/100) | BF/PH (1:1) (g/100) | |
---|---|---|
Moisture | 54.2 ± 0.8 | 47.5 ± 0.8 |
Protein | 40.0 ± 0.6 | 35.6 ± 0.9 |
Lipid | 46.3 ± 1.1 | - |
Ash | 14.5 ± 0.2 | 54.6 ± 1.3 |
Calcium (mg/100 g) | - | 10,080 |
Uncooked Nugget | Fried Nugget | Baked Nugget | |||||||
---|---|---|---|---|---|---|---|---|---|
N | N1 | N2 | FN | FN1 | FN2 | BN | BN1 | BN2 | |
Moisture | 50.6 ± 0.8 d | 50.9 ± 0.8 de | 52.7 ± 0.8 e | 41.7 ± 0.3 a | 42.6 ± 0.8 a | 42.3 ± 0.4 a | 45.3 ± 0.9 b | 47.5 ± 0.7 b | 48.3 ± 0.3 c |
Lipid | 30.9 ± 1.1 ab | 28.3 ± 0.6 a | 28.0 ± 1.7 a | 37.3 ± 1.2 d | 36.1 ± 0.5 d | 35.9 ± 0.2 d | 32.9 ± 1.0 c | 32.3 ± 0.4 bc | 31.4 ± 0.9 bc |
Protein | 30.1 ± 0.4 d | 29.6 ± 1.0 cd | 28.9 ± 1.2 d | 25.8 ± 0.1 a | 26.2 ± 0.4 a | 26.4 ± 0.04 ab | 28.7 ± 0.54 d | 28.6 ± 0.5 cd | 28.1 ± 0.1 bc |
Ash | 3.6 ± 0.02 d | 4.2 ± 0.03 e | 4.3 ± 0.05 e | 3.1 ± 0.02 ª | 3.5 ± 0.04 bc | 3.8 ± 0.04 d | 3.48 ± 0.02 b | 3.92 ± 0.07 d | 4.31 ± 0.02 e |
CH | 35.4 ± 1.4 abc | 37.9 ± 1.6 bc | 38.8 ± 2.5 c | 33.8 ± 1.3 a | 34.2 ± 0.8 a | 33.9 ± 0.07 a | 34.9 ± 0.5 ab | 35.1 ± 0.8 abc | 36.1 ± 0.8 abc |
Ca (mg/100 g) | 14.2 ± 1.1 a | 86.7 ± 6.0 c | 117.8 ± 0.2 d | 16.4 ± 0.7 a | 74.4 ± 0.4 b | 123.0 ± 1.8 de | 14.8 ± 0.4 a | 78.3 ± 1.2 bc | 127.0 ± 3.6 e |
Uncooked Nugget | Fried Nugget | Baked Nugget | |||||||
---|---|---|---|---|---|---|---|---|---|
Fatty Acid | N | N1 | N2 | FN | FN1 | FN2 | BN | BN1 | BN2 |
C14:0 | 1.09 ± 0.01 cd | 1.17 ± 0.02 a | 1.10 ± 0.02 bc | 0.91 ± 0.02 e | 0.95 ± 0.02 e | 0.86 ± 0.00 f | 1.10 ± 0.02 c | 1.15 ± 0.01 ab | 1.04 ± 0.02 d |
C16:0 | 8.84 ± 0.09 b | 9.05 ± 0.07 a | 8.74 ± 0.09 bc | 8.35 ± 0.07 d | 8.56 ± 0.07 c | 8.19 ± 0.01 d | 8.80 ± 0.10 b | 8.93 ± 0.00 ab | 8.57 ± 0.09 c |
C20:0 | 1.84 ± 0.18 c | 1.84 ± 0.06 c | 2.16 ± 0.27 abc | 2.36 ± 0.07 ab | 2.30 ± 0.06 ab | 2.54 ± 0.08 a | 2.13 ± 0.16 bc | 2.22 ± 0.07 abc | 2.03 ± 0.08 bc |
C22:0 | 0.81 ± 0.01 c | 0.88 ± 0.02 a | 0.83 ± 0.02 bc | 0.69 ± 0.02 de | 0.70 ± 0.01 d | 0.64 ± 0.01 e | 0.82 ± 0.03 bc | 0.85 ± 0.01 ab | 0.78 ± 0.02 c |
∑SFA | 12.60 ± 0.07 bd | 12.90 ± 0.06 ab | 12.80 ± 0.18 bc | 12.30 ± 0.07 ef | 12.50 ± 0.06 de | 12.20 ± 0.07 f | 12.80 ± 0.04 b | 13.16 ± 0.08 a | 12.40 ± 0.09 def |
C16:1 | 1.49 ± 0.04 a | 1.54 ± 0.02 a | 1.49 ± 0.02 a | 1.22 ± 0.01 c | 1.26 ± 0.04 c | 1.14 ± 0.01 d | 1.50 ± 0.02 a | 1.52 ± 0.02 a | 1.39 ± 0.03 b |
C18:1n-9t | 3.52 ± 0.02 cd | 3.52 ± 0.01 cd | 3.51 ± 0.02 d | 3.72 ± 0.01 b | 3.77 ± 0.01 a | 3.76 ± 0.01 a | 3.53 ± 0.02 cd | 3.51 ± 0.01 d | 3.55 ± 0.01 c |
C18:1n-9c | 40.90 ± 0.18 ab | 41.40 ± 0.11 a | 40.70± 0.22 bcd | 39.80 ± 0.18 ef | 40.20 ± 0.14 de | 39.50 ± 0.12 f | 40.90 ± 0.06 bc | 40.90 ± 0.12 bc | 40.50 ± 0.18 cd |
C22:1n-9 | 1.56 ± 0.02 abc | 1.63 ± 0.04 a | 1.49 ± 0.04 c | 1.23 ± 0.04 de | 1.29 ± 0.03 d | 1.18 ± 0.01 e | 1.52 ± 0.06 bc | 1.61 ± 0.03 ab | 1.50 ± 0.03 c |
∑MFA | 47.60 ± 0.24 ab | 48.01± 0.17 a | 47.20 ± 0.29 bc | 46.01 ± 0.20 ef | 46.60 ± 0.20 de | 45.60 ± 0.12 f | 47.50 ± 0.12 bc | 47.60 ± 0.10 ab | 47.01 ± 0.24 cd |
C18:2n-6t | 2.07 ± 0.25 b | 2.33 ± 0.13 ab | 2.50 ± 0.31 ab | 2.46 ± 0.06 ab | 2.50 ± 0.06 ab | 2.61 ± 0.08 a | 2.49 ± 0.18 ab | 2.74 ± 0.09 a | 2.39 ± 0.09 ab |
C18:2n-6c | 28.2 ± 0.09 cd | 26.50 ± 0.35 e | 27.80 ± 0.47 d | 31.18 ± 0.37 a | 30.08 ± 0.36 b | 31.84 ± 0.01 a | 27.64 ± 0.17 d | 26.72 ± 0.26 e | 29.10 ± 0.44 c |
C18:3n-3 | 3.71 ± 0.05 b | 3.89 ± 0.07 a | 3.70 ± 0.03 b | 2.98 ± 0.07 df | 3.09 ± 0.06 d | 2.83 ± 0.01 f | 3.66 ± 0.07 bc | 3.81 ± 0.01 ab | 3,.50 ± 0.08 c |
C20:2 | 1.55 ± 0.01 cd | 1.69 ± 0.03 a | 1.60 ± 0.03 bc | 1.33 ± 0.02 e | 1.36 ± 0.02 e | 1.26 ± 0.01 f | 1.58 ± 0.02 bc | 1.62 ± 0.02 b | 1.50 ± 0.03 d |
C20:5n-3 | 0.74 ± 0.01 c | 0.80 ± 0.02 a | 0.74 ± 0.02 c | 0.61 ± 0.02 de | 0.63 ± 0.01 d | 0.58 ± 0.01 e | 0.75 ± 0.01 bc | 0.78 ± 0.01 ab | 0.72 ± 0.01 c |
C22:6n-3 | 2.21 ± 0.04 b | 2.37 ± 0.10 a | 2.25 ± 0.05 ab | 1.78 ± 0.05 c | 1.81 ± 0.03 c | 1.71 ± 0.01 c | 2.20 ± 0.08 b | 2.20 ± 0.03 b | 2.10 ± 0.05 b |
∑PUFA | 38.49 ± 0.21 cd | 37.58 ± 0.25 e | 38.62 ± 0.26 c | 40.35 ± 0.24 a | 39.47 ± 0.25 b | 40.80 ± 0.07 a | 38.30 ± 0.12 cd | 37.70 ± 0.17 de | 39.30 ± 0.31 b |
∑TransFA | 5.59 ± 0.24 c | 5.85 ± 0.30 bc | 6.01 ± 0.29 abc | 6.18 ± 0.06 ab | 6.27 ± 0.07 ab | 6.37 ± 0.08 a | 6.02 ± 0.18 abc | 6.26 ± 0.10 ab | 5.90 ± 0.09 abc |
Attribute | p-Value * | BN | BN1 | BN2 |
---|---|---|---|---|
Bitter taste | 0.936 | 11 | 13 | 13 |
Fatty taste | 0.558 | 16 | 13 | 18 |
Juicy | 0.055 | 16 | 16 | 31 |
Dry | 0.422 | 24 | 27 | 18 |
Faint salmon aroma | 0.353 | 27 | 36 | 36 |
Strong salmon aroma | 0.779 | 13 | 11 | 9 |
Light gold color | 0.846 | 60 | 60 | 56 |
Dark gold color | 0.247 | 4 | 6 | 0 |
Salty | 0.338 | 7 | 15 | 9 |
Low salt | 0.417 | 13 | 9 | 7 |
Crusty | 0.892 | 42 | 42 | 38 |
Faint salmon flavor | 0.304 | 26 | 15 | 24 |
Strong salmon flavor | 0.368 | 33 | 24 | 24 |
Rough interior | 0.178 | 13 | 22 | 16 |
Soft interior | 0.565 | 44 | 44 | 51 |
Attribute | p-Value * | FN | FN1 | FN2 |
---|---|---|---|---|
Bitter taste | 0.646 | 14 a | 18 a | 12 a |
Fatty taste | 0.307 | 20 a | 22 a | 28 a |
Juicy | 0.018 | 6 a | 22 ab | 26 b |
Dry | 0.007 | 33 b | 24 ab | 10 a |
Faint salmon aroma | 0.756 | 35 a | 39 a | 41 a |
Strong salmon aroma | 0.060 | 8 a | 18 a | 6 a |
Light gold color | 0.458 | 35 a | 45 a | 45 a |
Dark gold color | 0.878 | 24 a | 22 a | 20 a |
Salty | 0.641 | 16 a | 12 a | 12 a |
Low salt | 0.097 | 12 a | 10 a | 20 a |
Crusty | 0.141 | 49 a | 65 a | 59 a |
Faint salmon flavor | 0.482 | 20 a | 29 a | 26 a |
Strong salmon flavor | 0.193 | 26 a | 22 a | 14 a |
Rough interior | 0.405 | 29 a | 20 a | 26 a |
Soft interior | 0.237 | 29 a | 41 a | 41 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matamala, C.; Garcia, P.; Valencia, P.; Perez, A.; Ruz, M.; Sanhueza, L.; Almonacid, S.; Ramirez, C.; Pinto, M.; Jiménez, P. Valorization of the Salmon Frame as a High-Calcium Ingredient in the Formulation of Nuggets: Evaluation of the Nutritional and Sensory Properties. Foods 2024, 13, 1701. https://doi.org/10.3390/foods13111701
Matamala C, Garcia P, Valencia P, Perez A, Ruz M, Sanhueza L, Almonacid S, Ramirez C, Pinto M, Jiménez P. Valorization of the Salmon Frame as a High-Calcium Ingredient in the Formulation of Nuggets: Evaluation of the Nutritional and Sensory Properties. Foods. 2024; 13(11):1701. https://doi.org/10.3390/foods13111701
Chicago/Turabian StyleMatamala, Camila, Paula Garcia, Pedro Valencia, Alvaro Perez, Manuel Ruz, Leyla Sanhueza, Sergio Almonacid, Cristian Ramirez, Marlene Pinto, and Paula Jiménez. 2024. "Valorization of the Salmon Frame as a High-Calcium Ingredient in the Formulation of Nuggets: Evaluation of the Nutritional and Sensory Properties" Foods 13, no. 11: 1701. https://doi.org/10.3390/foods13111701
APA StyleMatamala, C., Garcia, P., Valencia, P., Perez, A., Ruz, M., Sanhueza, L., Almonacid, S., Ramirez, C., Pinto, M., & Jiménez, P. (2024). Valorization of the Salmon Frame as a High-Calcium Ingredient in the Formulation of Nuggets: Evaluation of the Nutritional and Sensory Properties. Foods, 13(11), 1701. https://doi.org/10.3390/foods13111701