Use of Biomolecular Tools to Control the Labels of Ethnic Food Coming from Eastern Europe
Abstract
:1. Introduction
2. Methods
2.1. Samples
2.2. Label Inspection
2.3. DNA Extraction and Biomolecular Analyses
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kwon, D.Y. What is ethnic food? J. Ethn. Foods 2015, 2, 1. [Google Scholar] [CrossRef]
- Fusco, V.; Besten, H.M.W.D.; Logrieco, A.F.; Rodriguez, F.P.; Skandamis, P.N.; Stessl, B.; Teixeira, P. Food safety aspects on ethnic foods: Toxicological and microbial risks. Curr. Opin. Food Sci. 2015, 6, 24–32. [Google Scholar] [CrossRef]
- Italian National Institute of Statistics. Report on Internal Mobility and International Migrations. 2024. Available online: https://www.istat.it/en/archivio/immigrants (accessed on 10 March 2024).
- D’Amico, P.; Armani, A.; Castigliego, L.; Sheng, G.; Gianfaldoni, D.; Guidi, A. Seafood traceability issues in Chinese food business activities in the light of the european provisions. Food Control 2014, 35, 7–13. [Google Scholar] [CrossRef]
- European Commission Regulation (EU) No 1169/2011 of the European Parliament and of the council of 25 October 2011 on the provision of food information to consumers, amending regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the council, and repealing commission directive 87/250/EEC, council directive 90/496/EEC, commission directive 1999/10/EC, directive 2000/13/EC of the European Parliament and of the council, commission Directives 2002/67/EC and 2008/5/EC and commission regulation (EC) No 608/2004. Off. J. Eur. Union L 2011, 304, 18–63.
- Giusti, A.; Malloggi, C.; Tinacci, L.; Nucera, D.; Armani, A. Mislabeling in seafood products sold on the Italian market: A systematic review and meta-analysis. Food Control 2023, 145, e109395. [Google Scholar] [CrossRef]
- European Commission’s Food Fraud Network. The EU Food Fraud Network and the Administrative Assistance and Cooperation System; 2019 Annual Report; European Commission: Luxembourg, Brussels, 2020; Available online: https://ec.europa.eu/food/sites/food/files/safety/docs/ff_ffn_annual-report_2019.pdf (accessed on 1 March 2024). [CrossRef]
- Alert and Cooperation Network. Annual Report Alert and Cooperation Network. 2022. Available online: https://food.ec.europa.eu/safety/acn/reports-and-publications_en (accessed on 30 June 2023).
- Fujisaki, K.K.; Nava, O.; Hellberg, R.S. Comparison of real-time PCR and ELISA-based methods for the detection of beef and pork in processed meat products. Food Control 2017, 71, 346–352. [Google Scholar] [CrossRef]
- Xing, R.R.; Hu, R.R.; Han, J.X.; Deng, T.T.; Chen, Y. DNA barcoding and mini-barcoding in authenticating processed animal-derived food: A case study involving the Chinese market. Food Chem. 2020, 309, 125653. [Google Scholar] [CrossRef] [PubMed]
- Dobrovolny, S.; Blaschitz, M.; Weinmaier, T.; Pechatschek, J.; Cichna-Markl, M.; Indra, A.; Hufnagl, P.; Hochegger, R. Development of a DNA metabarcoding method for the identification of fifteen mammalian and six poultry species in food. Food Chem. 2019, 272, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Raja Nhari, R.M.H.; Hanish, I.; Khairil Mokhtar, N.F.; Hamid, M.; El Sheikha, A.F. Authentication approach using enzyme-linked immunosorbent assay for detection of porcine substances. Qual. Assur. Saf. Crops Foods 2019, 11, 449–457. [Google Scholar] [CrossRef]
- Bottero, M.T.; Dalmasso, A. Animal species identification in food products: Evolution of biomolecular methods. Vet. J. 2011, 190, 34–38. [Google Scholar] [CrossRef]
- Böhme, K.; Calo-Mata, P.; Barros-Velázquez, J.; Ortea, I. Review of Recent DNA-Based Methods for Main Food-Authentication Topics. J. Agric. Food Chem. 2019, 67, 3854–3864. [Google Scholar] [CrossRef]
- Bojolly, D.; Doyen, P.; Le Fur, B.; Christaki, U.; Verrez-Bagnis, V.; Grard, T. Development of a qPCR method for the identification and quantification of two closely related tuna species, bigeye tuna (Thunnus obesus) and yellowfin tuna (Thunnus albacares), in canned tuna. J. Agric. Food Chem. 2017, 65, 913–920. [Google Scholar] [CrossRef]
- Thanakiatkrai, P.; Dechnakarin, J.; Ngasaman, R.; Kitpipit, T. Direct pentaplex PCR assay: An adjunct panel for meat species identification in Asian food products. Food Chem. 2019, 271, 767–772. [Google Scholar] [CrossRef]
- Minoudi, S.; Karaiskou, N.; Avgeris, M.; Gkagkavouzis, K.; Tarantili, P.; Triantafyllidou, D.; Palilis, L.; Avramopoulou, V.; Tsikliras, A.; Barmperis, K. Seafood mislabeling in Greek market using DNA barcoding. Food Control 2020, 113, e107213. [Google Scholar] [CrossRef]
- Mata, W.; Chanmalee, T.; Punyasuk, N.; Thitamadee, S. Simple PCR-RFLP detection method for genus-and species-authentication of four types of tuna used in canned tuna industry. Food Control 2020, 108, e106842. [Google Scholar] [CrossRef]
- Kim, M.J.; Kim, H.Y. A fast multiplex real-time PCR assay for simultaneous detection of pork, chicken, and beef in commercial processed meat products. LWT 2019, 114, e108390. [Google Scholar] [CrossRef]
- Shi, R.; Xiong, X.; Huang, M.; Xu, W.; Li, Y.; Cao, M.; Xiong, X. High resolution melting (HRM) analysis of a 12S rRNA mini barcode as a novel approach for codfish species authentication in processed fish products. Eur. Food Res. Technol. 2020, 246, 891–899. [Google Scholar] [CrossRef]
- Cichna-Markl, M.; Mafra, I. Techniques for Food Authentication: Trends and Emerging Approaches. Foods 2023, 12, 1134. [Google Scholar] [CrossRef] [PubMed]
- Dalmasso, A.; Fontanella, E.; Piatti, P.; Civera, T.; Rosati, S.; Bottero, M.T. A multiplex PCR assay for the identification of animal species in feedstuffs. Mol. Cell. Probes 2004, 18, 81–87. [Google Scholar] [CrossRef]
- Bottero, M.T.; Civera, T.; Nucera, D.; Rosati, S.; Sacchi, P.; Turi, R.M. A multiplex polymerase chain reaction for the identification of cows’, goats’ and sheep’s milk in dairy products. Int. Dairy J. 2003, 13, 277–282. [Google Scholar] [CrossRef]
- Martín, I.; García, T.; Fajardo, V.; López-Calleja, I.; Rojas, M.; Pavón, M.A.; Hernández, P.E.; González, I.; Martín, R. Detection of chicken, turkey, duck, and goose tissues in feedstuffs using species-specific polymerase chain reaction. J. Anim. Sci. 2007, 85, 452–458. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Amaral, J.S.; Santos, C.G.; Melo, V.S.; Costa, J.; Oliveira, M.B.P.; Mafra, I. Identification of duck, partridge, pheasant, quail, chicken and turkey meats by species-specific PCR assays to assess the authenticity of traditional game meat Alheira sausages. Food Control 2015, 47, 190–195. [Google Scholar] [CrossRef]
- Guardone, L.; Tinacci, L.; Costanzo, F.; Azzarelli, D.; D’Amico, P.; Tasselli, G.; Magni, A.; Guidi, A.; Nucera, D.; Armani, A. DNA barcoding as a tool for detecting mislabeling of fishery products imported from third countries: An official survey conducted at the Border Inspection Post of Livorno-Pisa (Italy). Food Control 2017, 80, 204–216. [Google Scholar] [CrossRef]
- Visciano, P.; Schirone, M. Food frauds: Global incidents and misleading situations. Trends Food Sci. Technol. 2021, 114, 424–442. [Google Scholar] [CrossRef]
- Commission Implementing Regulation (EU) 2023/594 of 16 March 2023 laying down special disease control measures for African swine fever and repealing Implementing Regulation (EU) 2021/605. Off. J. Eur. Union L 2023, 79, 65.
- Lubis, H.; Salihah, N.T.; Hossain, M.M.; Ahmed, M.U. Development of fast and sensitive real-time qPCR assay based on a novel probe for detection of porcine DNA in food sample. LWT 2017, 84, 686–692. [Google Scholar] [CrossRef]
- National Veterinary Sanitary and Food Safety Authority. Press Release: Update on the Evolution of African Swine Fever. 2020. Available online: http://www.ansvsa.ro/blog/actualizarea-situatiei-privind-evolutia-pestei-porcine-africane-65/ (accessed on 7 July 2020).
- European Food Safety Authority. African Swine Fever Decreases in Pigs and Wild Boar in the EU during 2022. 2023. Available online: https://www.efsa.europa.eu/en/news/african-swine-fever-decreases-pigs-and-wild-boar-eu-during-2022 (accessed on 22 May 2023).
- Bottero, M.T.; Dalmasso, A.; Nucera, D.; Turi, R.M.; Rosati, S.; Squadrone, S.; Goria, M.; Civera, T. Development of a PCR assay for the detection of animal tissues in ruminant feeds. J. Food Prot. 2003, 66, 2307–2312. [Google Scholar] [CrossRef]
- Nau, F.; Désert, C.; Cochet, M.F.; Pasco, M.; Jan, S.; Baron, F.; Lagarrigue, S.; Guérin-Dubiard, C.; Université européenne de Bretagne, F. Detection of turkey, duck, and guinea fowl egg in hen egg products by species-specific PCR. Food Anal. Methods 2009, 2, 231–238. [Google Scholar] [CrossRef]
- Debenedetti, F.; Dalmasso, A.; Bottero, M.T.; Gilli, M.; Gili, S.; Tepedino, V.; Civera, T. Application of DNA barcoding for controlling of the species from Octopus genus. Ital. J. Food Saf. 2014, 3, e4521. [Google Scholar] [CrossRef]
ID | Sample | Ingredients of Animal Origin Reported on Label |
---|---|---|
1 | Chicken pâté | Chicken liver, chicken meat |
2 | Chicken meat | Chicken meat |
3 | Chicken pâté | Chicken meat, chicken liver, chicken skin |
4 | Turkey pâté | Turkey skin, turkey liver, turkey and chicken mechanically separated meat |
5 | Duck pâté | Chicken mechanically separated meat, chicken liver, milk serum, egg albumen, duck meat |
6 | Duck pâté | Duck liver and meat |
7 | Canned meat | Pork, beef, and turkey meat |
8 | Pork pâté | Pork liver, bacon, rind |
9 | Pork pâté | Pork liver, lard, rind |
10 | Pork liver pâté | Pork liver, bacon, milk powder |
11 | Pork pâté | Pork liver, bacon |
12 | Pork with sauerkraut | Pork meat |
13 | Stuffed cabbage | Pork meat |
14 | Salmon fillets | Salmon |
15 | Cod liver | Cod liver |
16 | Cod liver pâté | Cod liver, cod eggs |
17 | Sprats in oil | Sprats |
18 | Sprats with tomato sauce | Sprats |
19 | Mackerel with rapeseed oil | Mackerel |
20 | Pork and chicken sausage | Turkey, pork and chicken meats |
21 | Pork and beef sausage | Pork and beef meat, bacon, rind, pork liver and heart |
22 | Stuffed pork | Pork meat, bacon |
23 | Boneless beef | Beef meat, pork rind |
24 | Pork pâté with lard | Pork liver |
25 | Chicken pâté with lard | Chicken and pork meat |
26 | Cod liver pâté | Cod liver |
27 | Salmon | Salmon, egg yolk, skimmed milk |
28 | Cheese with ham | Pork ham, milk, butter |
29 | Fresh cheese | Bovine milk |
30 | Pork liver pâté | Pork liver, bacon, rind |
31 | Chicken pâté | Chicken liver, chicken meat |
32 | Beans with pork shank | Pork shank |
33 | Sausages with beans | Pork meat, lard |
34 | Tripe | Beef tripe, crem, egg yolk |
35 | Pork liver pâté | Pork liver and lard |
36 | Beef meat | Beef and poultry meats |
37 | Pork meat | Pork meat, lard, rind and mechanically separated meat |
38 | Sheep’s cheese | Sheep’s milk |
39 | Chicken pâté | Chicken liver and meat, milk powder, cream |
40 | Cheese with ham | Bovine milk, butter, pork |
41 | Goat’s cheese | Goat’s milk |
42 | Sheep’s cheese | Sheep’s milk |
Identified Species | Primers | Gene Targets | Amplicon Lenght | References |
---|---|---|---|---|
Swine (Sus scrofa) | Sense: 5′ CTACATAAGAATATCCACCACA 3′ Antisense: 5′ ACATTGTGGGATCTTCTAGGT 3′ | 12s rRNA, tRNA val | 290 bp | Dalmasso et al. (2004) [22] |
Bovine (Bos taurus) | Sense: 5′ GTACTACTAGCAACAGCTTA 3′ Antisense: 5′GCTTGATTCTCTTGGTGTAGAG 3′ | 12s rRNA, 16s rRNA | 256 bp | Bottero et al. (2003) [23] |
Goat (Capra hircus) | Sense: 5′ CGCCCTCCAAATCAATAAG 3′ Antisense: 5′AGTGTATCAGCTGCAGTAGGGTT 3′ | 12s rRNA, 16s rRNA | 326 bp | Bottero et al. (2003) [23] |
Sheep (Ovis aries) | Sense: 5′ATATCAACCACACGAGAGGAGAC 3′ Antisense: 5′TAAACTGGAGAGTGGGAGAT 3′ | 12s rRNA, 16s rRNA | 172 bp | Bottero et al. (2003) [23] |
Chicken (Gallus gallus) | Sense: 5′ACATAGAACAAACGAAAAAGGATGTG 3′ Antisense: 5′CGTCTTAAAGTGAGCTTAGGGCG 3′ | 12s rRNA | 95 bp | Martín et al. (2007) [24] |
Turkey (Meleagris gallopavo) | Sense: 5′ CCACCTAGAGGAGCCTGTTCTRTAAT 3′ Antisense: 5′ TTGAGCTCACTATTGATCTTTCAGTTT3′ | 12s rRNA | 122 bp | Martín et al. (2007) [24] |
Duck (Anas plathyrincos) | Sense: 5′ CATAATTAATACCCTGTAAATGCC 3′ Antisense: 5′ TCCAGTATGCTTACCTTGTTACGAC 3′ | 12s rRNA | 64 bp | Martín et al. (2007) [24] |
Fish | Sense: 5′ TAAGAGGGCCGGTAAAACTC 3′ Antisense: 5′ GTGGGGTATCTAATCCCAG 3′ | 12s rRNA | 224 bp | Dalmasso et al. (2004) [22] |
ID | Ingredients of Animal Origin Reported on Label | Swine | Bovine | Poultry | Turkey | Duck | Fish |
---|---|---|---|---|---|---|---|
1 | Chicken liver, chicken meat | − | − | + | + | − | − |
3 | Chicken meat, chicken liver, chicken skin | − | − | + | + | − | − |
5 | Chicken, mechanically separated meat, chicken liver, milk serum, egg albumen, duck meat | − | − | + | − | + | − |
6 | Duck liver and meat | + | − | − | − | + | − |
8 | Pork liver, bacon, rind | + | − | − | + | − | − |
10 | Pork liver, bacon, milk powder | + | - | − | − | − | − |
13 | Pork meat | − | + | − | − | − | − |
27 | Salmon, egg yolk, skimmed milk | − | − | − | − | − | + |
31 | Chicken liver, chicken meat | + | − | + | − | − | − |
33 | Pork meat, lard | + | + | - | − | − | − |
34 | Beef tripe, cream, egg yolk | − | + | - | − | − | − |
36 | Beef and poultry meats | + | + | + | − | − | − |
37 | Pork meat, lard, rind, and mechanically separated meat | + | − | + | − | − | − |
39 | Chicken liver and meat, milk powder, cream | + | − | + | − | − | − |
ID | Ingredients of Animal Origin Reported on Label | Preliminary PCR for Fish | Sequencing results | ||
---|---|---|---|---|---|
Query Coverage | Identities | Identified Species | |||
14 | Salmon (Salmo salar) | + | 100% | 99.39% | Salmo Salar |
15 | Cod liver (Gadus morhua) | + | 100% 100% | 99.39% 99.39% | Gadus morhua Gadus macrocephalus |
16 | Cod liver, cod eggs (Gadus morhua) | + | 100% 100% | 99.39% 99.39% | Gadus morhua Gadus macrocephalus |
17 | Sprats (Sprattus sprattus) | + | 100% 100% 100% | 98.81% 98.21% 98.21% | Sprattus sprattus Clupea pallasii Clupea harengus |
18 | Sprats (Sprattus sprattus) | + | 100% 100% 100% | 98.81% 98.21% 98.21% | Sprattus sprattus Clupea pallasii Clupea harengus |
19 | Mackerel (Sgomber japonicus) | + | 100% 100% | 100% 100% | Scomber japonicus Scomber australasicus |
26 | Cod liver (Gadus morhua) | + | 100% 100% | 99.39% 99.39% | Gadus morhua Gadus macrocephalus |
27 | Salmon (Salmo salar), egg yolk, skimmed milk | + | 100% | 99.39% | Salmo salar |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dalmasso, A.; Pattono, D.; Bilewski, C.; Biolcati, F.; Maida, S.; Bottero, M.T. Use of Biomolecular Tools to Control the Labels of Ethnic Food Coming from Eastern Europe. Foods 2024, 13, 2181. https://doi.org/10.3390/foods13142181
Dalmasso A, Pattono D, Bilewski C, Biolcati F, Maida S, Bottero MT. Use of Biomolecular Tools to Control the Labels of Ethnic Food Coming from Eastern Europe. Foods. 2024; 13(14):2181. https://doi.org/10.3390/foods13142181
Chicago/Turabian StyleDalmasso, Alessandra, Daniele Pattono, Carla Bilewski, Federica Biolcati, Silvia Maida, and Maria Teresa Bottero. 2024. "Use of Biomolecular Tools to Control the Labels of Ethnic Food Coming from Eastern Europe" Foods 13, no. 14: 2181. https://doi.org/10.3390/foods13142181
APA StyleDalmasso, A., Pattono, D., Bilewski, C., Biolcati, F., Maida, S., & Bottero, M. T. (2024). Use of Biomolecular Tools to Control the Labels of Ethnic Food Coming from Eastern Europe. Foods, 13(14), 2181. https://doi.org/10.3390/foods13142181