Intelligent Food Packaging: Quaternary Ammonium Chitosan/Gelatin Blended Films Enriched with Blueberry Anthocyanin-Derived Cyanidin for Shrimp and Milk Freshness Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. pH Sensitivity of BAC Solution
2.3. Preparation of BAC-Based pH-Responsive Films
2.4. Structural Characterization of the Films
2.4.1. Scanning Electron Microscopy (SEM) of the Films
2.4.2. Fourier Transform Infrared (FT-IR) and X-ray Diffraction (XRD) Spectra of the Films
2.5. Physical and Chemical Characteristics of the Films
2.5.1. Optical Characteristics
2.5.2. Thickness and Mechanical Characteristics
2.5.3. Water Vapor Permeability (WVP)
2.5.4. Water Solubility
2.5.5. Thermogravimetric Analysis (TGA)
2.5.6. Volatile Acid and Ammonia Sensitivity
2.6. Functional Activities of the Films
2.6.1. Antioxidant
2.6.2. Antimicrobial
2.7. Application in Visualized Food Freshness Monitoring
2.7.1. Monitoring Shrimp Freshness
2.7.2. Monitoring Pasteurized Milk Freshness
2.8. Biodegradability of the Films
2.9. Statistical Analysis
3. Results and Discussion
3.1. pH Sensitivity of BAC Solution
3.2. Structural Characterization of the QC-G-BAC Films
3.2.1. SEM Analysis
3.2.2. FT-IR and XRD Analysis
3.3. Physical and Chemical Characteristics of the QC-G-BAC Films
3.3.1. Color and Light Transmittance
3.3.2. Thickness, WVP, Water Solubility, and Mechanical Properties
3.3.3. Thermal Characteristics
3.3.4. Volatile Acid Discoloration and Ammonia Sensitivity Analysis
3.4. Functional Properties of the QC-G-BAC Films
3.4.1. Antioxidant
3.4.2. Antimicrobial
3.5. Biodegradability of the Films
3.6. Application of the Films
3.6.1. Monitoring the Quality of Shrimp
3.6.2. Monitoring the Freshness of Pasteurized Milk
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amin, U.; Khan, M.K.I.; Maan, A.A.; Nazir, A.; Riaz, S.; Khan, M.U.; Sultan, M.; Munekata, P.E.S.; Lorenzo, J.M. Biodegradable active, intelligent, and smart packaging materials for food applications. Food Packag. Shelf Life 2022, 33, 100903. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, Y.Q.; Zhao, L.; Wang, Y. Anthocyanin-based pH-sensitive smart packaging films for monitoring food freshness. J. Agric. Food Res. 2022, 9, 100340. [Google Scholar] [CrossRef]
- Ndwandwe, B.K.; Malinga, S.P.; Kayitesi, E.; Dlamini, B.C. Recent developments in the application of natural pigments as pH-sensitive food freshness indicators in biopolymer-based smart packaging: Challenges and opportunities. Int. J. Food Sci. Technol. 2024, 59, 2148–2161. [Google Scholar] [CrossRef]
- Ghosh, S.; Sarkar, T.; Das, A.; Chakraborty, R. Natural colorants from plant pigments and their encapsulation: An emerging window for the food industry. LWT 2022, 153, 112527. [Google Scholar] [CrossRef]
- Oladzadabbasabadi, N.; Mohammadi Nafchi, A.; Ghasemlou, M.; Ariffin, F.; Singh, Z.; Al-Hassan, A.A. Natural anthocyanins: Sources, extraction, characterization, and suitability for smart packaging. Food Packag. Shelf Life 2022, 33, 100872. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J.W. Anthocyanin food colorant and its application in pH-responsive color change indicator films. Crit. Rev. Food Sci. Nutr. 2021, 61, 2297–2325. [Google Scholar] [CrossRef] [PubMed]
- Yong, H.M.; Liu, J. Recent advances in the preparation, physical and functional properties, and applications of anthocyanins-based active and intelligent packaging films. Food Packag. Shelf Life 2020, 26, 100550. [Google Scholar] [CrossRef]
- Weston, M.; Phan, M.A.T.; Arcot, J.; Chandrawati, R. Anthocyanin-based sensors derived from food waste as an active use-by date indicator for milk. Food Chem. 2020, 326, 127017. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Zou, W.J.; Xia, M.U.; Zeng, Q.; Cai, Z.X. Intelligent colorimetric film incorporated with anthocyanins-loaded ovalbumin-propylene glycol alginate nanocomplexes as a stable pH indicator of monitoring pork freshness. Food Chem. 2022, 368, 130825. [Google Scholar] [CrossRef]
- Herrera-Balandrano, D.D.; Chai, Z.; Beta, T.; Feng, J.; Huang, W.Y. Blueberry anthocyanins: An updated review on approaches to enhancing their bioavailability. Trends Food Sci. Technol. 2021, 118, 808–821. [Google Scholar] [CrossRef]
- Fei, P.; Zeng, F.S.; Zheng, S.Y.; Chen, Q.L.; Hu, Y.H.; Cai, J. Acylation of blueberry anthocyanins with maleic acid: Improvement of the stability and its application potential in intelligent color indicator packing materials. Dyes Pigm. 2021, 184, 108852. [Google Scholar] [CrossRef]
- Shi, C.; Zhang, J.R.; Jia, Z.X.; Yang, X.T.; Zhou, Z.Y. Intelligent pH indicator films containing anthocyanins extracted from blueberry peel for monitoring tilapia fillet freshness. J. Sci. Food Agric. 2021, 101, 1800–1811. [Google Scholar] [CrossRef]
- Adão, P.; Calado, M.d.L.; Fernandes, W.; Alves, L.G.; Corte-Real, L.; Guedes, M.; Baptista, R.; Bernardino, R.; Gil, M.M.; Campos, M.J.; et al. Use of Limestone Sludge in the Preparation of ι-Carrageenan/Alginate-Based Films. Materials 2024, 17, 1668. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.Q.; Han, T.Y.; Yang, H.; Lyu, L.F.; Li, W.L.; Wu, W.L. Known and potential health benefits and mechanisms of blueberry anthocyanins: A review. Food Biosci. 2023, 55, 103050. [Google Scholar] [CrossRef]
- Ezati, P.; Rhim, J.-W. pH-responsive chitosan-based film incorporated with alizarin for intelligent packaging applications. Food Hydrocoll. 2020, 102, 105629. [Google Scholar] [CrossRef]
- Hu, H.X.; Yao, X.Y.; Qin, Y.; Yong, H.M.; Liu, J. Development of multifunctional food packaging by incorporating betalains from vegetable amaranth (Amaranthus tricolor L.) into quaternary ammonium chitosan/fish gelatin blend films. Int. J. Biol. Macromol. 2020, 159, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.; Shin, D.; Lyu, J.S.; Lee, J.-S.; Song, H.-g.; Chung, M.-N.; Han, J. Physicochemical properties and solubility of sweet potato starch-based edible films. Food Packag. Shelf Life 2022, 33, 100867. [Google Scholar] [CrossRef]
- Naghdi, S.; Rezaei, M.; Abdollahi, M. A starch-based pH-sensing and ammonia detector film containing betacyanin of paperflower for application in intelligent packaging of fish. Int. J. Biol. Macromol. 2021, 191, 161–170. [Google Scholar] [CrossRef]
- Moazami Goodarzi, M.; Moradi, M.; Tajik, H.; Forough, M.; Ezati, P.; Kuswandi, B. Development of an easy-to-use colorimetric pH label with starch and carrot anthocyanins for milk shelf life assessment. Int. J. Biol. Macromol. 2020, 153, 240–247. [Google Scholar] [CrossRef]
- Gao, R.C.; Hu, H.L.; Shi, T.; Bao, Y.L.; Sun, Q.C.; Wang, L.; Ren, Y.H.; Jin, W.G.; Yuan, L. Incorporation of gelatin and Fe2+ increases the pH-sensitivity of zein-anthocyanin complex films used for milk spoilage detection. Curr. Res. Food Sci. 2022, 5, 677–686. [Google Scholar] [CrossRef]
- Ahmad, A.; Dubey, P.; Younis, K.; Yousuf, O. Mosambi (Citrus limetta) peel and Sago based biodegradable film: Development and characterization of physical, water barrier and biodegradation properties. Bioresour. Technol. Rep. 2022, 18, 101016. [Google Scholar] [CrossRef]
- Neves, D.; Andrade, P.B.; Videira, R.A.; de Freitas, V.; Cruz, L. Berry anthocyanin-based films in smart food packaging: A mini-review. Food Hydrocoll. 2022, 133, 107885. [Google Scholar] [CrossRef]
- Ramziia, S.; Ma, H.; Yao, Y.; Wei, K.; Huang, Y. Enhanced antioxidant activity of fish gelatin–chitosan edible films incorporated with procyanidin. J. Appl. Polym. Sci. 2018, 135, 45781. [Google Scholar] [CrossRef]
- Theerawitayaart, W.; Prodpran, T.; Benjakul, S.; Sookchoo, P. Properties of films from fish gelatin prepared by molecular modification and direct addition of oxidized linoleic acid. Food Hydrocoll. 2019, 88, 291–300. [Google Scholar] [CrossRef]
- Wang, B.B.; Yang, X.D.; Qiao, C.D.; Li, Y.; Li, T.D.; Xu, C.L. Effects of chitosan quaternary ammonium salt on the physicochemical properties of sodium carboxymethyl cellulose-based films. Carbohydr. Polym. 2018, 184, 37–46. [Google Scholar] [CrossRef]
- Theerawitayaart, W.; Prodpran, T.; Benjakul, S.; Nilsuwan, K.; de la Caba, K. Storage stability of fish gelatin films by molecular modification or direct incorporation of oxidized linoleic acid: Comparative studies. Food Hydrocoll. 2021, 113, 106481. [Google Scholar] [CrossRef]
- Tharun, J.; Hwang, Y.; Roshan, R.; Ahn, S.; Kathalikkattil, A.C.; Park, D.-W. A novel approach of utilizing quaternized chitosan as a catalyst for the eco-friendly cycloaddition of epoxides with CO2. Catal. Sci. Technol. 2012, 2, 1674–1680. [Google Scholar] [CrossRef]
- Shi, C.; Ji, Z.T.; Zhang, J.R.; Jia, Z.X.; Yang, X.T. Preparation and characterization of intelligent packaging film for visual inspection of tilapia fillets freshness using cyanidin and bacterial cellulose. Int. J. Biol. Macromol. 2022, 205, 357–365. [Google Scholar] [CrossRef]
- Ding, F.Y.; Wu, R.K.; Huang, X.W.; Shi, J.Y.; Zou, X.B. Anthocyanin loaded composite gelatin films crosslinked with oxidized alginate for monitoring spoilage of flesh foods. Food Packag. Shelf Life 2024, 42, 101255. [Google Scholar] [CrossRef]
- Chandra Singh, M.; Price, W.E.; Kelso, C.; Charlton, K.; Probst, Y. Impact of molar absorbance on anthocyanin content of the foods. Food Chem. 2022, 386, 132855. [Google Scholar] [CrossRef]
- Barbut, S.; Harper, B.A. Dried Ca-alginate films: Effects of glycerol, relative humidity, soy fibers, and carrageenan. LWT 2019, 103, 260–265. [Google Scholar] [CrossRef]
- Kim, D.; Choi, G.J.; Baek, S.; Abdullah, A.; Jang, S.; Hong, S.A.; Kim, B.G.; Lee, J.; Kang, H.; Lee, D. Characterization of Anti-Adhesion Properties of Alginate/Polyethylene Oxide Film to Reduce Postsurgical Peritoneal Adhesions. Sci. Adv. Mater. 2017, 9, 1669–1677. [Google Scholar] [CrossRef]
- Gómez-Estaca, J.; Montero, P.; Fernández-Martín, F.; Alemán, A.; Gómez-Guillén, M.C. Physical and chemical properties of tuna-skin and bovine-hide gelatin films with added aqueous oregano and rosemary extracts. Food Hydrocoll. 2009, 23, 1334–1341. [Google Scholar] [CrossRef]
- Zhao, R.N.; Chen, J.; Yu, S.F.; Niu, R.H.; Yang, Z.H.; Wang, H.; Cheng, H.; Ye, X.Q.; Liu, D.H.; Wang, W.J. Active chitosan/gum Arabic-based emulsion films reinforced with thyme oil encapsulating blood orange anthocyanins: Improving multi-functionality. Food Hydrocoll. 2023, 134, 108094. [Google Scholar] [CrossRef]
- Hu, F.; Song, Y.-Z.; Thakur, K.; Zhang, J.-G.; Khan, M.R.; Ma, Y.-L.; Wei, Z.-J. Blueberry anthocyanin based active intelligent wheat gluten protein films: Preparation, characterization, and applications for shrimp freshness monitoring. Food Chem. 2024, 453, 139676. [Google Scholar] [CrossRef] [PubMed]
- Akhila, K.; Sultana, A.; Ramakanth, D.; Gaikwad, K.K. Monitoring freshness of chicken using intelligent pH indicator packaging film composed of polyvinyl alcohol/guar gum integrated with Ipomoea coccinea extract. Food Biosci. 2023, 52, 102397. [Google Scholar] [CrossRef]
- Zhang, K.L.; Huang, T.-S.; Yan, H.; Hu, X.Z.; Ren, T. Novel pH-sensitive films based on starch/polyvinyl alcohol and food anthocyanins as a visual indicator of shrimp deterioration. Int. J. Biol. Macromol. 2020, 145, 768–776. [Google Scholar] [CrossRef] [PubMed]
- Halász, K.; Csóka, L. Black chokeberry (Aronia melanocarpa) pomace extract immobilized in chitosan for colorimetric pH indicator film application. Food Packag. Shelf Life 2018, 16, 185–193. [Google Scholar] [CrossRef]
- Sun, J.L.; Wei, Z.H.; Xue, C.H. Preparation and characterization of multifunctional films based on pectin and carboxymethyl chitosan: Forming microchambers for high-moisture fruit preservation. Food Packag. Shelf Life 2023, 37, 101073. [Google Scholar] [CrossRef]
- Lozano-Navarro, J.I.; Díaz-Zavala, N.P.; Velasco-Santos, C.; Martínez-Hernández, A.L.; Tijerina-Ramos, B.I.; García-Hernández, M.; Rivera-Armenta, J.L.; Páramo-García, U.; Reyes-de la Torre, A.I. Antimicrobial, Optical and Mechanical Properties of Chitosan–Starch Films with Natural Extracts. Int. J. Mol. Sci. 2017, 18, 997. [Google Scholar] [CrossRef]
- GB 2733-2015; National Standards for Food Safety Fresh and Frozen Animal Aquatic Products. National Health and Family Planning Commission: Beijing, China, 2015.
- GB 19645-2010; National Food Safety Standard Pasteurized Milk. Ministry of Health of the People’s Republic of China: Beijing, China, 2010.
- Ziyaina, M.; Govindan, B.N.; Rasco, B.; Coffey, T.; Sablani, S.S. Monitoring Shelf Life of Pasteurized Whole Milk Under Refrigerated Storage Conditions: Predictive Models for Quality Loss. J. Food Sci. 2018, 83, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Rhim, J.-W. Preparation of Gelatin/Carrageenan-Based Color-indicator Film Integrated with Shikonin and Propolis for Smart Food Packaging Applications. ACS Appl. Bio Mater. 2021, 4, 770–779. [Google Scholar] [CrossRef]
Film | L | a | b | ΔE |
---|---|---|---|---|
QC-G-BAC0 film | 89.25 ± 0.61 a* | 0.57 ± 0.06 d | −2.50 ± 0.03 d | 4.83 ± 0.04 d |
QC-G-BAC5 film | 61.90 ± 1.00 b | 9.46 ± 0.02 c | 1.29 ± 0.30 c | 33.39 ± 0.99 c |
QC-G-BAC10 film | 42.27 ± 0.22 c | 19.70 ± 0.38 b | 4.56 ± 0.27 b | 55.50 ± 0.12 b |
QC-G-BAC15 film | 35.90 ± 0.01 d | 24.06 ± 0.04 a | 7.99 ± 0.04 a | 63.52 ± 0.10 a |
Film | Thickness (mm) | WVP (×10−9 g m−1 s−1 Pa−1) | Water Solubility (%) | TS (MPa) | EAB (%) |
---|---|---|---|---|---|
QC-G-BAC0 film | 0.045 ± 0.003 d* | 5.24 ± 0.08 b | 99.85 ± 0.47 a | 85.02 ± 3.38 a | 13.08 ± 0.03 a |
QC-G-BAC5 film | 0.059 ± 0.004 c | 7.60 ± 0.97 a | 99.95 ± 0.66 a | 63.07 ± 1.83 b | 12.55 ± 1.61 a |
QC-G-BAC10 film | 0.062 ± 0.002 b | 7.73 ± 0.72 a | 99.91 ± 0.58 a | 56.26 ± 1.96 c | 3.60 ± 0.25 b |
QC-G-BAC15 film | 0.065 ± 0.003 a | 7.80 ± 0.98 a | 99.25 ± 0.98 a | 44.89 ± 3.83 d | 3.07 ± 0.52 b |
Time (Day) | TVB-N Level (mg/100 g) | QC-G-BAC0 Film | QC-G-BAC5 Film | QC-G-BAC10 Film | QC-G-BAC15 Film | ||||
---|---|---|---|---|---|---|---|---|---|
Appearance | ΔE | Appearance | ΔE | Appearance | ΔE | Appearance | ΔE | ||
0 | 2.10 ± 0.70 f* | 4.83 ± 0.04 a | 33.39 ± 0.99 f | 55.50 ± 0.12 g | 63.52 ± 0.10 e | ||||
1 | 5.95 ± 0.49 f | 5.39 ± 0.63 a | 38.17 ± 0.75 e | 58.49 ± 0.41 f | 69.01 ± 1.17 d | ||||
2 | 16.10 ± 0.99 e | 5.80 ± 0.60 a | 42.54 ± 0.90 d | 64.29 ± 1.38 e | 71.81 ± 0.58 c | ||||
3 | 21.70 ± 0.99 d | 5.45 ± 0.68 a | 49.67 ± 1.82 c | 67.78 ± 0.80 d | 73.30 ± 1.45 bc | ||||
4 | 28.70 ± 0.99 c | 5.28 ± 0.62 a | 52.54 ± 1.51 c | 73.33 ± 2.23 c | 74.82 ± 0.76 b | ||||
5 | 38.50 ± 2.97 b | 5.01± 0.72 a | 57.19 ± 1.48 b | 76.27 ± 0.32 b | 80.05 ± 1.23 a | ||||
6 | 46.55 ± 3.46 a | 4.69 ± 0.90 a | 70.32 ± 0.99 a | 85.97 ± 2.03 a | 81.82 ± 0.30 a |
Milk Exposure Time (h) | Milk Acidity (°T) | pH Value of Milk | Total Bacterial Count (Log10 CFU/mL) of Milk | QC-G-BAC0 Film | QC-G-BAC5 Film | QC-G-BAC10 Film | QC-G-BAC15 Film | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Appearance | ΔE | Appearance | ΔE | Appearance | ΔE | Appearance | ΔE | ||||
0 | 15.5 ± 0.05 d* | 6.75 ± 0.04 a | 3.15 ± 0.14 d | 6.01 ± 0.14 a | 48.11 ± 0.84 a | 73.31 ± 0.61 a | 82.38 ± 0.43 a | ||||
24 | 18.5 ± 0.95 c | 6.17 ± 0.37 b | 5.07 ± 0.38 c | 6.05 ± 0.34 a | 38.15 ± 0.94 b | 60.75 ± 0.94 b | 69.05 ± 0.69 b | ||||
48 | 28.0 ± 1.10 b | 5.37 ± 0.12 c | 7.75 ± 0.28 b | 5.65 ± 0.30 a | 36.45 ± 0.64 c | 56.65 ± 0.95 c | 58.69 ± 0.55 c | ||||
72 | 50.0 ± 1.40 a | 4.85 ± 0.08 d | 8.45 ± 0.34 a | 5.75 ± 0.27 a | 25.35 ± 0. 72 d | 49.67 ± 0.22 d | 53.47 ± 0.47 d |
Food Items | Parameters | Pearson Correlation Coefficient | |||
---|---|---|---|---|---|
ΔE QC-G-BAC0 | ΔE QC-G-BAC5 | ΔE QC-G-BAC10 | ΔE QC-G-BAC15 | ||
Shrimp | TVB-N level | −0.381 | 0.982 ** | 0.991 ** | 0.977 ** |
Milk | Acidity | −0.666 | −0.930 * | −0.862 | −0.853 |
pH value | 0.826 | 0.946 * | 0.965 * | 0.985 * | |
Total bacterial count | −0.865 | −0.908 * | −0.957 * | −0.992 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, D.; Lv, J.; Wang, A.; Yong, H.; Liu, J. Intelligent Food Packaging: Quaternary Ammonium Chitosan/Gelatin Blended Films Enriched with Blueberry Anthocyanin-Derived Cyanidin for Shrimp and Milk Freshness Monitoring. Foods 2024, 13, 2237. https://doi.org/10.3390/foods13142237
Chen D, Lv J, Wang A, Yong H, Liu J. Intelligent Food Packaging: Quaternary Ammonium Chitosan/Gelatin Blended Films Enriched with Blueberry Anthocyanin-Derived Cyanidin for Shrimp and Milk Freshness Monitoring. Foods. 2024; 13(14):2237. https://doi.org/10.3390/foods13142237
Chicago/Turabian StyleChen, Dan, Jialiang Lv, Ao Wang, Huimin Yong, and Jun Liu. 2024. "Intelligent Food Packaging: Quaternary Ammonium Chitosan/Gelatin Blended Films Enriched with Blueberry Anthocyanin-Derived Cyanidin for Shrimp and Milk Freshness Monitoring" Foods 13, no. 14: 2237. https://doi.org/10.3390/foods13142237
APA StyleChen, D., Lv, J., Wang, A., Yong, H., & Liu, J. (2024). Intelligent Food Packaging: Quaternary Ammonium Chitosan/Gelatin Blended Films Enriched with Blueberry Anthocyanin-Derived Cyanidin for Shrimp and Milk Freshness Monitoring. Foods, 13(14), 2237. https://doi.org/10.3390/foods13142237