Comparative Analysis of Black Chokeberry (Aronia melanocarpa L.) Fruit, Leaves, and Pomace for Their Phytochemical Composition, Antioxidant Potential, and Polyphenol Bioaccessibility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chemical Composition
2.2.1. Proximate Analysis and Mineral Composition
2.2.2. Fatty Acids
2.2.3. Extraction Procedure
2.2.4. Total Phenolic Content
2.2.5. Total Flavonoid Content
2.2.6. Xanthophylls Content
2.2.7. Vitamin E Analysis
2.2.8. Identification and Quantification of Polyphenols
2.3. Antioxidant Activity
2.3.1. Determination of Antioxidant Activity Using the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Method
2.3.2. Determination of Antioxidant Activity Using 2,2′-Azinobis-3-Ethylbenzthiazolin-6-Sulfonic Acid (ABTS) Free Radical Scavenging Method
2.3.3. Evaluation of Antioxidant Activity by Iron Chelating Power
2.3.4. Evaluation of Total Antioxidant Activity by Phosphomolybdenum Method
2.4. In Vitro Gastrointestinal (GI) Digestion of Black Chokeberry Samples
2.5. Determination of Bioaccessibility of Polyphenols
in the supernatant before digestion × 100
2.6. Statistical Analysis
3. Results
3.1. Chemical Analysis
3.1.1. Proximate and Mineral Composition of Black Chokeberry Fruits, Leaves, and Pomace
3.1.2. Phytochemicals Quantification of Black Chokeberry Fruits, Leaves, and Pomace
3.1.3. Fatty Acids Profile of Black Chokeberry Fruits, Leaves and Pomace
3.1.4. Antioxidant Activity of Black Chokeberry Fruits, Leaves, and Pomace
3.2. Biplot Correlation
3.3. In Vitro Gastrointestinal (GI) Digestion of Black Chokeberry Fruits, Leaves, and Pomace
4. Discussion
4.1. Proximate and Mineral Composition of Black Chokeberry Fruits, Leaves, and Pomace
4.2. Phytochemicals Quantification of Black Chokeberry Fruits, Leaves and Pomace
4.3. Antioxidant Potential of Black Chokeberry Berries, Fruits, Leaves, and Pomace
4.4. Biplot Correlation from Principal Component Analysis (PCA) of Samples
4.5. In Vitro Gastrointestinal (GI) Digestion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martins, M.S.; Gonçalves, A.C.; Alves, G.; Silva, L.R. Blackberries and Mulberries: Berries with Significant Health-Promoting Properties. Int. J. Mol. Sci. 2023, 24, 12024. [Google Scholar] [CrossRef] [PubMed]
- Nile, S.H.; Park, S.W. Edible berries: Bioactive components and their effect on human health. Nutrition 2014, 30, 134–144. [Google Scholar] [CrossRef]
- Sidor, A.; Gramza-Michałowska, A. Black Chokeberry Aronia melanocarpa L.—A qualitative composition, phenolic profile and antioxidant potential. Molecules 2019, 24, 3710. [Google Scholar] [CrossRef]
- Cvetanović, A.; Zenginb, G.; Zekovića, Z.; Švarc-Gajića, J.; Ražić, S.; Damjanović, A.; Mašković, P.; Mitić, M. Comparative in vitro studies of the biological potential and chemical composition of stems, leaves and berries Aronia melanocarpa’s extracts obtained by subcritical water extraction. Food Chem. Toxicol. 2018, 121, 458–466. [Google Scholar] [CrossRef]
- Staszowska-Karkut, M.; Materska, M. phenolic composition, mineral content, and beneficial bioactivities of leaf extracts from black currant (Ribes nigrum L.), raspberry (Rubus idaeus), and aronia (Aronia melanocarpa). Nutrients 2020, 12, 463. [Google Scholar] [CrossRef]
- Buda, V.; Andor, M.; Diana, A.; Ardelean, F.; Pavel, I.Z.; Dehelean, C.; Danciu, C. Cardioprotective effects of cultivated black chokeberries (Aronia spp.): Traditional uses, phytochemistry and therapeutic effects. In Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health; IntechOpen: London, UK, 2020. [Google Scholar]
- Oszmiański, J.; Wojdyło, A. Aronia melanocarpaphenolics and their antioxidant activity. Eur. Food Res. Technol. 2005, 221, 809–813. [Google Scholar] [CrossRef]
- Raczkowska, E.; Nowicka, P.; Wojdyło, A.; Styczyńska, M.; Lazar, Z. Chokeberry pomace as a component shaping the content of bioactive compounds and nutritional, health-promoting (anti-diabetic and antioxidant) and sensory properties of shortcrust pastries sweetened with sucrose and erythritol. Antioxidants 2022, 11, 190. [Google Scholar] [CrossRef]
- Sarv, V.; Venskutonis, P.R.; Rätsep, R.; Aluvee, A.; Kazernavičiūtė, R.; Bhat, R. Antioxidants characterization of the fruit, juice, and pomace of sweet rowanberry (Sorbus aucuparia L.) cultivated in Estonia. Antioxidants 2021, 10, 1779. [Google Scholar] [CrossRef] [PubMed]
- Jurendi’c, T.; Ščetar, M. Aronia melanocarpa products and by-products for health and nutrition: A Review. Antioxidants 2021, 10, 1052. [Google Scholar] [CrossRef] [PubMed]
- Mayer-Miebach, E.; Adamiuk, M.; Behsnilian, D. Stability of chokeberry bioactive polyphenols during juice processing and stabilization of a polyphenol-rich material from the by-product. Agriculture 2012, 2, 244–258. [Google Scholar] [CrossRef]
- Sójka, M.; Kołodziejczyk, K.; Milala, J. Polyphenolic and basic chemical composition of black chokeberry industrial by-products. Ind. Crops Prod. 2013, 51, 77–86. [Google Scholar] [CrossRef]
- Negreanu-Pirjol, B.S.; Oprea, O.C.; Negreanu-Pirjol, T.; Roncea, F.N.; Prelipcean, A.M.; Craciunescu, O.; Iosageanu, A.; Artem, V.; Ranca, A.; Motelica, L.; et al. Health Benefits of antioxidant bioactive compounds in the fruits and leaves of Lonicera caerulea L. and Aronia melanocarpa (Michx.) Elliot. Antioxidants 2023, 12, 951. [Google Scholar] [CrossRef] [PubMed]
- De Ancos, B.; Colina-Coca, C.; González-Peña, D.; Sánchez-Moreno, C. Bioactive compounds from vegetable and fruit by-products. In Biotechnology of Bioactive Compounds; Gupta, V.K., Tuohy, M.G., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2015; pp. 3–36. [Google Scholar]
- Wojdyło, A.; Nowicka, P. Profile of Phenolic Compounds of Prunus armeniaca L. leaf extract determined by LC-ESI-QTOF-MS/MS and their antioxidant, anti-diabetic, anti-cholinesterase, and anti-inflammatory potency. Antioxidants 2021, 10, 1869. [Google Scholar] [CrossRef] [PubMed]
- Untea, A.E.; Varzaru, I.; Saracila, M.; Panaite, T.D.; Oancea, A.G.; Vlaicu, P.A.; Grosu, I.A. Antioxidant properties of cranberry leaves and walnut meal and their effect on nutritional quality and oxidative stability of broiler breast meat. Antioxidants 2023, 12, 1084. [Google Scholar] [CrossRef] [PubMed]
- Vlaicu, P.A.; Untea, A.E.; Varzaru, I.; Saracila, M.; Oancea, A.G. Designing nutrition for health—Incorporating dietary by-products into poultry feeds to create functional foods with insights into health benefits, risks, bioactive compounds, food component functionality and safety regulations. Foods 2023, 12, 4001. [Google Scholar] [CrossRef] [PubMed]
- Szopa, A.; Kokotkiewicz, A.; Kubica, P.; Banaszczak, P.; Wojtanowska-Krośniak, A.; Krosniak, M.; Marzec-Wróblewska, U.; Badura, A.; Zagrodzki, P.; Bucinski, A.; et al. Comparative analysis of different groups of phenolic compounds in fruit and leaf extracts of Aronia sp.: A. melanocarpa, A. arbutifolia, and A. ×prunifolia and their antioxidant activities. Eur. Food Res. Technol. 2017, 243, 1645–1657. [Google Scholar] [CrossRef]
- AOAC. International A: Official Methods of Analysis of the AOAC International; AOAC: Arlington County, VA, USA, 2000. [Google Scholar]
- Untea, A.; Criste, R.C.; Vladescu, L. Development and validation of a microwave digestion–FAAS procedure for Cu, Mn and Zn determination in liver. Rev. Chim. 2012, 63, 341–346. [Google Scholar]
- Turcu, R.P.; Panaite, T.D.; Untea, A.E.; Vlaicu, P.A.; Badea, I.A.; Mironeasa, S. Effects of grape seed oil supplementation to broilers diets on growth performance, meat fatty acids, health lipid indices and lipid oxidation parameters. Agriculture 2021, 11, 404. [Google Scholar] [CrossRef]
- Untea, A.; Lupu, A.; Saracila, M.; Panaite, T. Comparison of ABTS, DPPH, phosphomolybdenum assays for estimating antioxidant activity and phenolic compounds in five different plant extracts. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Anim. Sci. Biotechnol. 2018, 75, 110–114. [Google Scholar] [CrossRef]
- Varzaru, I.; Untea, A.E.; Van, I. Distribution of nutrients with benefic potential for the eyes in several medicinal plants. Rom. Biotechnol. Lett. 2015, 20, 10773–10783. [Google Scholar]
- Zou, Y.; Lu, Y.; Wei, D. Antioxidant activity of a flavonoid-rich extract of Hypericum perforatum L. in vitro. J. Agric. Food Chem. 2004, 52, 5032–5039. [Google Scholar] [CrossRef] [PubMed]
- Varzaru, I.; Oancea, A.G.; Vlaicu, P.A.; Saracila, M.; Untea, A.E. Exploring the antioxidant potential of blackberry and raspberry leaves: Phytochemical analysis, scavenging activity, and in vitro polyphenol bioaccessibility. Antioxidants 2023, 12, 2125. [Google Scholar] [CrossRef]
- Qwele, K.; Hugo, A.; Oyedemi, S.O.; Moyo, B.; Masika, P.J.; Muchenje, V. Chemical composition, fatty acid content and antioxidant potential of meat from goats supplemented with Moringa (Moringa oleifera) leaves, sunflower cake and grass hay. Meat Sci. 2013, 93, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Saracila, M.; Untea, A.E.; Varzaru, I.; Panaite, T.D.; Vlaicu, P.A. Comparative effects on using bilberry leaves in broiler diet reared under thermoneutral conditions vs. heat stress on performance, health status and gut microbiota. Life 2023, 14, 39. [Google Scholar] [CrossRef]
- Sabeena Farvin, K.H.; Andersen, L.L.; Nielsen, H.H.; Jacobsen, C.; Jakobsen, G.; Johansson, I.; Jessen, F. Antioxidant activity of Cod (Gadus morhua) protein hydrolysates: In vitro assays and evaluation in 5% fish oil-in-water emulsion. Food Chem. 2014, 149, 326–334. [Google Scholar] [CrossRef]
- Santos, J.S.; Brizola, V.R.A.; Granato, D. High-throughput assay comparison and standardization for metal chelating capacity screening: A proposal and application. Food Chem. 2017, 214, 515–522. [Google Scholar] [CrossRef]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.O.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food–an international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef]
- Iqbal, Y.; Ponnampalam, E.N.; Le, H.H.; Artaiz, O.; Muir, S.K.; Jacobs, J.L.; Cottrell, J.J.; Dunshea, F.R. Assessment of Feed Value of Chicory and Lucerne for Poultry, Determination of Bioaccessibility of Their Polyphenols and Their Effects on Caecal Microbiota. Fermentation 2022, 8, 237. [Google Scholar] [CrossRef]
- Tanaka, T.; Tanaka, A. Chemical components and characteristics of black chokeberry. J. Jpn. Soc. Food Sci. Technol. 2001, 48, 606–610. [Google Scholar] [CrossRef]
- Biel, W.; Jaroszewska, A. The nutritional value of leaves of selected berry species. Sci. Agric. 2017, 74, 405–410. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products. Scientific opinion on dietary reference values for carbohydrates and dietary fibre. EFSA J. 2010, 8, 1462. [Google Scholar]
- Pieszka, M.; Gogol, P.; Pietras, M.; Pieszka, M. Valuable components of dried pomaces of chokeberry, black currant, strawberry, apple and carrot as a source of natural antioxidants and nutraceuticals in the animal diet. Ann. Anim. Sci. 2015, 15, 475–491. [Google Scholar] [CrossRef]
- Blejan, A.M.; Nour, V.; Păcularu–Burada, B.; Popescu, S.M. Wild bilberry, blackcurrant, and blackberry by–products as a source of nutritional and bioactive compounds. Int. J. Food Prop. 2023, 26, 1579–1595. [Google Scholar] [CrossRef]
- Lancrajan, I. Aronia melanocarpa a potential therapeutic agent. Stud. Univ. Vasile Goldiş Ser. Ştiinţele Vieţii 2012, 22, 389–394. [Google Scholar]
- Tolić, M.-T.; Krbavčić, I.P.; Vujević, P.; Milinović, B.; Jurčević, I.L.; Vahčić, N. Effects of weather conditions on phenolic content and antioxidant capacity in juice of chokeberries (Aronia Melanocarpa L.). Pol. J. Food Nutr. Sci. 2017, 67, 67–74. [Google Scholar] [CrossRef]
- Pavlović, A.N.; Brcanović, J.M.; Veljković, J.N.; Mitić, S.S.; Tošić, S.B.; Kaličanin, B.M.; Kostić, D.A.; Dordević, M.S.; Velimirović, D.S. Characterization of commercially available products of aronia according to their metal content. Fruits 2015, 70, 385–393. [Google Scholar] [CrossRef]
- Teleszko, M.; Wojdyło, A. Comparison of phenolic compounds and antioxidant potential between selected edible fruits and their leaves. J. Funct. Foods 2015, 14, 736–746. [Google Scholar] [CrossRef]
- Thi, N.D.; Hwang, E.S. Bioactive compound contents and antioxidant activity in aronia (Aronia melanocarpa) leaves collected at different growth stages. Prev. Nutr. Food Sci. 2014, 19, 204–212. [Google Scholar] [CrossRef]
- Bahtinur, K.; Neradová, E.; Čížková, H.; Voldřich, M.; Rajchl, A.; Capanoglu, E. Investigating the antioxidant potential of chokeberry (Aronia melanocarpa) products. J. Food Nutr. Res. 2013, 52, 219–229. [Google Scholar]
- Petrov Ivanković, A.; Ćorović, M.; Milivojević, A.; Simović, M.; Banjanac, K.; Veljković, M.; Bezbradica, D. Berries pomace valorization: From waste to potent antioxidants and emerging skin prebiotics. Int. J. Fruit Sci. 2024, 24, 85–101. [Google Scholar] [CrossRef]
- Jurevičiūtė, I.; Keršienė, M.; Bašinskienė, L.; Leskauskaitė, D.; Jasutienė, I. Characterization of berry pomace powders as dietary fiber-rich food ingredients with functional properties. Foods 2022, 11, 716. [Google Scholar] [CrossRef] [PubMed]
- Shin, G.H.; Kim, J.T.; Park, H.J. Recent developments in nanoformulations of lipophilic functional foods. Trends Food Sci. Technol. 2015, 46, 144–157. [Google Scholar] [CrossRef]
- Hofius, D.; Sonnewald, U. Vitamin E biosynthesis: Biochemistry meets cell biology. Trends Plant Sci. 2003, 8, 6–8. [Google Scholar] [CrossRef] [PubMed]
- Struck, S.; Plaza, M.; Turner, C.; Rohm, H. Berry pomace–a review of processing and chemical analysis of its polyphenols. Int. J. Food Sci. Technol. 2016, 51, 1305–1318. [Google Scholar] [CrossRef]
- Vlaicu, P.A.; Panaite, T.D.; Turcu, R.P. Enriching laying hens eggs by feeding diets with different fatty acid composition and antioxidants. Sci. Rep. 2021, 11, 20707. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Gulcin, İ.; Alwasel, S.H. Metal ions, metal chelators and metal chelating assay as antioxidant method. Processes 2022, 10, 132. [Google Scholar] [CrossRef]
- Gralec, I.W.M. Aronia Melanocarpa berries: Phenolics composition and antioxidant properties changes during fruit development and ripening. Emir. J. Food Agric. 2019, 31, 214–221. [Google Scholar]
- Sobhy, R.; Öz, F.; Lorenzo, J.M.; Bakry, A.M.; Mohamed, A. Bioactive components and health promoting effect of berry by-products. In Berry Bioactive Compound By-Products; Academic Press: Cambridge, MA, USA, 2023; pp. 73–95. [Google Scholar]
- Pachołek, B.; Krawczyk, K.; Żak, E. Potential use of dried fruit pomaces to create sensory properties and antioxidant activity of fruit teas. Towaroznawcze Problemy Jakości. Pol. J. Commod. Sci. 2014, 3, 77–84. [Google Scholar]
- Stromsnes, K.; Lagzdina, R.; Olaso-Gonzalez, G.; Gimeno-Mallench, L.; Gambini, J. Pharmacological Properties of Polyphenols: Bioavailability, Mechanisms of Action, and Biological Effects in In Vitro Studies, Animal Models, and Humans. Biomedicines 2021, 9, 1074. [Google Scholar] [CrossRef]
- Chait, Y.A.; Gunenc, A.; Bendali, F.; Hosseinian, F. Simulated gastrointestinal digestion and in vitro colonic fermentation of carob polyphenols: Bioaccessibility and bioactivity. LWT 2020, 117, 108623. [Google Scholar] [CrossRef]
- de Araújo, F.F.; de Paulo Farias, D.; Neri-Numa, I.A.; Dias-Audibert, F.L.; Delafiori, J.; de Souza, F.G.; Pastore, G.M. Gastrointestinal bioaccessibility and bioactivity of phenolic compounds from araçá-boi fruit. LWT 2021, 135, 110230. [Google Scholar] [CrossRef]
- Quatrin, A.; Rampelotto, C.; Pauletto, R.; Maurer, L.H.; Nichelle, S.M.; Klein, B.; Emanuelli, T. Bioaccessibility and catabolism of phenolic compounds from jaboticaba (Myrciaria trunciflora) fruit peel during in vitro gastrointestinal digestion and colonic fermentation. J. Funct. Foods 2020, 65, 103714. [Google Scholar] [CrossRef]
- de Paulo Farias, D.; de Araújo, F.F.; Neri-Numa, I.A.; Dias-Audibert, F.L.; Delafiori, J.; Catharino, R.R.; Pastore, G.M. Effect of in vitro digestion on the bioaccessibility and bioactivity of phenolic compounds in fractions of Eugenia pyriformis fruit. Food Res. Int. 2021, 50, 110767. [Google Scholar] [CrossRef]
- Mihaylova, D.; Desseva, I.; Stoyanova, M.; Petkova, N.; Terzyiska, M.; Lante, A. Impact of in vitro gastrointestinal digestion on the bioaccessibility of phytochemical compounds from eight fruit juices. Molecules 2021, 26, 1187. [Google Scholar] [CrossRef]
- Van de Velde, F.; Pirovani, M.E.; Drago, S.R. Bioaccessibility analysis of anthocyanins and ellagitannins from blackberry at simulated gastrointestinal and colonic levels. J. Food Compos. Anal. 2018, 72, 22–31. [Google Scholar] [CrossRef]
- Bešlo, D.; Golubić, N.; Rastija, V.; Agić, D.; Karnaš, M.; Šubarić, D.; Lučić, B. Antioxidant Activity, Metabolism, and Bioavailability of Polyphenols in the Diet of Animals. Antioxidants 2023, 12, 1141. [Google Scholar] [CrossRef]
- Odriozola-Serrano, I.; Nogueira, D.P.; Esparza, I.; Vaz, A.A.; Jiménez-Moreno, N.; Martín-Belloso, O.; Ancín-Azpilicueta, C. Stability and bioaccessibility of phenolic compounds in rosehip extracts during in vitro digestion. Antioxidants 2023, 12, 1035. [Google Scholar] [CrossRef]
- Lee, J.E.; Kim, G.S.; Park, S.; Kim, Y.H.; Kim, M.B.; Lee, W.S.; Jeong, S.W.; Lee, S.J.; Jin, J.S.; Shin, S.C.; et al. Determination of chokeberry (Aronia melanocarpa) polyphenol components using liquid chromatography–tandem mass spectrometry: Overall contribution to antioxidant activity. Food Chem. 2014, 146, 1–5. [Google Scholar] [CrossRef]
- Clifford, M.N.; Jaganath, I.B.; Ludwig, I.A.; Crozier, A. Chlorogenic acids and the acyl-quinic acids: Discovery, biosynthesis, bioavailability and bioactivity. Nat. Prod. Rep. 2017, 34, 1391–1421. [Google Scholar] [CrossRef]
- Naranjo Pinta, M.; Montoliu, I.; Aura, A.; Seppänen-Laakso, T.; Barron, D.; Moco, S. In vitro gut metabolism of [U-13C]-Quinic acid, the other hydrolysis product of chlorogenic acid. Mol. Nutr. Food Res. 2018, 62, 1800396. [Google Scholar] [CrossRef]
- Kasprzak-Drozd, K.; Oniszczuk, T.; Soja, J.; Gancarz, M.; Wojtunik-Kulesza, K.; Markut-Miotła, E.; Oniszczuk, A. The Efficacy of Black Chokeberry Fruits against Cardiovascular Diseases. Int. J. Mol. Sci. 2021, 22, 6541. [Google Scholar] [CrossRef]
- Domínguez-Avila, J.A.; Wall-Medrano, A.; Velderrain-Rodríguez, G.R.; Chen, C.Y.O.; Salazar-López, N.J.; Robles-Sánchez, M.; GonzálezAguilar, G.A. Gastrointestinal interactions, absorption, splanchnic metabolism and pharmacokinetics of orally ingested phenolic compounds. Food Funct. 2017, 8, 15–38. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.; Oniszczuk, A.; Oniszczuk, T.; Combrzyński, M.; Nowakowska, D.; Matwijczuk, A. Influence of In Vitro Digestion on Composition, Bioaccessibility and Antioxidant Activity of Food Polyphenols—A Non-Systematic Review. Nutrients 2020, 12, 1401. [Google Scholar] [CrossRef]
- Salazar-López, N.J.; González-Aguilar, G.A.; Rouzaud-Sández, O.; Robles-Sánchez, M. Bioaccessibility of hydroxycinnamic acids and antioxidant capacity from sorghum bran thermally processed during simulated in vitro gastrointestinal digestion. J. Food Sci. Technol. 2018, 55, 2021–2030. [Google Scholar] [CrossRef]
- Bobrich, A.; Fanning, K.J.; Rychlik, M.; Russell, D.; Topp, B.; Netzel, M. Phytochemicals in Japanese plums: Impact of maturity and bioaccessibility. Food Res. Int. 2014, 65, 20–26. [Google Scholar] [CrossRef]
- Coman, V.; Vodnar, D.C. Hydroxycinnamic acids and human health: Recent advances. J. Sci. Food Agric. 2020, 100, 483–499. [Google Scholar] [CrossRef]
- Taofiq, O.; González-Paramás, A.M.; Barreiro, M.F.; Ferreira, I.C. Hydroxycinnamic acids and their derivatives: Cosmeceutical significance, challenges and future perspectives, a Review. Molecules 2017, 22, 281. [Google Scholar] [CrossRef]
- Pavan, V.; Sancho, R.A.S.; Pastore, G.M. The effect of in vitro digestion on the antioxidant activity of fruit extracts (Carica papaya, Artocarpus heterophillus and Annona marcgravii). LWT-Food Sci. Technol. 2014, 59, 1247–1251. [Google Scholar] [CrossRef]
Time (min) | Solvent A (%) | Solvent B (%) | Solvent C (%) |
---|---|---|---|
0–15 | 90 | 5 | 5 |
15–20 | 81 | 4 | 15 |
20–25 | 72 | 3 | 25 |
25–40 | 60 | 2 | 38 |
40–50 | 90 | 5 | 5 |
Analyzed Parameters | Fruit | Leaves | Pomace | SEM | p-Value |
---|---|---|---|---|---|
Proximate composition (%) | |||||
Dry matter | 91.76 b | 90.92 c | 94.9 a | 0.004 | <0.0001 |
Crude protein | 1.53 c | 10.11 a | 5.25 b | 0.003 | <0.0001 |
Crude fat | 4.17 b | 6.75 a | 2.51 c | 0.001 | <0.0001 |
Crude fiber | 8.29 c | 13.33 b | 14.3 a | 0.004 | <0.0001 |
Ash | 2.01 c | 7.82 a | 2.41 b | 0.004 | <0.0001 |
Carbohydrates | 75.78 a | 52.93 c | 70.44 b | 0.002 | <0.0001 |
Mineral composition (mg/kg) | |||||
Copper | nd | nd | nd | - | - |
Iron | 72.93 b | 94.29 a | 94.27 a | 2.499 | 0.001 |
Manganese | 4.54 c | 205.48 a | 15.3 b | 1.834 | <0.0001 |
Zinc | 6.67 c | 20.13 a | 10.54 b | 0.356 | <0.0001 |
Nutrient * | Fruit | Leaves | Pomace | SEM | p-Value |
---|---|---|---|---|---|
Polyphenols | |||||
Total polyphenol content, mg GAE/g | 27.99 b | 61.06 a | 22.94 c | 0.724 | <0.0001 |
Total flavonoid content, mg QE/g | 5.23 b | 8.47 a | 1.89 c | 0.262 | <0.0001 |
Xanthophylls | |||||
Lutein and zeaxanthin, mg/kg | 70.34 c | 2245.99 a | 339.22 b | 0.005 | <0.0001 |
Astaxanthin, mg/kg | 2.41 b | 100.29 a | nd | 0.013 | <0.0001 |
Canthaxanthin, mg/kg | 2.22 c | 6.96 b | 11.99 a | 0.092 | <0.0001 |
Total xanthophylls | 75.45 c | 2353.24 a | 351.21 b | 0.004 | <0.0001 |
Tocopherols | |||||
α-tocopherol, mg/kg | 33.46 c | 1154.10 a | 114.37 b | 0.383 | <0.0001 |
γ-tocopherol, mg/kg | 5.01 c | 18.10 b | 21.19 a | 0.015 | <0.0001 |
δ-tocopherol, mg/kg | 2.13 b | nd | 21.63 a | 0.028 | <0.0001 |
Total tocopherols, mg/kg | 38.48 c | 1172.20 a | 157.19 b | 0.359 | <0.0001 |
Fatty Acids (%) | Fruit | Leaves | Pomace | SEM | p-Value |
---|---|---|---|---|---|
Σ Saturated fatty acids | |||||
C10:0 | 0.128 c | 0.634 a | 0.312 b | 0.004 | <0.0001 |
C12:0 | nd | 1.197 a | 0.086 b | 0.004 | <0.0001 |
C14:0 | 0.238 c | 1.567 a | 0.356 b | 0.002 | <0.0001 |
C15:0 | nd | nd | 0.236 | - | - |
C16:0 | 8.574 c | 22.366 a | 8.945 b | 0.042 | <0.0001 |
C17:0 | nd | 0.533 a | 0.165 b | 0.020 | <0.0001 |
C18:0 | 1.723 c | 3.904 a | 1.994 b | 0.046 | <0.0001 |
Σ Monounsaturated fatty acids | |||||
C15:1 | 0.117 b | 0.854 a | 0.058 c | 0.010 | <0.0001 |
C16:1 | 0.240 b | 1.444 a | 0.281 b | 0.015 | <0.0001 |
C17:1 | nd | nd | 0.168 | - | - |
C18:1 | 22.844 a | 6.883 c | 19.709 b | 0.003 | <0.0001 |
Σ n-6 | |||||
C18:2n6 | 64.090 a | 10.145 c | 62.591 b | 0.104 | <0.0001 |
C20:2n6 | nd | nd | 0.268 | - | - |
C20:3n6 | nd | nd | 0.262 | - | - |
C20:4n6 | nd | nd | 0.260 | - | - |
C22:2n6 | nd | 4.885 a | 0.310 b | 0.001 | <0.0001 |
C22:4n6 | nd | 15.464 | nd | - | - |
Σ n-3 | |||||
C18:3n3 | 1.408 c | 29.284 a | 2.434 b | 0.014 | <0.0001 |
C18:4n3 | 0.637 b | 0.715 ab | 0.766 a | 0.216 | 0.009 |
C20:3n3 | nd | nd | 0.252 | - | - |
Other fatty acids | nd | 0.147 b | 0.548 a | 0.018 | <0.0001 |
Nutritional quality indices of the lipids | |||||
Σ SFA | 10.780 c | 30.205 a | 12.097 b | 0.002 | <0.0001 |
Σ MUFA | 23.085 a | 9.165 c | 20.217 b | 0.003 | <0.0001 |
Σ PUFA | 66.135 b | 60.494 c | 67.140 a | 0.009 | <0.0001 |
Σ UFA | 89.220 a | 69.654 c | 87.357 b | 0.001 | <0.0001 |
SFA/UFA | 0.121 c | 0.427 a | 0.139 b | 0.011 | <0.0001 |
PUFA/MUFA | 2.865 c | 6.597 a | 3.321 b | 0.006 | <0.0001 |
n-3 | 2.045 c | 29.994 a | 3.450 b | 0.032 | <0.0001 |
n-6 | 64.090 a | 30.505 c | 63.690 b | 0.071 | <0.0001 |
n-6/n-3 | 31.359 a | 1.024 c | 18.467 b | 0.343 | <0.0001 |
Compound | Fruits | Leaves | Pomace | p-Values | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Undigested | OP | GP | IP | Undigested | OP | GP | IP | Undigested | OP | GP | IP | Type of Sample | Digestive Phase | Type * Digestive Phase | |
Phenolic acids | |||||||||||||||
Hydroxybenzoic acids | |||||||||||||||
Syringic acid | 0.039 a | 0.012 d | 0.012 d | 0.018 c | 0.022 b | 0.006 f | 0.012 d | 0.008 e | nd | nd | nd | nd | <0.0001 | <0.0001 | <0.0001 |
Gallic acid | 0.032 f | 0.006 h | 0.019 g | 0.090 d | 0.212 b | 0.032 f | 0.105 c | 0.712 a | 0.062 e | 0.016 g | 0.006 h | 0.102 c | <0.0001 | <0.0001 | <0.0001 |
3- Hydroxybenzoic acid | 0.717 a | 0.191 e | 0.185 ef | 0.447 c | 0.403 d | 0.043 h | 0.165 ef | 0.054 h | 0.541 b | 0.098 g | 0.030 h | 0.159 f | <0.0001 | <0.0001 | <0.0001 |
Vanillic acid | 0.224 c | 0.056 h | 0.049 h | 0.126 e | 0.668 a | 0.096 f | 0.300 b | 0.102 f | 0.159 d | 0.040 i | 0.011 j | 0.075 g | <0.0001 | <0.0001 | <0.0001 |
Ellagic acid | 0.129 a | 0.034 e | 0.026 f | 0.089 b | nd | nd | nd | nd | 0.085 c | 0.022 g | 0.006 h | 0.048 d | <0.0001 | <0.0001 | <0.0001 |
Protocatechuic acid | nd | nd | nd | nd | 0.089 b | 0.028 d | 0.142 a | 0.042 c | nd | nd | nd | nd | - | <0.0001 | - |
Hydroxycinnamic acids | |||||||||||||||
p-Coumaric acid | 0.108 c | 0.017 f | 0.011 g | 0.041 e | 0.973 a | 0.021 f | 0.324 b | 0.064 d | 0.019 f | 0.001 h | nd | 0.003 h | <0.0001 | <0.0001 | <0.0001 |
Caffeic acid | 0.036 g | 0.023 h | 0.023 h | 0.093 d | 0.222 a | 0.037 fg | 0.120 c | 0.144 b | 0.041 f | 0.014 i | 0.003 j | 0.079 e | <0.0001 | <0.0001 | <0.0001 |
Ferulic acid | 0.161 c | 0.035 g | 0.031 g | 0.094 e | 0.694 a | 0.076 f | 0.351 b | 0.100 e | 0.108 d | 0.030 g | 0.005 h | 0.078 f | <0.0001 | <0.0001 | <0.0001 |
Chlorogenic acid | 2.713 c | 0.353 h | 0.278 i | 0.783 f | 17.954 a | 0.767 f | 6.657 b | 1.581 d | 1.415 e | 0.329 h | 0.071 j | 0.469 g | <0.0001 | <0.0001 | <0.0001 |
Cinnamic acid | 0.006 b | 0.001 h | nd | 0.004 c | 0.004 c | 0.001 g | 0.004 d | 0.003 e | 0.009 a | 0.001 i | nd | 0.003 f | <0.0001 | <0.0001 | <0.0001 |
Methoxycinnamic acid | 0.329 b | 0.054 f | 0.030 g | 0.158 d | 0.835 a | 0.031 g | 0.310 c | 0.058 f | 0.144 e | 0.019 h | 0.003 i | 0.059 f | <0.0001 | <0.0001 | <0.0001 |
Flavonoids | |||||||||||||||
Flavanols | |||||||||||||||
Catechin | 0.025 b | nd | 0.065 f | nd | 0.088 a | 0.006 d | 0.018 c | 0.003 e | - | nd | nd | nd | <0.0001 | <0.0001 | <0.0001 |
Epicatechin | 0.546 c | 0.118 i | 0.063 k | 0.266 g | 4.250 a | 0.288 f | 1.789 b | 0.426 d | 0.408 e | 0.090 j | 0.020 l | 0.164 h | <0.0001 | <0.0001 | <0.0001 |
Epigallocatechin | 0.141 b | 0.021 g | 0.032 ef | 0.046 d | 0.221 a | 0.032 e | 0.115 c | 0.030 f | nd | nd | nd | nd | <0.0001 | <0.0001 | <0.0001 |
Flavonols | |||||||||||||||
Quercetin | 0.007 a | 0.001 de | 0.002 d | 0.007 a | 0.004 c | 0.001 f | 0.002 e | 0.001 f | 0.006 b | 0.001 f | nd | 0.004 c | <0.0001 | <0.0001 | <0.0001 |
Rutin | 0.153 a | 0.022 d | 0.015 f | 0.076 b | 0.048 c | 0.019 de | 0.008 g | 0.016 ef | nd | nd | nd | nd | <0.0001 | <0.0001 | <0.0001 |
Stilbene | |||||||||||||||
Resveratrol | 0.006 c | 0.001 i | 0.001 h | 0.002 f | 0.006 b | 0.001 i | 0.004 e | 0.001 hi | 0.008 a | 0.002 g | nd | 0.005 d | <0.0001 | <0.0001 | <0.0001 |
Compound | Fruit | Leaves | Pomace | p-Values | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bioaccessibility Index (%) | Type of Sample | Digestive Phase | Type * Digestive Phase | |||||||||
OP | GP | IP | OP | GP | IP | OP | GP | IP | ||||
Phenolic acids | ||||||||||||
Hydroxybenzoic acids | ||||||||||||
Syringic acid | 29.38 d | 29.69 d | 44.61 b | 27.08 d | 54.29 a | 35.14 c | - | - | - | <0.0001 | <0.0001 | <0.0001 |
Gallic acid | 17.69 fg | 58.16 d | 290.76 b | 15.34 gh | 49.54 e | 336.32 a | 24.59 f | 10.10 h | 158.61 c | <0.0001 | <0.0001 | <0.0001 |
3- Hydroxybenzoic acid | 29.19 c | 24.81 c | 66.40 a | 10.64 e | 40.86 b | 13.37 de | 18.96 d | 6.51 f | 27.47 c | <0.0001 | <0.0001 | <0.0001 |
Vanillic acid | 27.42 c | 21.52 c | 58.28 a | 14.33 d | 44.96 b | 15.26 d | 25.36 c | 7.48 e | 43.71 b | <0.0001 | <0.0001 | <0.0001 |
Ellagic acid | 26.09 c | 20.38 d | 69.28 a | - | - | - | 25.85 c | 6.92 e | 56.69 b | <0.0001 | <0.0001 | <0.0001 |
Protocatechuic acid | - | - | - | 31.68 c | 160.80 a | 46.92 b | - | - | - | - | <0.0001 | - |
Hydroxycinnamic acids | ||||||||||||
p-Coumaric acid | 18.86 c | 9.53 e | 42.07 a | 2.11 gh | 33.28 b | 6.62 ef | 4.83 fg | 1.22 h | 13.97 d | <0.0001 | <0.0001 | <0.0001 |
Caffeic acid | 66.26 c | 58.85 c | 268.27 a | 16.57 e | 54.11 c | 65.06 c | 32.45 d | 8.77 e | 188.49 b | <0.0001 | <0.0001 | <0.0001 |
Ferulic acid | 23.71 de | 18.86 ef | 60.33 b | 10.87 g | 50.57 c | 14.41 fg | 29.69 d | 3.59 h | 66.80 a | <0.0001 | <0.0001 | <0.0001 |
Chlorogenic acid | 13.80 e | 10.13 f | 28.84 c | 4.27 h | 37.08 a | 8.81 g | 23.30 d | 5.50 h | 31.90 b | <0.0001 | <0.0001 | <0.0001 |
Cinnamic acid | 20.99 f | 9.20 g | 74.43 b | 33.49 d | 90.92 a | 69.83 c | 7.39 g | 1.20 h | 27.39 e | <0.0001 | <0.0001 | <0.0001 |
Methoxycinnamic acid | 18.19 d | 8.69 f | 49.87 a | 3.67 g | 37.11 c | 6.94 f | 13.26 e | 2.45 g | 38.15 b | <0.0001 | <0.0001 | <0.0001 |
Flavonoids | ||||||||||||
Flavanols | ||||||||||||
Catechin | - | - | - | 7.32 b | 20.63 a | 2.96 c | - | - | - | - | 0.039 | - |
Epicatechin | 23.13 c | 11.33 d | 48.34 a | 6.77 e | 42.09 b | 10.03 d | 22.26 c | 5.34 e | 37.02 b | <0.0001 | <0.0001 | <0.0001 |
Epigallocatechin | 14.76 d | 21.21 c | 32.63 b | 14.63 d | 52.18 a | 13.39 d | - | - | - | <0.0001 | <0.0001 | <0.0001 |
Flavonols | ||||||||||||
Quercetin | 26.80 d | 28.29 d | 98.72 a | 19.21 e | 35.63 c | 19.69 e | 16.25 e | 4.89 f | 64.69 b | <0.0001 | <0.0001 | <0.0001 |
Rutin | 15.08 d | 9.49 e | 49.61 a | 39.19 b | 16.50 d | 33.96 c | - | - | - | <0.0001 | <0.0001 | <0.0001 |
Stilbene | ||||||||||||
Resveratrol | 20.89 c | 14.93 e | 45.16 b | 12.63 e | 60.05 a | 15.51 de | 20.91 cd | 3.97 f | 55.23 a | <0.0001 | <0.0001 | 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saracila, M.; Untea, A.E.; Oancea, A.G.; Varzaru, I.; Vlaicu, P.A. Comparative Analysis of Black Chokeberry (Aronia melanocarpa L.) Fruit, Leaves, and Pomace for Their Phytochemical Composition, Antioxidant Potential, and Polyphenol Bioaccessibility. Foods 2024, 13, 1856. https://doi.org/10.3390/foods13121856
Saracila M, Untea AE, Oancea AG, Varzaru I, Vlaicu PA. Comparative Analysis of Black Chokeberry (Aronia melanocarpa L.) Fruit, Leaves, and Pomace for Their Phytochemical Composition, Antioxidant Potential, and Polyphenol Bioaccessibility. Foods. 2024; 13(12):1856. https://doi.org/10.3390/foods13121856
Chicago/Turabian StyleSaracila, Mihaela, Arabela Elena Untea, Alexandra Gabriela Oancea, Iulia Varzaru, and Petru Alexandru Vlaicu. 2024. "Comparative Analysis of Black Chokeberry (Aronia melanocarpa L.) Fruit, Leaves, and Pomace for Their Phytochemical Composition, Antioxidant Potential, and Polyphenol Bioaccessibility" Foods 13, no. 12: 1856. https://doi.org/10.3390/foods13121856
APA StyleSaracila, M., Untea, A. E., Oancea, A. G., Varzaru, I., & Vlaicu, P. A. (2024). Comparative Analysis of Black Chokeberry (Aronia melanocarpa L.) Fruit, Leaves, and Pomace for Their Phytochemical Composition, Antioxidant Potential, and Polyphenol Bioaccessibility. Foods, 13(12), 1856. https://doi.org/10.3390/foods13121856