Arazá: Eugenia stipitata Mc Vaught as a Potential Functional Food
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Botanical Aspects and Economic Importance
3.2. Bioactive Compounds in Arazá
3.2.1. Vitamin C
3.2.2. Phenolic Compounds
3.2.3. Carotenoids
Metabolite | Fruit Part | Composition | Units | Reference |
---|---|---|---|---|
Phenolic compounds (total) | Freeze-dried pulp | 99.16 ± 0.79 | mg GAE/g d.w | [47] |
184.8 ± 8.25 | mg GAE/g | [95] | ||
19.3 ± 5.1 | mg GAE/g f.w | [21] | ||
1569.60 ± 3.31 | mg GAE/100 g d.w | [62] | ||
1569.60 ± 3.31 | mg GAE/100 g d.w | [62] | ||
286.7 ± 14.67 | mg GAE/100 g d.w | [64] | ||
3507.79 ± 13.97 | mg GAE/100 g | [96] | ||
Pulp + peel | 31.2 | mg GAE/g d.w | [12] | |
9.06 ± 0.42 | mg GAE/100 g d.w | [14] | ||
35.7 | mg GAE/g f.w | [15] | ||
Seeds | 130.6 | mg GAE/g d.w | [12] | |
142.43 ± 0.82 | mg GAE/100 g d.w | [14] | ||
16.6 ± 0.8 | mg GAE/gTS | [9] | ||
Pulp | 1.57 ± 0.0 | mg GAE/g | [97] | |
275.4 | mg GAE/g d.w | [10] | ||
30.16 ± 0.7 | mg GAE/gTS | [9] | ||
122.78 ± 2.52 | mg GAE/100 g | [98] | ||
87 ± 2 | mg/100 g f.w | [99] | ||
51.91 ± 0.12 | mg GAE/100 g | [100] | ||
1063.9 ± 23 | mg GAE/100 g d.w | [65] | ||
287.7 | mg GAE/g d.w | [10] | ||
Spray-dried pulp | 2930 ± 50.0 | mg GAE/g d.w | [66] | |
Ultra-sounded pulp | 1.33 ± 0.04 | mg GAE/g f.w | [43] | |
Waste (seeds, peel, and a minimal amount of pulp) | 42.81 ± 2.23 | mg GAE/100 g | [18] | |
Fermented juice | 1048.0 ± 8.0 | mg GAE/L | [101] | |
Freeze-dried peel | 124.3 ± 87.3 | mg GAE/g f.w | [21] | |
1210.14 ± 225.4 | mg GAE/100 g d.w | [64] | ||
Pasteurized pulp | 53.9 ± 8.6 | mg GAE/100 g f.w | [44] | |
Hydromethanolic pulp extract | 146.43 | mg/100 g f.w | [102] | |
Ethanolic seed extract | 29.57 | g GAE/100 g | [24] | |
Apple nectar supplemented with freeze-dried pulp | 0.554 ± 0.011 | mg GAE/100 g f.w | [26] | |
Frozen pulp | 144.0 ± 0.06 | mg GAE/100 g | [103] | |
Dark chocolate with freeze-dried pulp | 11.23 ± 1.10 | mg GAE/g | [104] | |
Pasteurized and combined with sucrose pulp | 41.7 ± 2.5 | mg GAE/100 g f.w | [45] | |
Flavonoids (total) | Pulp + peel | 9.7 | mg CE/g d.w | [12] |
1.25 ± 0.12 | mg CE/g d.w | [14] | ||
Seeds | 24.1 | mg CE/g d.w | [12] | |
43.73 ± 0.23 | mg CE/g d.w | [14] | ||
Pulp | 0.05 ± 0.0 | mg CE/g | [97] | |
2.55 ± 0.04 | mg/100 g | [98] | ||
Ultra-sounded pulp | 0.09 ± 0.0 | mg CE/g f.w | [43] | |
Waste (seeds, peel, and a minimal amount of pulp) aqueous extract | 2.52 ± 0.25 | mg Q/100 g | [18] | |
Freeze-dried pulp | 600.72 ± 22.25 | mg CE/100 g d.w | [62] | |
Apple nectar supplemented with freeze-dried pulp | 1.537 ± 0.091 | mg CE/100 g f.w | [26] | |
Carotenoids (total) | Freeze-dried pulp | 44.29 ± 0.78 | mg β-carotene eq/g d.w | [47] |
31.00 ± 0.22 | µg β-carotene/100 g d.w | [62] | ||
806 ± 348 | µg/100 g f.w | [21] | ||
62.85 ± 1.92 | µg β-carotene/g | [96] | ||
Pulp + peel | 0.9 | mg/100 g f.w | [15] | |
Freeze-dried peel | 2484 ± 421 | µg/100 g f.w | [21] | |
Pulp | 380.77 ± 7.13 | µg β-carotene/100 g | [98] | |
Ascorbic acid | Freeze-dried pulp | 92 ± 0.001 | mg /100 g d.w | [47] |
Pulp | 17.8 ± 0.3 | µmol/g | [37] | |
127.8 | mg/100 g | [10] | ||
9.5 ± 0.8 | mg/100 g f.w | [99] | ||
5.60 ± 0.01 | mg/100 g | [98] | ||
Ultra-sounded pulp | 13.67 | mg/100 g | [43] | |
Peel | 184.8 | mg/100 g | [10] | |
Pulp + peel | 8.3 | mg/100 g f.w | [15] | |
Pasteurized pulp | 26.07 ± 0.1 | mg/100 g f.w | [44] | |
Hydromethanolic pulp extract | 65.10 | mg/100 g f.w | [102] | |
Apple nectar supplemented with Freeze-dried pulp | 24.95 ± 0.21 | mg/100 mL | [26] | |
Pasteurized and combined with sucrose pulp | 32.3 ± 2.5 | mg/100 g f.w | [45] | |
Phenolic compounds | ||||
Caffeic acid | Freeze-dried pulp | 66.49 ± 5.52 | mg/100 g d.w | [47] |
Waste (seeds, peel, and a minimal amount of pulp) aqueous extract | 0.46 ± 0.06 | µg/g | [18] | |
Hydromethanolic pulp extract | 0.031 ± 0.02 | mg/100 g f.w | [102] | |
Chlorogenic acid | Freeze-dried pulp | 96.94 ± 1.83 | mg/100 g d.w | [47] |
Hydromethanolic pulp extract | 0.47 ± 0.09 | mg/100 g f.w | [102] | |
Cinnamic acid | Freeze-dried pulp | 126.58 ± 2.54 | mg/100 g d.w | [47] |
Waste (seeds, peel, and a minimal amount of pulp) aqueous extract | 44.61 ± 0.76 | µg/g | [18] | |
Hydromethanolic pulp extract | 0.30 ± 0.08 | mg/100 g f.w | [102] | |
Coumaric acid | Freeze-dried pulp | 128.55 ± 3.48 | mg/100 g d.w | [47] |
Waste (seeds, peel, and a minimal amount of pulp) aqueous extract | 1.57 ± 0.15 | µg/g | [18] | |
Hydromethanolic pulp extract | 0.02 ± 0.01 | mg/100 g f.w | [102] | |
Gallic acid | Freeze-dried pulp | 166.02 ± 3.39 | mg/100 g d.w | [47] |
Waste (seeds, peel, and a minimal amount of pulp) aqueous extract | 30.18 ± 5.47 | µg/g | [18] | |
Fermented juice | 1048.0 ± 8.0 | 390 µM | [101] | |
Hydromethanolic pulp extract | 0.12 ± 0.02 | mg/100 g f.w | [102] | |
Ferulic acid | Freeze-dried pulp | 468.44 ± 10.10 | mg/100 g d.w | [47] |
Waste (seeds, peel, and a minimal amount of pulp) aqueous extract | 0.44 ± 0.02 | µg/g | [18] | |
Hydromethanolic pulp extract | 0.96 ± 0.44 | mg/100 g f.w | [102] | |
Quercetin | Freeze-dried pulp | 699.75 ± 11.82 | mg/100 g d.w | [47] |
5.16 ± 1.40 | mg/100 g | [95] | ||
14.4 ± 0.2 | mg/100 g d.w | [105] | ||
Waste (seeds, peel, and a minimal amount of pulp) aqueous extract | 5.79 ± 0.17 | µg/g | [18] | |
Hydromethanolic pulp extract | 0.67 ± 0.19 | mg/100 g f.w | [102] | |
Pulp | 1.75 ± 0.03 | mg/100 g f.w | [99] | |
Rutin | Freeze-dried pulp | 413.33 ± 12.34 | mg/100 g d.w | [47] |
Hydromethanolic pulp extract | 0.40 ± 0.23 | mg/100 g f.w | [102] | |
Eriodictyol | Freeze-dried pulp | 575.15 ± 13.37 | mg/100 g d.w | [47] |
Myricetin | Freeze-dried pulp | 17.0 ± 0.50 | mg/100 g | [95] |
Kaempherol | Freeze-dried pulp | 3.70 ± 3.30 | mg/100 g | [95] |
2.5 ± 0.1 | mg/100 g d.w | [105] | ||
Pulp | 0.30 ± 0.01 | mg/100 g f.w | [99] | |
Vanillin | Waste (seeds, peel, and a minimal amount of pulp) aqueous extract | 0.09 ± 0.0 | µg/g | [18] |
(-)-Epicatechin | Waste (seeds, peel, and a minimal amount of pulp) aqueous extract | 18.05 ± 5.35 | µg/g | [18] |
Dark chocolate with freeze-dried pulp | 0.33 ± 0.04 | mg/g | [104] | |
Ethyl gallate | Waste (seeds, peel, and a minimal amount of pulp) aqueous extract | 0.37 ± 0.02 | µg/g | [18] |
Catechin | Hydromethanolic pulp extract | 3.86 ± 1.83 | mg/100 g f.w | [102] |
Dark chocolate with freeze-dried pulp | 0.06 ± 0.01 | mg/g | [104] | |
Carotenoids | ||||
All-trans-β-carotene | Pulp + peel | 2.10 | µg/g | [85] |
Freeze-dried peel | 143 ± 25 | µg/g | [21] | |
Freeze-dried pulp | 44 ± 16 | µg/g | [21] | |
All-trans-α-carotene | Pulp + peel | 0.65 | µg/g | [85] |
Freeze-dried peel | 96 ± 20 | µg/g | [21] | |
Freeze-dried pulp | 31 ± 14 | µg/g | [21] | |
β-kryptoxanthin | Pulp + peel | 2.44 | µg/g | [85] |
Freeze-dried peel | 153 ± 32 | µg/g | [21] | |
Freeze-dried pulp | 92 ± 38 | µg/g | [21] | |
9-cis-β-carotene | Pulp + peel | 0.18 | µg/g | [85] |
13-cis-β-carotene | Pulp + peel | 0.16 | µg/g | [85] |
15-cis-β-carotene | Pulp + peel | 0.11 | µg/g | [85] |
Violaxanthin | Pulp + peel | 1.04 | µg/g | [85] |
Lutein | Pulp + peel | 1.60 | µg/g | [85] |
Freeze-dried peel | 756 ± 116 | µg/g | [21] | |
Freeze-dried pulp | 154 ± 107 | µg/g | [21] | |
Zeaxanthin | Pulp + peel | 0.55 | µg/g | [85] |
Zeinoxanthin | Freeze-dried peel | 187 ± 24 | µg/g | [21] |
Freeze-dried pulp | 54 ± 22 | µg/g | [21] | |
Organic acids | ||||
Malic acid | Pulp | 244.5 ± 4.8 | µmol/g | [37] |
Succinic acid | Pulp | 39.5 ± 3.2 | µmol/g | [37] |
Citric acid | Pulp | 3.3 ± 0.1 | µmol/g | [37] |
3.3. Functional Properties of Arazá with Health Significance
3.3.1. Antioxidant Activity
Fruit Transformation | Scavenging Capacity | ||||
---|---|---|---|---|---|
ABTS | DPPH | FRAP | ORAC | Reference | |
Freeze-dried pulp | n.r | n.r | 1306.96 ± 6.22 μM Fe2+/g d.w | n.r | [47] |
n.r | IC50 = 0.69 ± 0.23 µg/mL | n.r | 371.98 ± 11.50 µmol TE/100 g | [95] | |
1.2 ± 0.3 µmol TE/g f.w | 9.0 ± 8.6 µmol TE/g f.w | 3.5 ± 0.9 µmol TE/g f.w | n.r | [21] | |
n.r | 46.2 µmol TE/g d.w | n.r | 198.2 µmol TE/g d.w | [105] | |
43.64 ± 2.14 µmol TE/g d.w | 23.75 ± 1.89 µmol TE/g d.w | 30.74 ± 3.79 µmol TE/g d.w 72.55 ± 6.31 µmol FeSO4/g d.w | n.r | [64] | |
758.22 ± 5.01 µmol TE/g | 392.10 ± 9.67 µmol TE/g | n.r | n.r | [96] | |
Pulp + peel | 25.3 ± 1.6 TE/g d.w | 8.4 ± 0.2 TE/g d.w | n.r | 22.8 ± 0.2 µmol TE/g d.w | [12] |
12.46 ± 0.89 µmol TE/g d.w | 43.15 ± 1.67 µmol TE/g d.w | n.r | 29.42 ± 1.09 µmol TE/g d.w | [14] | |
54.3 μM TE/g f.w | n.r | n.r | 33.6 μM TE/g f.w | [15] | |
40.9 μM TE/g | 7.8 μM TE/g | n.r | n.r | [85] | |
Seeds | 198.0 ± 10.8 TE/g d.w | 94.0 ± 6.3 TE/g d.w | n.r | 52.8 ± 6.3 µmol TE/g d.w | [12] |
n.r | n.r | 78.8 ± 49.8 µmol TE/gTS | 105.6 ± 12.3 µmol TE/gTS | [9] | |
146.75 ± 2.44 µmol TE/g d.w | 451.24 ± 2.87 µmol TE/g d.w | n.r | 100.14 ± 2.55 µmol TE/g d.w | [14] | |
Pulp | 5.5 ± 0.3 µmol TE/g | n.r | n.r | 12.1 ± 0.4 µmol TE/g | [97] |
n.r | 84.4 µmol TE/100 g d.w | n.r | 97.7 µmol TE/100 g d.w | [10] | |
n.r | n.r | 165.4 ± 64.5 µmol TE/gTS | 195.7 ± 4.2 µmol TE/gTS | [9] | |
1209.72 ± 0.01 µmol TE/100 g | 472.15 ± 0.40 µmol TE/100 g | 1652.91 ± 0.72 µmol TE/100 g | n.r | [98] | |
n.r | 1.80 ± 0.05 µmol TE/g f.w | n.r | n.r | [99] | |
2.11 ± 0.01 µmol TE/g | 2.66 ± 0.06 µmol TE/g | 8.64 ± 0.10 μmol Fe2+/g | n.r | [100] | |
241.8 ± 35 µmol TE/g d.w | 81.9 ± 3 µmol TE/g d.w | n.r | n.r | [65] | |
Peel | n.r | 122.0 µmol TE/100 g d.w | n.r | 130.5 µmol TE/100 g d.w | [10] |
Spray-dried pulp | 617 ± 15 µmol TE/g d.w | IC50 [54.59 mM] = 3.3 ± 0.1 mg d.w/mL 308 ± 7 g d.w/g DPPH | 409 ± 8 µmol FeSO4/g d.w | n.r | [66] |
Ultra-sounded pulp | 5.38 ± 0.02 μM TE/g f.w | 1.76 ± 0.02 μM TE/g f.w | n.r | 3.22 ± 0.07 μM TE/g f.w | [43] |
By-product (seeds, peel, and a minimal amount of pulp) aqueous extract | 1553.39 ± 32.67 mg VCE/100 g | n.r | 798.92 ± 1.52 µmol TE/100 g | 3302.47 ± 3.11 µmol TE/100 g | [18] |
Fermented juice | n.r | 589.4 ± 5.8 μM TE | n.r | n.r | [101] |
Freeze-dried peel | 11.0 ± 5.3 µmol TE/g f.w | 9.0 ± 8.6 µmol TE/g f.w | 12.4 ± 7.7 µmol TE/g f.w | n.r | [21] |
171.88 ± 10.06 µmol TE/g d.w | 125.35 ± 8.05 µmol TE/g d.w | 64.49 ± 5.54 µmol TE/g d.w 170.21 ± 13.67 µmol FeSO4/g d.w | n.r | [64] | |
Pasteurized pulp | 1.02 ± 0.15 mmol TE/100 g f.w | n.r | 1.77 ± 0.15 mmol Fe2+/100 g f.w | n.r | [44] |
549.16 mg TE/100 g f.w | 1075.67 mg TE/100 g f.w | n.r | n.r | [62] | |
Pulp pasteurized and combined with sucrose | 8.4 ± 1.3 µmol TE/g f.w | 3.9 ± 0.5 µmol TE/g f.w | 9.7 ± 1.1 µmol TE/g f.w | n.r | [45] |
Hydromethanolic pulp extract | 4.52 mg BHTE/g f.w | 5.84 mg BHTE/g f.w | 8.09 mg BHTE/g f.w | n.r | [102] |
Ethanolic seed extract | IC50 = 4.22 ± 0.02 mg/L 446.65 ± 2.82 mmol TE/100 g f.w | IC50 = 3.06 ± 0.09 mg/L 659.15 ± 19.07 mmol TE/100 g f.w | 4.05 ± 0.36 µmol AAE/100 g f.w | 274.22 ± 13.76 mmol TE/100 g f.w | [24] |
Apple nectar supplemented with freeze-dried pulp | 0.433 ± 0.013 µmol TE/g f.w | 0.232 ± 0.006 µmol TE/g f.w | n.r | 1.214 ± 0.087 µmol TE/g f.w | [26] |
Frozen pulp | n.r | 6.09 ± 0.29 µmol TE/100 g | n.r | n.r | [103] |
Dark chocolate with freeze-dried pulp | n.r | IC50 = 5.19 ± 1.73 mg/mL | n.r | n.r | [112] |
3.3.2. Other Biological Properties
3.3.3. Arazá Products and Further Processing
4. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bennett, J.E.; Stevens, G.A.; Mathers, C.D.; Bonita, R.; Rehm, J.; Kruk, M.E.; Riley, L.M.; Dain, K.; Kengne, A.P.; Chalkidou, K.; et al. NCD Countdown 2030: Worldwide Trends in Non-Communicable Disease Mortality and Progress towards Sustainable Development Goal Target 3.4. Lancet 2018, 392, 1072–1088. [Google Scholar] [CrossRef]
- Rosling, H. NCD Countdown 2030: Efficient Pathways and Strategic Investments to Accelerate Progress towards the Sustainable Development Goal Target 3.4 in Low-Income and Middle-Income Countries. Lancet 2022, 399, 1266–1278. [Google Scholar] [CrossRef]
- Granato, D.; Zabetakis, I.; Koidis, A. Sustainability, Nutrition, and Scientific Advances of Functional Foods under the New EU and Global Legislation Initiatives. J. Funct. Foods 2023, 109, 105793. [Google Scholar] [CrossRef]
- Garza-Juárez, A.; Pérez-Carrillo, E.; Arredondo-Espinoza, E.U.; Islas, J.F.; Benítez-Chao, D.F.; Escamilla-García, E. Nutraceuticals and Their Contribution to Preventing Noncommunicable Diseases. Foods 2023, 12, 3262. [Google Scholar] [CrossRef]
- Szakos, D.; Ózsvári, L.; Kasza, G. Health-Related Nutritional Preferences of Older Adults: A Segmentation Study for Functional Food Development. J. Funct. Foods 2022, 92, 105065. [Google Scholar] [CrossRef]
- Fu, J.; Zhang, L.L.; Li, W.; Zhang, Y.; Zhang, Y.; Liu, F.; Zou, L. Application of Metabolomics for Revealing the Interventional Effects of Functional Foods on Metabolic Diseases. Food Chem. 2022, 367, 130697. [Google Scholar] [CrossRef]
- Jones, P.J. Functional Foods—More than Just Nutrition. Cmaj 2002, 166, 1555–1563. [Google Scholar] [PubMed]
- Seyedsadjadi, N.; Grant, R. The Potential Benefit of Monitoring Oxidative Stress and Inflammation in the Prevention of Non-Communicable Diseases (NCDs). Antioxidants 2021, 10, 15. [Google Scholar] [CrossRef] [PubMed]
- Bravo, K.; Quintero, C.; Agudelo, C.; García, S.; Bríñez, A.; Osorio, E. CosIng Database Analysis and Experimental Studies to Promote Latin American Plant Biodiversity for Cosmetic Use. Ind. Crops Prod. 2020, 144, 112007. [Google Scholar] [CrossRef]
- Neves, L.C.; Tosin, J.M.; Benedette, R.M.; Cisneros-Zevallos, L. Post-Harvest Nutraceutical Behaviour during Ripening and Senescence of 8 Highly Perishable Fruit Species from the Northern Brazilian Amazon Region. Food Chem. 2015, 174, 188–196. [Google Scholar] [CrossRef]
- De Araújo, F.F.; Neri-numa, I.A.; Farias, D.D.P.; Rahyara, G.; Castro, M.; Pastore, G.M. Wild Brazilian Species of Eugenia Genera (Myrtaceae) as an Innovation Hotspot for Food and Pharmacological Purposes. Food Res. Int. 2019, 121, 57–72. [Google Scholar] [CrossRef]
- de Araújo, F.F.; de Paulo Farias, D.; Neri-Numa, I.A.; Dias-Audibert, F.L.; Delafiori, J.; de Souza, F.G.; Catharino, R.R.; do Sacramento, C.K.; Pastore, G.M. Gastrointestinal Bioaccessibility and Bioactivity of Phenolic Compounds from Araçá-Boi Fruit. LWT 2020, 135, 110230. [Google Scholar] [CrossRef]
- de Paulo Farias, D.; Neri-Numa, I.A.; de Araújo, F.F.; Pastore, G.M. A Critical Review of Some Fruit Trees from the Myrtaceae Family as Promising Sources for Food Applications with Functional Claims. Food Chem. 2020, 306, 125630. [Google Scholar] [CrossRef] [PubMed]
- de Araújo, F.F.; de Paulo Farias, D.; Neri-Numa, I.A.; Dias-Audibert, F.L.; Delafiori, J.; de Souza, F.G.; Catharino, R.R.; do Sacramento, C.K.; Pastore, G.M. Chemical Characterization of Eugenia stipitata: A Native Fruit from the Amazon Rich in Nutrients and Source of Bioactive Compounds. Food Res. Int. 2021, 139, 109904. [Google Scholar] [CrossRef] [PubMed]
- Borges, P.R.S.; Edelenbos, M.; Larsen, E.; Hernandes, T.; Nunes, E.E.; de Barros Vilas Boas, E.V.; Pires, C.R.F. The Bioactive Constituents and Antioxidant Activities of Ten Selected Brazilian Cerrado Fruits. Food Chem. X 2022, 14, 100268. [Google Scholar] [CrossRef]
- Peixoto Araujo, N.M.; Arruda, H.S.; de Paulo Farias, D.; Molina, G.; Pereira, G.A.; Pastore, G.M. Plants from the Genus Eugenia as Promising Therapeutic Agents for the Management of Diabetes Mellitus: A Review. Food Res. Int. 2021, 142, 110182. [Google Scholar] [CrossRef] [PubMed]
- Pascoal, A.C.R.F.; Salvador, M.J. Essential Oils from Neotropical Myrtaceae: Chemical Diversity and Biological Properties. Chem. Biodivers. 2011, 8, 73–94. [Google Scholar]
- Barros, R.G.C.; Andrade, J.K.S.; Denadai, M.; Nunes, M.L.; Narain, N. Evaluation of Bioactive Compounds Potential and Antioxidant Activity in Some Brazilian Exotic Fruit Residues. Food Res. Int. 2017, 102, 84–92. [Google Scholar] [CrossRef]
- Rogez, H.; Buxant, R.; Mignolet, E.; Souza, J.N.S.; Silva, E.M.; Larondelle, Y. Chemical Composition of the Pulp of Three Typical Amazonian Fruits: Araça-Boi (Eugenia stipitata), Bacuri (Platonia Insignis) and Cupuaçu (Theobroma Grandiflorum). Eur. Food Res. Technol. 2004, 218, 380–384. [Google Scholar] [CrossRef]
- Bohry, D.; Gabriel Berilli, A.P.C.; Silva Berilli, S.; Ferreira de Almeida, R.; Falcao Zooca, A. Characterization and Genetic Divergence of Araçá-Boi Based on Physicochemical and Colorimetric Traits of Fruits Caracterização e Divergência Genética Do Araçá-Boi Com Base Em Características Físico-Químicas E. Amaz. J. Agric. Environ. Sci. 2019, 62, 1–8. [Google Scholar]
- Garzón, G.A.; Narváez-Cuenca, C.E.; Kopec, R.E.; Barry, A.M.; Riedl, K.M.; Schwartz, S.J. Determination of Carotenoids, Total Phenolic Content, and Antioxidant Activity of Arazá (Eugenia stipitata McVaugh), an Amazonian Fruit. J. Agric. Food Chem. 2012, 60, 4709–4717. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Trujillo, J.P.; Hernández, M.S.; Carrillo, M.; Barrera, J. Arazá (Eugenia stipitata McVaugh); Woodhead Publishing Limited: Sawston, UK, 2011. [Google Scholar]
- Avila-Sosa, R.; Montero-Rodríguez, A.F.; Aguilar-Alonso, P.; Vera-López, O.; Lazcano-Hernández, M.; Morales-Medina, J.C.; Navarro-Cruz, A.R. Antioxidant Properties of Amazonian Fruits: A Mini Review of in Vivo and in Vitro Studies. Oxid. Med. Cell. Longev. 2019, 2019, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, A.; Jiménez, Á.; Méndez, J.; Murillo, E. Chemical And Biological Study Of Eugenia Stipitata Mc Vaugh Collected In The Colombian Andean Region. Asian J. Pharm. Clin. Res. 2018, 11, 362–369. [Google Scholar] [CrossRef]
- Sousa, H.M.; Leal, G.F.; Damiani, C.; Borges, S.V.; Freitas, B.C.; Martins, G.A. Some Wild Fruits from Amazon Biodiversity: Composition, Bioactive Compounds, and Characteristics. Food Res. 2021, 5, 17–32. [Google Scholar] [CrossRef] [PubMed]
- Baldini, T.F.; Neri-Numa, I.A.; Sacramento, C.K.D.; Schmiele, M.; Bolini, H.M.A.; Pastore, G.M.; Bicas, J.L. Elaboration and Characterization of Apple Nectars Supplemented with Araçá-Boi (Eugenia stipitata Mac Vaugh—Myrtaceae). Beverages 2017, 3, 59. [Google Scholar] [CrossRef]
- Sorrenti, V.; Burò, I.; Consoli, V.; Vanella, L. Recent Advances in Health Benefits of Bioactive Compounds from Food Wastes and By-Products: Biochemical Aspects. Int. J. Mol. Sci. 2023, 24, 2019. [Google Scholar] [CrossRef]
- Teodoro, A.J. Bioactive Compounds of Food: Their Role in the Prevention and Treatment of Diseases. Oxid. Med. Cell. Longev. 2019, 2019, 3765986. [Google Scholar] [CrossRef] [PubMed]
- Habib, M.; Jan, K.; Bashir, K. Extraction and Characterization of Bioactive Compounds from Different Sources BT—Bioactive Components: A Sustainable System for Good Health and Well-Being. In Bioactive Components; Thakur, M., Belwal, T., Eds.; Springer Nature Singapore: Singapore, 2023; pp. 121–141. ISBN 978-981-19-2366-1. [Google Scholar]
- Twaij, B.M.; Hasan, M.N. Bioactive Secondary Metabolites from Plant Sources: Types, Synthesis, and Their Therapeutic Uses. Int. J. Plant Biol. 2022, 13, 4–14. [Google Scholar] [CrossRef]
- Ramabulana, T.; Ndlovu, M.; Mosa, R.A.; Sonopo, M.S.; Selepe, M.A. Phytochemical Profiling and Isolation of Bioactive Compounds from Leucosidea Sericea (Rosaceae). ACS Omega 2022, 7, 11964–11972. [Google Scholar] [CrossRef]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef]
- Pai, S.; Hebbar, A.; Selvaraj, S. A Critical Look at Challenges and Future Scopes of Bioactive Compounds and Their Incorporations in the Food, Energy, and Pharmaceutical Sector. Environ. Sci. Pollut. Res. 2022, 29, 35518–35541. [Google Scholar] [CrossRef]
- Weaver, C.M. Bioactive Foods and Ingredients for Health. Adv. Nutr. 2014, 5, 306S–311S. [Google Scholar] [CrossRef]
- López-fernández, O.; Domínguez, R.; Pateiro, M.; Munekata, P.E.S.; Rocchetti, G.; Lorenzo, J.M. Determination of Polyphenols Using Liquid Chromatography–Tandem Mass Spectrometry Technique (LC–MS/MS): A Review. Antioxidants 2020, 9, 479. [Google Scholar] [CrossRef]
- Santos, D.I.; Saraiva, J.M.A.; Vicente, A.A.; Moldão-Martins, M. Methods for Determining Bioavailability and Bioaccessibility of Bioactive Compounds and Nutrients; Elsevier Inc.: Amsterdam, The Netherlands, 2019; ISBN 9780128141748. [Google Scholar]
- Hernández, M.S.; Martínez, O.; Fernández-Trujillo, J.P. Behavior of Arazá (Eugenia stipitata Mc Vaugh) Fruit Quality Traits during Growth, Development and Ripening. Sci. Hortic. 2007, 111, 220–227. [Google Scholar] [CrossRef]
- Berretta, M.; Quagliariello, V.; Maurea, N.; Di Francia, R.; Sharifi, S.; Facchini, G.; Rinaldi, L.; Piezzo, M.; Ceccarelli, M.; Nunnari, G.; et al. Multiple Effects of Ascorbic Acid against Chronic Diseases: Updated Evidence from Preclinical and Clinical Studies. Antioxidants 2020, 9, 1182. [Google Scholar] [CrossRef]
- Njus, D.; Kelley, P.M.; Tu, Y.J.; Schlegel, H.B. Ascorbic Acid: The Chemistry Underlying Its Antioxidant Properties. Free Radic. Biol. Med. 2020, 159, 37–43. [Google Scholar] [CrossRef]
- Cerullo, G.; Negro, M.; Parimbelli, M.; Pecoraro, M.; Perna, S.; Liguori, G.; Rondanelli, M.; Cena, H.; D’Antona, G. The Long History of Vitamin C: From Prevention of the Common Cold to Potential Aid in the Treatment of COVID-19. Front. Immunol. 2020, 11, 574029. [Google Scholar] [CrossRef]
- Liao, G.; Xu, Q.; Allan, A.C.; Xu, X. L-Ascorbic Acid Metabolism and Regulation in Fruit Crops. Plant Physiol. 2023, 192, 1684–1695. [Google Scholar] [CrossRef]
- Fenech, M.; Amaya, I.; Valpuesta, V.; Botella, M.A. Vitamin C Content in Fruits: Biosynthesis and Regulation. Front. Plant Sci. 2019, 9, 2006. [Google Scholar] [CrossRef]
- Fernandes, F.; Araújo, D.; De Paulo, D.; Neri-numa, I.A.; Dias-audibert, F.L.; Delafiori, J.; Gama, F.; Souza, D. Influence of High-Intensity Ultrasound on Color, Chemical Composition and Antioxidant Properties of Araçá-Boi Pulp. Food Chem. 2021, 338, 127747. [Google Scholar] [CrossRef]
- García-Reyes, R.H.; Narváez-Cuenca, C.E. The Effect of Pasteurization on the Quality of Frozen Arazá (Eugenia stipitata Mc Vaugh) Pulp. J. Food Qual. 2010, 33, 632–645. [Google Scholar] [CrossRef]
- Narváez-Cuenca, C.E.; Silva-Bustos, K.J.; Restrepo-Sánchez, L.P. Effects of Thermal Processing Combined with Sucrose on the Vitamin C Content, Total Phenolic Content, Antioxidant Activity, and Sensory Characteristics of Arazá (Eugenia stipitata McVaugh) Purée during Frozen Storage. Agron. Colomb. 2015, 33, 212–219. [Google Scholar] [CrossRef]
- Shofian, N.M.; Hamid, A.A.; Osman, A.; Saari, N.; Anwar, F.; Dek, M.S.P.; Hairuddin, M.R. Effect of Freeze-Drying on the Antioxidant Compounds and Antioxidant Activity of Selected Tropical Fruits. Int. J. Mol. Sci. 2011, 12, 4678–4692. [Google Scholar] [CrossRef]
- Reyes-Álvarez, C.A.; Lanari, M.C. Storage Stability of Freeze-Dried Arazá (Eugenia stipitata Mc Vaugh) Powders. Implications of Carrier Type and Glass Transition. LWT 2020, 118, 108842. [Google Scholar] [CrossRef]
- Doseděl, M.; Jirkovský, E.; Macáková, K.; Krčmová, L.K.; Javorská, L.; Pourová, J.; Mercolini, L.; Remião, F.; Nováková, L.; Mladěnka, P. Vitamin c—Sources, Physiological Role, Kinetics, Deficiency, Use, Toxicity, and Determination. Nutrients 2021, 13, 615. [Google Scholar] [CrossRef]
- Hemilä, H. Vitamin C and Infections. Nutrients 2017, 9, 339. [Google Scholar] [CrossRef]
- Klimant, E.; Wright, H.; Rubin, D.; Seely, D.; Markman, M. Intravenous Vitamin C in the Supportive Care of Cancer Patients: A Review and Rational Approach. Curr. Oncol. 2018, 25, 139–148. [Google Scholar] [CrossRef]
- Covarrubias-Pinto, A.; Acuña, A.I.; Beltrán, F.A.; Torres-Díaz, L.; Castro, M.A. Old Things New View: Ascorbic Acid Protects the Brain in Neurodegenerative Disorders. Int. J. Mol. Sci. 2015, 16, 28194–28217. [Google Scholar] [CrossRef]
- Shi, L.; Rath, M.; Niedzwiecki, A. Dietary Vitamin C and Age-Induced Lipid and Hormonal Metabolic Changes in a Humanized Mouse Model Not Synthesizing Vitamin C and Producing Lipoprotein(a) [Gulo (-/-); Lp(a)+]. J. Nutr. Metab. 2021, 2021, 1–8. [Google Scholar] [CrossRef]
- Pearson, J.F.; Pullar, J.M.; Wilson, R.; Spittlehouse, J.K.; Vissers, M.C.M.; Skidmore, P.M.L.; Willis, J.; Cameron, V.A.; Carr, A.C. Vitamin C Status Correlates with Markers of Metabolic and Cognitive Health in 50-Year-Olds: Findings of the CHALICE Cohort Study. Nutrients 2017, 9, 831. [Google Scholar] [CrossRef]
- Guo, H.; Ding, J.; Liu, Q.; Li, Y.; Liang, J.; Zhang, Y. Vitamin C and Metabolic Syndrome: A Meta-Analysis of Observational Studies. Front. Nutr. 2021, 8, 728880. [Google Scholar] [CrossRef]
- Jideani, A.I.O.; Silungwe, H.; Takalani, T.; Omolola, A.O.; Udeh, H.O.; Anyasi, T.A. Antioxidant-Rich Natural Fruit and Vegetable Products and Human Health. Int. J. Food Prop. 2021, 24, 41–67. [Google Scholar] [CrossRef]
- Crozier, A.; Jaganath, I.B.; Clifford, M.N. Dietary Phenolics: Chemistry, Bioavailability and Effects on Health. Nat. Prod. Rep. 2009, 26, 1001–1043. [Google Scholar] [CrossRef]
- Reynertson, K.A.; Yang, H.; Jiang, B.; Basile, M.J.; Kennelly, E.J. Quantitative Analysis of Antiradical Phenolic Constituents from Fourteen Edible Myrtaceae Fruits. Food Chem. 2008, 109, 883–890. [Google Scholar] [CrossRef]
- Cheynier, V. Phenolic Compounds: From Plants to Foods. Phytochem. Rev. 2012, 11, 153–177. [Google Scholar] [CrossRef]
- Zekrumah, M.; Begua, P.; Razak, A.; Wahab, J.; Moffo, N.; Ivane, A.; Oman, M.; Elrashied, H.; Zou, X.; Zhang, D. Role of Dietary Polyphenols in Non-Communicable Chronic Disease Prevention, and Interactions in Food Systems: An Overview. Nutrition 2023, 112, 112034. [Google Scholar] [CrossRef]
- Sun, C.; Zhao, C.; Guven, E.C.; Paoli, P.; Simal-Gandara, J.; Ramkumar, K.M.; Wang, S.; Buleu, F.; Pah, A.; Turi, V.; et al. Dietary Polyphenols as Antidiabetic Agents: Advances and Opportunities. Food Front. 2020, 1, 18–44. [Google Scholar] [CrossRef]
- Bruins, M.J.; Van Dael, P.; Eggersdorfer, M. The Role of Nutrients in Reducing the Risk for Noncommunicable Diseases during Aging. Nutrients 2019, 11, 85. [Google Scholar] [CrossRef]
- Llerena, W.; Navarro, M.; Ort, J.; Ang, I.; Carrillo, W.; Chasquis, L.; Payamino, R.; Agropecuarias, I.; Catalina, E.S.; Olivos, E.L.; et al. Effect of Modified Atmosphere Packaging (MAP) in the Antioxidant Capacity of Arazá (Eugenia stipitata McVaugh), Naranjilla (Solanum Quitoense Lam.) and Tree Tomato (Solanum Betaceum Cav.) Fruits from Ecuador. J. food Process. Preserv. 2020, 44, 14757. [Google Scholar] [CrossRef]
- Soares, J.C.; Rosalen, P.L.; Lazarini, J.G.; Massarioli, A.P.; da Silva, C.F.; Nani, B.D.; Franchin, M.; de Alencar, S.M. Comprehensive Characterization of Bioactive Phenols from New Brazilian Superfruits by LC-ESI-QTOF-MS, and Their ROS and RNS Scavenging Effects and Anti-Inflammatory Activity. Food Chem. 2019, 281, 178–188. [Google Scholar] [CrossRef]
- Cuellar, F.A.; Anzola, C.; Restrepo, P. Estudio de La Capacidad Antioxidante Del Arazá (Eugenia stipitata Mc Vaugh) Durante La Maduración. Rev. Colomb. Quim. 2013, 42, 213–325. [Google Scholar]
- Galeano, P.; Paladines, M.; Cuellar, N.; Ortiz, F.; Silva, Y.; Velasquez, H. Phenolic Content and Antioxidant Activity of Araza (Eagenia Stipitata Mc Vaugh) in Different Stages of Maturity. Rev. Fac. Ciencias Agropecu. 2010, 2, 28–34. [Google Scholar]
- Soria, M.; Mariana, C.; Calado, B.; Prentice, C. Microparticles of Eugenia stipitata Pulp Obtained by Spray-Drying Guided by DSC: An Analysis of Bioactivity and in Vitro Gastrointestinal Digestion. Food Chem. 2021, 334, 127557. [Google Scholar] [CrossRef]
- Sarkar, D.; Shetty, K. Metabolic Stimulation of Plant Phenolics for Food Preservation and Health. Annu. Rev. Food Sci. Technol. 2014, 5, 395–413. [Google Scholar] [CrossRef] [PubMed]
- Ong, K.W.; Hsu, A.; Tan, B.K.H. Anti-Diabetic and Anti-Lipidemic Effects of Chlorogenic Acid Are Mediated by Ampk Activation. Biochem. Pharmacol. 2013, 85, 1341–1351. [Google Scholar] [CrossRef] [PubMed]
- Fatima, N.; Hafizur, R.M.; Hameed, A.; Ahmed, S.; Nisar, M.; Kabir, N. Ellagic Acid in Emblica Officinalis Exerts Anti-Diabetic Activity through the Action on β-Cells of Pancreas. Eur. J. Nutr. 2017, 56, 591–601. [Google Scholar] [CrossRef] [PubMed]
- Oršolić, N.; Sirovina, D.; Odeh, D.; Gajski, G.; Balta, V.; Šver, L.; Jembrek, M.J. Efficacy of Caffeic Acid on Diabetes and Its Complications in the Mouse. Molecules 2021, 26, 3262. [Google Scholar] [CrossRef]
- Xiao, J.B.; Högger, P. Dietary Polyphenols and Type 2 Diabetes: Current Insights and Future Perspectives. Curr. Med. Chem. 2015, 22, 23–38. [Google Scholar] [CrossRef] [PubMed]
- Kasprzak-Drozd, K.; Oniszczuk, T.; Stasiak, M.; Oniszczuk, A. Beneficial Effects of Phenolic Compounds on Gut Microbiota and Metabolic Syndrome. Int. J. Mol. Sci. 2021, 22, 3715. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chen, Z.; Zhao, X.; Xie, H.; Du, L.; Gao, H.; Xie, C. Mechanisms of Kaempferol in the Treatment of Diabetes: A Comprehensive and Latest Review. Front. Endocrinol. 2022, 13, 990299. [Google Scholar] [CrossRef]
- Yi, H.; Peng, H.; Wu, X.; Xu, X.; Kuang, T.; Zhang, J.; Du, L.; Fan, G. The Therapeutic Effects and Mechanisms of Quercetin on Metabolic Diseases: Pharmacological Data and Clinical Evidence. Oxid. Med. Cell. Longev. 2021, 2021, 6678662. [Google Scholar] [CrossRef]
- Kumar, N.; Goel, N. Phenolic Acids: Natural Versatile Molecules with Promising Therapeutic Applications. Biotechnol. Reports 2019, 24, e00370. [Google Scholar] [CrossRef]
- Anantharaju, P.G.; Gowda, P.C.; Vimalambike, M.G.; Madhunapantula, S.V. An Overview on the Role of Dietary Phenolics for the Treatment of Cancers. Nutr. J. 2016, 15, 99. [Google Scholar] [CrossRef] [PubMed]
- Abotaleb, M.; Liskova, A.; Kubatka, P.; Büsselberg, D. Therapeutic Potential of Plant Phenolic Acids in the Treatment of Cancer. Biomolecules 2020, 10, 221. [Google Scholar] [CrossRef] [PubMed]
- Csepregi, R.; Temesfői, V.; Das, S.; Alberti, Á.; Tóth, C.A.; Herczeg, R.; Papp, N.; Kőszegi, T. Cytotoxic, Antimicrobial, Antioxidant Properties and Effects on Cell Migration of Phenolic Compounds of Selected Transylvanian Medicinal Plants. Antioxidants 2020, 9, 166. [Google Scholar] [CrossRef]
- Kong, L.; Zhang, Y.; Feng, Z.; Dong, J.; Zhang, H. Phenolic Compounds of Propolis Alleviate Lipid Metabolism Disorder. Evidence-based Complement. Altern. Med. 2021, 2021, 7615830. [Google Scholar] [CrossRef] [PubMed]
- Tsakiroglou, P.; Vandenakker, N.E.; Del Bo’, C.; Riso, P.; Klimis-Zacas, D. Role of Berry Anthocyanins and Phenolic Acids on Cell Migration and Angiogenesis: An Updated Overview. Nutrients 2019, 11, 1075. [Google Scholar] [CrossRef] [PubMed]
- Rudrapal, M.; Khairnar, S.J.; Khan, J.; Dukhyil, A.B.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights Into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. Front. Pharmacol. 2022, 13, 806470. [Google Scholar] [CrossRef]
- Sun, T.; Rao, S.; Zhou, X.; Li, L. Plant Carotenoids: Recent Advances and Future Perspectives. Mol. Hortic. 2022, 2, 3. [Google Scholar] [CrossRef]
- Fiedor, J.; Burda, K. Potential Role of Carotenoids as Antioxidants in Human Health and Disease. Nutrients 2014, 6, 466. [Google Scholar] [CrossRef]
- Amorim, I.S.; Cristine, M.; Almeida, S.; Patrícia, R.; Chaves, F. Technological Applications and Color Stability of Carotenoids Extracted from Selected Amazonian Fruits. Food Sci. Technol. 2022, 2061, e01922. [Google Scholar] [CrossRef]
- Berni, P.; Campoli, S.S.; Negri, T.C.; de Toledo, N.M.V.; Canniatti-Brazaca, S.G. Non-Conventional Tropical Fruits: Characterization, Antioxidant Potential and Carotenoid Bioaccessibility. Plant Foods Hum. Nutr. 2019, 74, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Moeller, S.M.; Jacques, P.F.; Blumberg, J.B. The Potential Role of Dietary Xanthophylls in Cataract and Age-Related Macular Degeneration. J. Am. Coll. Nutr. 2000, 19, 522S–527S. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.L.; Norhaizan, M.E. Carotenoids: How Effective Are They to Prevent Age-Related Diseases? Molecules 2019, 24, 1801. [Google Scholar] [CrossRef] [PubMed]
- Terao, J. Revisiting Carotenoids as Dietary Antioxidants for Human Health and Disease Prevention. Food Funct. 2023, 14, 7799–7824. [Google Scholar] [CrossRef] [PubMed]
- Barros, M.P.; Rodrigo, M.J.; Zacarias, L. Dietary Carotenoid Roles in Redox Homeostasis and Human Health. J. Agric. Food Chem. 2018, 66, 5733–5740. [Google Scholar] [CrossRef]
- Kaulmann, A.; Bohn, T. Carotenoids, Inflammation, and Oxidative Stress-Implications of Cellular Signaling Pathways and Relation to Chronic Disease Prevention. Nutr. Res. 2014, 34, 907–929. [Google Scholar] [CrossRef]
- Chew, E.Y.; Clemons, T.E.; Agrón, E.; Domalpally, A.; Keenan, T.D.L.; Vitale, S.; Weber, C.; Smith, D.C.; Christen, W.; Group, A.R. Long-Term Outcomes of Adding Lutein/Zeaxanthin and ω-3 Fatty Acids to the AREDS Supplements on Age-Related Macular Degeneration Progression: AREDS2 Report 28. JAMA Ophthalmol. 2022, 140, 692–698. [Google Scholar] [CrossRef]
- Crupi, P.; Faienza, M.F.; Naeem, M.Y.; Corbo, F.; Clodoveo, M.L.; Muraglia, M. Overview of the Potential Beneficial Effects of Carotenoids on Consumer Health and Well-Being. Antioxidants 2023, 12, 1069. [Google Scholar] [CrossRef]
- Gammone, M.A.; Riccioni, G.; D’Orazio, N. Carotenoids: Potential Allies of Cardiovascular Health? Food Nutr. Res. 2015, 59, 26762. [Google Scholar] [CrossRef]
- Ribeiro, D.; Freitas, M.; Silva, A.M.S.; Carvalho, F.; Fernandes, E. Antioxidant and Pro-Oxidant Activities of Carotenoids and Their Oxidation Products. Food Chem. Toxicol. 2018, 120, 681–699. [Google Scholar] [CrossRef]
- Neri-numa, I.A.; Carvalho-silva, L.B.; Pinto, J.; Gomes, L.; Tiemi, M.; Emilson, J.; Ferreira, M.; Ernesto, J.; Carvalho, D.; Lucia, A.; et al. Evaluation of the Antioxidant, Antiproliferative and Antimutagenic Potential of Araçá-Boi Fruit ( Eugenia stipitata Mc Vaugh—Myrtaceae) of the Brazilian Amazon Forest. FRIN 2013, 50, 70–76. [Google Scholar] [CrossRef]
- Llerena, W.; Samaniego, I.; Angós, I.; Brito, B.; Ortiz, B.; Carrillo, W. Biocompounds Content Prediction in Ecuadorian Fruits Using a Mathematical Model. Foods 2019, 8, 284. [Google Scholar] [CrossRef]
- Lizcano, L.J.; Bakkali, F.; Begoña Ruiz-Larrea, M.; Ignacio Ruiz-Sanz, J. Antioxidant Activity and Polyphenol Content of Aqueous Extracts from Colombian Amazonian Plants with Medicinal Use. Food Chem. 2010, 119, 1566–1570. [Google Scholar] [CrossRef]
- Virgolin, L.B.; Seixas, F.R.F.; Janzantti, N.S. Composition, Content of Bioactive Compounds, and Antioxidant Activity of Fruit Pulps from the Brazilian Amazon Biome. Pesqui. Agropecu. Bras. 2017, 52, 933–941. [Google Scholar] [CrossRef]
- Genovese, M.I.; Da Silva Pinto, M.; De Souza Schmidt Gonçalves, A.E.; Lajolo, F.M. Bioactive Compounds and Antioxidant Capacity of Exotic Fruits and Commercial Frozen Pulps from Brazil. Food Sci. Technol. Int. 2008, 14, 207–214. [Google Scholar] [CrossRef]
- Ribeiro, A.B.; Bonafé, E.G.; Silva, B.C.; Montanher, P.F.; Santos Júnior, O.O.; Boeing, J.S.; Visentainer, J.V. Antioxidant Capacity, Total Phenolic Content, Fatty Acids and Correlation by Principal Component Analysis of Exotic and Native Fruits from Brazil. J. Braz. Chem. Soc. 2013, 24, 797–804. [Google Scholar] [CrossRef]
- Souza, A.C.L.; Ramos, A.S.; Mar, J.M.; Boeira, L.S.; de Bezerra, J.A.; Machado, M.B. Alcoholic Beverages from Aracá-Boi Fruit: Quantification of Antioxidant Compounds by NMR ERETIC2. J Food Sci Technol 2020, 57, 4733–4738. [Google Scholar] [CrossRef]
- Guimarães, A.C.G.; de Souza Gomes, M.; Zacaroni Lima, L.M.; Sales, P.F.; da Cunha, M.C.; Rodrigues, L.J.; de Barros, H.E.A.; Pires, C.R.F.; dos Santos, V.F.; Lima Natarelli, C.V.; et al. Application of Chemometric Techniques In The Evaluation of Bioactive Compounds and Antioxidant Activity of Fruit From Brazilian Cerrado. J. Food Meas. Charact. 2022, 17, 2095–2106. [Google Scholar] [CrossRef]
- Rosan Fortunato Seixas, F.; Kempfer Bassoli, B.; Borghi Virgolin, L.; Chancare Garcia, L.; Soares Janzantti, N. Physicochemical Properties and Effects of Fruit Pulps from the Amazon Biome on Physiological Parameters in Rats. Nutrients 2021, 13, 1484. [Google Scholar] [CrossRef]
- Balcázar-Zumaeta, C.; Castro-Alayo, E.; Medina-Mendoza, M.; Muños-Astecker, L.; Torrejón-Valqui, L.; Rodriguez-Perez, R.; Rojas-Ocampo, E.; Cayo-Colca, I. Physical and Chemical Properties of 70% Cocoa Dark Chocolate Mixed with Freeze-Dried Arazá (Eugenia stipitata) Pulp. Prev. Nutr. Food Sci. 2022, 27, 474–482. [Google Scholar] [CrossRef] [PubMed]
- De Souza Schmidt Gonçalves, A.E.; Lajolo, F.M.; Genovese, M.I. Chemical Composition and Antioxidant/Antidiabetic Potential of Brazilian Native Fruits and Commercial Frozen Pulps. J. Agric. Food Chem. 2010, 58, 4666–4674. [Google Scholar] [CrossRef] [PubMed]
- Pisoschi, A.M.; Negulescu, G.P. Methods for Total Antioxidant Activity Determination: A Review. Biochem. Anal. Biochem. 2012, 1, 1000106. [Google Scholar] [CrossRef]
- Aftab, T.; Rehman, K.; Basis, M. Antioxidant Defense in Plants; Springer: Berlin/Heidelberg, Germany, 2022; ISBN 9789811679803. [Google Scholar]
- Uarrota, V.G.; Stefen, D.L.V.; Leolato, L.S.; Gindri, D.M.; Nerling, D. Revisiting Carotenoids and Their Role in Plant Stress Responses: From Biosynthesis to Plant Signaling Mechanisms during Stress; Springer: Cham, Switzerland, 2018; ISBN 9783319750880. [Google Scholar]
- Salih, A.M.; Al-Qurainy, F.; Nadeem, M.; Tarroum, M.; Khan, S.; Shaikhaldein, H.O.; Al-Hashimi, A.; Alfagham, A.; Alkahtani, J. Optimization Method for Phenolic Compounds Extraction from Medicinal Plant (Juniperus Procera) and Phytochemicals Screening. Molecules 2021, 26, 7454. [Google Scholar] [CrossRef] [PubMed]
- Tourabi, M.; Metouekel, A.; Ghouizi, A.E.L.; Jeddi, M.; Nouioura, G.; Laaroussi, H.; Hosen, E.; Benbrahim, K.F.; Bourhia, M.; Salamatullah, A.M.; et al. Efficacy of Various Extracting Solvents on Phytochemical Composition, and Biological Properties of Mentha Longifolia L. Leaf Extracts. Sci. Rep. 2023, 13, 18028. [Google Scholar] [CrossRef] [PubMed]
- Iloki-Assanga, S.B.; Lewis-Luján, L.M.; Lara-Espinoza, C.L.; Gil-Salido, A.A.; Fernandez-Angulo, D.; Rubio-Pino, J.L.; Haines, D.D. Solvent Effects on Phytochemical Constituent Profiles and Antioxidant Activities, Using Four Different Extraction Formulations for Analysis of Bucida Buceras L. and Phoradendron Californicum Complementary and Alternative Medicine. BMC Res. Notes 2015, 8, 396. [Google Scholar] [CrossRef]
- Saleem, S.M.; Bhattacharya, S.; Deshpande, N. Non-Communicable Diseases, Type 2 Diabetes, and Influence of Front of Package Nutrition Labels on Consumer’s Behaviour: Reformulations and Future Scope. Diabetes Metab. Syndr. Clin. Res. Rev. 2022, 16, 102422. [Google Scholar] [CrossRef]
- Gothai, S.; Ganesan, P.; Park, S.Y.; Fakurazi, S.; Choi, D.K.; Arulselvan, P. Natural Phyto-Bioactive Compounds for the Treatment of Type 2 Diabetes: Inflammation as a Target. Nutrients 2016, 8, 461. [Google Scholar] [CrossRef]
- Lankatillake, C.; Luo, S.; Flavel, M.; Lenon, G.B.; Gill, H.; Huynh, T.; Dias, D.A. Screening Natural Product Extracts for Potential Enzyme Inhibitors: Protocols, and the Standardisation of the Usage of Blanks in α-Amylase, α-Glucosidase and Lipase Assays. Plant Methods 2021, 17, 3. [Google Scholar] [CrossRef]
- Rodríguez-Yoldi, M.J. Anti-Inflammatory and Antioxidant Properties of Plant Extracts. Antioxidants 2021, 10, 921. [Google Scholar] [CrossRef]
- Reyes-Alvarez, C.A.; Gamboa-Santos, J.; Lanari, M.C. Optimization of the Processing Conditions for Producing Osmo-Dehydrated Arazá (Eugenia Stipitata, McVaugh) and Evaluation of Its Antioxidant Content and Activity. J. Berry Res. 2022, 12, 149–164. [Google Scholar] [CrossRef]
- Quintero, W.; Guerrero, D.; Diaz, R.; Hernández, M.S.; Fernández-Trujillo, J.P. Amazonian Fruits, Sources of New Beverages. Acta Hort. 2020, 1274, 125–129. [Google Scholar] [CrossRef]
- Hernández, M.S.; Gutiérrez-Bravo, R.H.; Quiñones, Y.; Medina, S.; Fernández-Trujillo, J.P. Araza: A Proposal for an Innovative Snack. Acta Hort. 2018, 1205, 925–930. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acosta-Vega, L.; Moreno, D.A.; Cuéllar Álvarez, L.N. Arazá: Eugenia stipitata Mc Vaught as a Potential Functional Food. Foods 2024, 13, 2310. https://doi.org/10.3390/foods13152310
Acosta-Vega L, Moreno DA, Cuéllar Álvarez LN. Arazá: Eugenia stipitata Mc Vaught as a Potential Functional Food. Foods. 2024; 13(15):2310. https://doi.org/10.3390/foods13152310
Chicago/Turabian StyleAcosta-Vega, Luis, Diego A. Moreno, and Liceth N. Cuéllar Álvarez. 2024. "Arazá: Eugenia stipitata Mc Vaught as a Potential Functional Food" Foods 13, no. 15: 2310. https://doi.org/10.3390/foods13152310
APA StyleAcosta-Vega, L., Moreno, D. A., & Cuéllar Álvarez, L. N. (2024). Arazá: Eugenia stipitata Mc Vaught as a Potential Functional Food. Foods, 13(15), 2310. https://doi.org/10.3390/foods13152310