Effect of Chickpea (Cicer arietinum L.) Flour Incorporation on Quality, Antioxidant Properties, and Bioactive Compounds of Shortbread Cookies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of Shortbread Cookies
2.3. Sensory Evaluation
2.4. Color Parameter Analysis
2.5. Texture Parameter Analysis
2.6. Water Activity
2.7. Water Absorption Capacity (WAC) and Oil Absorption Capacity (OAC) of Flours
2.8. Extract Preparation
2.9. Chemical Determinations
2.9.1. Composition
2.9.2. Fiber Content
2.9.3. Bioactive Compound Content
2.9.4. Antioxidant Activities
2.9.5. Phytate Content
2.10. Chromatographic Analyses
2.10.1. Determination of Phenolic Compounds by HPLC (Polyphenol Profile)
2.10.2. Determination of Hydroxymethylfurfural (HMF) Content
2.11. Statistical Analysis
3. Results and Discussion
3.1. Sensory Properties of Shortbread Cookies
3.2. Color Parameters Analysis
3.3. Texture Parameter Analysis
3.4. Nutrient Composition
3.5. Fiber Content
3.6. Bioactive Compound Content and Antioxidant Activities
3.7. Hydroxymethylfurfural (HMF) Content
3.8. Phytates
3.9. Polyphenol Profile
3.10. Principal Component Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaur, R.; Prasad, K. Technological, processing and nutritional aspects of chickpea (Cicer arietinum)—A review. Trends Food Sci. Technol. 2021, 109, 448–463. [Google Scholar] [CrossRef]
- Merga, B.; Haji, J. Economic importance of chickpea: Production, value, and world trade. Cogent Food Agric. 2019, 5, 1615718. [Google Scholar] [CrossRef]
- Gurumurthy, S.; Singh, J.; Basu, P.S.; Meena, S.K.; Rane, J.; Singh, N.P.; Hazra, K.K. Increased significance of chickpea (Cicer arietinum L.) senescence trait under water-deficit environment. Environ. Chal. 2022, 8, 00565. [Google Scholar] [CrossRef]
- Boukid, F.; Zannini, E.; Carini, E.; Vittadini, E. Pulses for bread fortification: A necessity or a choice? Trends Food Sci. Technol. 2019, 88, 416–428. [Google Scholar] [CrossRef]
- Jukanti, A.K.; Gaur, P.M.; Gowda, C.L.L.; Chibbar, R.N. Nutritional quality and health benefits of chickpea (Cicer arietinum L.): A review. Br. J. Nutr. 2012, 108, S11–S26. [Google Scholar] [CrossRef] [PubMed]
- Costantini, M.; Summo, C.; Centrone, M.; Rybicka, I.; D’Agostino, M.; Annicchiarico, P.; Caponio, F.; Pavan, S.; Tamma, G.; Pasqualone, A. Macro- and micro-nutrient composition and antioxidant activity of chickpea and pea accessions. Pol. J. Food Nutr. Sci. 2021, 71, 177–185. [Google Scholar] [CrossRef]
- Seveg, A.; Badani, H.; Galili, L.; Hovav, R.; Kapulnik, Y.; Shomer, I.; Galili, S. Total phenolic content and antioxidant activity of chickpea (Cicer arietinum L.) as affected by soaking and cooking conditions. Food Nutr. Sci. 2011, 2, 724–730. [Google Scholar] [CrossRef]
- Gao, Y.; Yao, Y.; Zhu, Y.; Ren, G. Isoflavones in chickpeas inhibit adipocyte differentiation and prevent insulin resistance in 3T3-L1 cells. J. Agric. Food Chem. 2015, 63, 9696–9703. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.K.; Gupta, K.; Sharma, A.; Das, M.; Ansari, I.A.; Dwivedi, P.D. Health risks and benefits of chickpea (Cicer arietinum L.) consumption. J. Agric. Food Chem. 2017, 65, 6–22. [Google Scholar] [CrossRef]
- Barbana, C.; Boye, J.I. Angiotensin-I-converting enzyme inhibitory activity of chickpea and pea protein hydrolysates. Food Res. Int. 2010, 43, 1642–1649. [Google Scholar] [CrossRef]
- DeAngelis, D.; Pasqualone, A.; Allegretta, I.; Porfido, C.; Terzano, R.; Squeo, G.; Summo, C. Antinutritional factors, mineral composition and functional properties of dry fractionated flours as influenced by the type of pulse. Heliyon 2021, 7, e06177. [Google Scholar] [CrossRef] [PubMed]
- Laelago, T.; Haile, A.; Fekadu, T. Production and quality evaluation of cookies enriched with β-carotene by blending orange-fleshed sweet potato and wheat flours for alleviation of nutritional insecurity. Int. J. Food Sci. Nutr. Eng. 2015, 5, 209–217. [Google Scholar] [CrossRef]
- Clark, J.L.; Taylor, C.G.; Zahradka, P. Rebelling against the (insulin) resistance: A review of the proposed insulin-sensitizing actions of soybeans, chickpeas, and their bioactive compounds. Nutrients 2018, 10, 434. [Google Scholar] [CrossRef] [PubMed]
- Goñi, I.; Valentín-Gamazo, C. Chickpea flour ingredient slows glycemic response to pasta in healthy volunteers. Food Chem. 2003, 81, 511–515. [Google Scholar] [CrossRef]
- Nestel, P.; Cehun, M.; Chronopoulos, A. Effects of long-term consumption and single meals of chickpeas on plasma glucose, insulin, and triacylglycerol concentrations. Am. J. Clin. Nutr. 2004, 79, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Fan, Y.; Wang, X.; Xia, M.; Cai, Y. In vitro and in vivo digestibility of pea and chickpea powder prepared by cooking and drying treatment. Int. J. Food Prop. 2020, 23, 1187–1199. [Google Scholar] [CrossRef]
- Bajka, B.H.; Pinto, A.M.; Ahn-Jarvis, J.; Ryden, P.; Perez-Moral, N.; van der Schoot, A.; Stocchi, C.; Bland, C.; Berry, S.E.; Ellis, P.R.; et al. The impact of replacing wheat flour with cellular legume powder on starch bioaccessibility, glycaemic response and bread roll quality: A double-blind randomised controlled trial in healthy participants. Food Hydrocoll. 2021, 114, 106565. [Google Scholar] [CrossRef] [PubMed]
- Akram, A.; Yasmin, I.; Sharif, H.R.; Nayik, G.A.; Ramniwas, S.; Siddiqui, S.A. Compositional profiling and bioefficacy studies of pulses-supplemented isocaloric designer biscuits for recently diagnosed diabetic individuals. Food Chem. X 2024, 22, 101305. [Google Scholar] [CrossRef]
- Xue, J.; Ngadi, M. Rheological properties of batter systems formulated using different flour combinations. J. Food Eng. 2006, 77, 334–341. [Google Scholar] [CrossRef]
- Matos, M.E.; Sanz, T.; Rosell, C.M. Establishing the function of proteins on the rheological and quality properties of rice based gluten free muffins. Food Hydrocoll. 2014, 35, 150–158. [Google Scholar] [CrossRef]
- Singh, J.P.; Kaur, A.; Singh, N. Development of eggless gluten-free rice muffins utilizing black carrot dietary fibre concentrate and xanthan gum. J. Food Sci. Technol. 2016, 53, 1269–1278. [Google Scholar] [CrossRef]
- Yadav, R.B.; Yadav, B.S.; Dhull, N. Effect of incorporation of plantain and chickpea flours on the quality characteristics of biscuits. J. Food Sci. Technol. 2012, 49, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Luxita, S.; Puneeta, A. Organoleptic and physicochemical properties of tarts developed from quinoa, chickpea and oats flour and their ranking by tops is method. Curr. Res. Nutr. Food Sci. 2019, 7, 457–468. [Google Scholar] [CrossRef]
- Mikulec, A.; Kowalski, S.; Łapczyńska-Kordon, B. Influence of different flours on the quality of shortbread. Acta Agroph. 2017, 24, 101–110. [Google Scholar]
- Singh, A.; Kumar, P. Optimization of gluten free biscuit from foxtail, copra meal and amaranth. Food Sci. Technol. 2018, 39, 43–49. [Google Scholar] [CrossRef]
- Zieliński, H.; Ciesarová, Z.; Kukurová, K.; Zielinska, D.; Szawara-Nowak, D.; Starowicz, M.; Wronkowska, M. Effect of fermented and unfermented buckwheat flour on functional properties of gluten-free muffins. J. Food Sci. Technol. 2017, 54, 1425–1432. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhang, Y.; Wang, W.; Li, Y. Advanced properties of gluten-free cookies, cakes, and crackers: A review. Trends Food Sci. Technol. 2020, 103, 200–213. [Google Scholar] [CrossRef]
- Thongram, S.; Tanwar, B.; Chauhan, A.; Kumar, V. Physicochemical and organoleptic properties of cookies incorporated with legume flours. Cogent Food Agric. 2016, 2, 1172389. [Google Scholar] [CrossRef]
- Padalino, L.; Mastro, M.; Lecce, L.; Spinelli, S.; Conte, A.; Del Nobile, M.A. Optimization and characterization of gluten-free spaghetti enriched with chickpea flour. Int. J. Food Sci. Nutr. 2015, 66, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Sabanis, D.; Makri, E.; Doxastakis, G. Effect of durum flour enrichment with chickpea flour on the characteristics of dough and lasagne. J. Sci. Food Agric. 2006, 86, 1938–1944. [Google Scholar] [CrossRef]
- Quazib, M.; Garzon, R.; Zaidi, F.; Rosell, C.M. Germinated, toasted and cooked chickpea as ingredients for breadmaking. J. Food Sci. Technol. 2016, 53, 2664–2672. [Google Scholar] [CrossRef]
- Melini, F.; Melini, V.; Luziatelli, F.; Ruzzi, M. Current and forward-looking approaches to technological and nutritional improvements of gluten-free bread with legume flours: A critical review. Compreh. Rev. Food Sci. Food Saf. 2017, 16, 1101–1122. [Google Scholar] [CrossRef] [PubMed]
- Bayomy, H.; Alamri, E. Technological and nutritional properties of instant noodles enriched with chickpea or lentil flour. J. King Saud Univ. Sci. 2022, 34, 101833. [Google Scholar] [CrossRef]
- Han, J.; Janz, J.A.M.; Gerlat, M. Development of gluten-free cracker snacks using pulse flours and fractions. Food Res. Int. 2010, 43, 627–633. [Google Scholar] [CrossRef]
- Alvarez, M.D.; Herranz, B.; Jiménez, M.J.; Canet, W. End-product quality characteristics and consumer response of chickpea flour-based gluten-free muffins containing corn starch and egg white. J. Texture Stud. 2017, 48, 550–561. [Google Scholar] [CrossRef] [PubMed]
- Torra, M.; Belorio, M.; Ayuso, M.; Carocho, M.; Ferreira, I.C.F.R.; Barros, L.; Gómez, M. Chickpea and chestnut flours as non-gluten alternatives in cookies. Foods 2021, 10, 911. [Google Scholar] [CrossRef] [PubMed]
- Cookies Market Size, Share & Trends Analysis Report By Product (Bar, Molded, Rolled, Drop), By Distribution Channel (Offline, Online), By Region (North America, APAC, MEA, Europe, CSA), And Segment Forecasts, 2019–2025. Available online: https://www.grandviewresearch.com/industry-analysis/cookies-market (accessed on 4 May 2024).
- Healthy Biscuits Market Size, Share & Trends Analysis Report By Type (Functional & Digestive, Gluten-free, Reduced Calorie), By Distribution Channel, By Region, And Segment Forecasts, 2020–2025. Available online: https://www.grandviewresearch.com/industry-analysis/healthy-biscuits-market (accessed on 4 May 2024).
- Lu, L.; He, C.; Liu, B.; Wen, Q.; Xia, S. Incorporation of chickpea flour into biscuits improves the physicochemical properties and in vitro starch digestibility. LWT–Food Sci. Technol. 2022, 159, 113222. [Google Scholar] [CrossRef]
- Ambroziak, Z. Produkcja Piekarsko-Ciastkarska (Bakery and Confectionery Production), cz. 2; WsiP: Warszawa, Poland, 2012. (In Polish) [Google Scholar]
- PN-ISO 5496:1997; Analiza Sensoryczna—Metodologia—Wprowadzenie i Szkolenie Oceniających w Wykrywaniu i Rozpoznawaniu Zapachów. (Sensory Analysis. Methodology. Introduction and Training of Assessors in Odor Detection and Recognition). ISO: Geneva, Switzerland, 1997. (In Polish)
- PN-ISO 3972:2016-07; Analiza Sensoryczna—Metodyka—Metody Badania Wrażliwości Sensorycznej. (Sensory Analysis. Methodology. Method of Investigating Sensitivity of Taste). ISO: Geneva, Switzerland, 2016. (In Polish)
- BS EN ISO 8589:2010+A1:2014; Sensory Analysis. General Guidance for the Design of Test Rooms. ISO: Geneva, Switzerland, 2014.
- Krajewska, A.; Dziki, D. Enrichment of cookies with fruits and their by-products: Chemical composition, antioxidant properties, and sensory changes. Molecules 2023, 28, 4005. [Google Scholar] [CrossRef] [PubMed]
- ISO 4121:2003; Sensory Analysis—Guidelines for the Use of Quantitative Response Scale. ISO: Geneva, Switzerland, 2003.
- Samotyja, U.; Sielicka-Różyńska, M.; Klimczak, I. Badania Sensoryczne w Ocenie Jakości Produktów. (Sensory Research on Product Quality); Wyd. Naukowe UE: Poznań, Poland, 2020. (In Polish) [Google Scholar]
- Piagentini, A.; Martín, L.; Bernardi, C.; Güemes, D.; Pirovani, M.E. Color changes in fresh-cut fruits as affected by cultivar, chemical treatment, and storage time and temperature. In Color in Food: Technological and Psychophysical Aspects; Caivano, J.L., Buera, M.P., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 263–270. [Google Scholar]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.J. Colour measurement and analysis in fresh and processed foods: A review. Food Bioprocess Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Adekunte, A.; Tiwari, B.; Cullen, P.; Scannell, A.; O’Donnell, C. Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chem. 2010, 122, 500–507. [Google Scholar] [CrossRef]
- Mokrzycki, W.S.; Tatol, M. Colour difference ∆E—A survey. Mach. Graph. Vis. 2011, 20, 383–411. [Google Scholar]
- Ureta, M.M.; Olivera, D.F.; Salvadori, V.O. Quality attributes of muffins: Effect of baking operative conditions. Food Bioprocess Technol. 2014, 7, 463–470. [Google Scholar] [CrossRef]
- Krzywiński, T.; Domiszewski, Z.; Tokarczyk, G.; Bienkiewicz, G. Assessing usefulness of low-value fish in producing snack foods. Food Sci. Technol. Qual. 2014, 5, 111–123. [Google Scholar] [CrossRef]
- Wójtowicz, A.; Baltyn, P. Evaluation of selected quality features of popular potato snacks. Food Sci. Technol. Qual. 2006, 2, 112–123. [Google Scholar]
- Lewicki, P.P.; Marzec, A.; Kuropatwa, M. Influence of water activity on texture of corn flakes. Acta Agrophys. 2007, 9, 79–90. [Google Scholar]
- Ciurzyńska, A.; Galus, S.; Karwacka, M.; Janowicz, M. The sorption properties, structure and shrinkage of freeze-dried multi-vegetable snack bars in the aspect of the environmental water activity. LWT–Food Sci. Technol. 2022, 171, 114090. [Google Scholar] [CrossRef]
- Labuza, T.P.; Acott, K.; Tatini, S.R.; Lee, R.Y.; Flink, J.; McCall, W. Water activity determination: A collaborative study of different methods. J. Food Sci. 1976, 41, 910–917. [Google Scholar] [CrossRef]
- Chandra, S.; Singh, S.; Kumari, D. Evaluation of functional properties of composite flours and sensorial attributes of composite flour biscuits. J. Food Sci. Technol. 2015, 52, 3681–3688. [Google Scholar] [CrossRef] [PubMed]
- Michalska, A.; Ceglińska, A.; Amarowicz, R.; Konrad, M.; Szawara-Nowak, D.; Zieliński, H. Antioxidant contents and antioxidative properties of traditional rye breads. J. Agric. Food Chem. 2007, 55, 734–740. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Amaya, D.B.; Kimura, M. Harvest Plus Handbook for Carotenoid Analysis; Harvest Plus Technical Monograph 2; Harvest Plus: Washington, DC, USA, 2004. [Google Scholar]
- AOAC. Official Method of Analysis, 18th ed.; Method 950.36, 922.06, 925.10, and 923.03; Association of Officiating Analytical Chemists: Washington, DC, USA, 2015. [Google Scholar]
- AOAC 992.16; Całkowity Błonnik Pokarmowy—Enzymatyczny-Grawimetr. (Total Dietary Fiber, Enzymatic Method). Norma AOAC: Rockville, MD, USA, 1992. (In Polish)
- Turkmen, N.; Sari, F.; Velioglu, Y.S. The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chem. 2005, 93, 713–718. [Google Scholar] [CrossRef]
- Shraim, A.M.; Ahmed, T.A.; Rahman, M.M.; Hijji, Y.M. Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. LWT–Food Sci. Technol. 2021, 150, 111932. [Google Scholar] [CrossRef]
- Alam, S.; Shah, H.; Ullah, S.; Riaz, A. Comparative studies on storage stability of ferrous iron in whole wheat flour and flat bread (naan). Int. J. Food Sci. Nutr. 2007, 58, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Lebensm.-Wiss. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of ‘Antioxidant Power’: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Khantaphant, S.; Benjakul, S.; Ghomi, M.R. The effects of pretreatments on antioxidative activities of protein hydrolysate from the muscle of brownstripe red snapper (Lutjanus vitta). LWT–Food Sci. Technol. 2011, 44, 1139–1148. [Google Scholar] [CrossRef]
- Klimczak, I.; Małecka, M.; Szlachta, M.; Gliszczyńska-Świgło, A. Effect of storage on the content of polyphenols, vitamin C and the antioxidant activity of orange juices. J. Food Comp. Anal. 2007, 20, 313–322. [Google Scholar] [CrossRef]
- Tabaszewska, M.; Najgebauer-Lejko, D. The content of selected phytochemicals and in vitro antioxidant properties of rose hip (Rosa canina L.) tinctures. NFS J. 2020, 21, 50–56. [Google Scholar] [CrossRef]
- Tomf-Sarna, A. Wpływ Modyfikacji Procesu Produkcji na Jakość Czarnego Czosnku. (The Influence of Pretreatment Methods of Fresh Garlic on the Quality of Black Garlic). Ph.D. Thesis, University of Agricultural, Krakow, Poland, 2023. (In Polish). [Google Scholar]
- PN-EN 14177:2005; Artykuły Żywnościowe—Oznaczanie Patuliny w Klarownym i w Mętnym Soku Jabłkowym Oraz w Przecierze Jabłkowym—Metoda HPLC z Oczyszczaniem za Pomocą Ekstrakcji Ciecz-Ciecz. (Foodstuffs—Determination of Patulin in Clear and Cloudy Apple Juice and Puree—HPLC Method with Liquid/Liquid Partition Clean-Up). Polski Komitet Normalizacyjny: Warszawa, Poland, 2005. (In Polish)
- Dogruer, I.; Coban, B.; Baser, F.; Gulec, S.; Ozen, B. Techno-functional and in vitro digestibility properties of gluten-free cookies made from raw, pre-cooked, and germinated chickpea flours. Foods 2023, 12, 2829. [Google Scholar] [CrossRef]
- Demirkesen, I. Formulation of chestnut cookies and their rheological and quality characteristics. J. Food Qual. 2016, 39, 264–273. [Google Scholar] [CrossRef]
- Chevalier, S.; Colonna, P.; Buleon, A.; Della Valle, G. Physicochemical behaviors of sugars, lipids, and gluten in short dough and biscuit. J. Agric. Food Chem. 2000, 48, 1322–1326. [Google Scholar] [CrossRef] [PubMed]
- Schouten, M.A.; Fryganas, C.; Tappi, S.; Romani, S.; Fogliano, V. Influence of lupin and chickpea flours on acrylamide formation and quality characteristics of biscuits. Food Chem. 2023, 402, 134221. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Byars, J.A.; Liu, S.X. Navy bean flour particle size and protein content affect cake baking and batter quality. J. Food Sci. 2015, 80, E1229–E1234. [Google Scholar] [CrossRef] [PubMed]
- Isleroglu, H.; Beyhan, S. Prediction of baking quality using machine learning based intelligent models. Heat Mass Transf. 2020, 56, 2045–2055. [Google Scholar] [CrossRef]
- Assis, L.M.; Zavareze, E.; Radúnz, A.; Dias, Á.; Gutkoski, L.; Elias, M. Nutritional, technological and sensory properties of biscuits using replacing wheat flour with oat flour or parboiled rice flour. Alim. Nutr. Araraquara. 2009, 20, 15–24. [Google Scholar]
- Delgado-Andrade, C.; Olías, R.; Marín-Manzano, M.C.; Seiquer, I.; Clemente, A. chickpea seed flours improve the nutritional and the antioxidant profiles of traditional shortbread biscuits: Effects of in vitro gastrointestinal digestion. Antioxidants 2024, 13, 118. [Google Scholar] [CrossRef] [PubMed]
- Vinod, B.R.; Asrey, R.; Rudra, S.G.; Urhe, S.B.; Mishra, S. Chickpea as a promising ingredient substitute in gluten-free bread making: An overview of technological and nutritional benefits. Food Chem. Adv. 2023, 3, 100473. [Google Scholar] [CrossRef]
- Hall, C.; Hillen, C.; Garden Robinson, J. Composition, nutritional value, and health benefits of pulses. Cereal Chem. 2017, 94, 11–31. [Google Scholar] [CrossRef]
- De Almeida Costa, G.E.; Da Silva Queiroz-Monici, K.; Pissini Machado Reis, S.M.; De Oliveira, A.C. Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chem. 2006, 94, 327–330. [Google Scholar] [CrossRef]
- Pournaki, S.K.; Biswas, A.; Hall, C. Effects of storage conditions on chemistry and technological properties of different cultivars of chickpea. J. Agric. Food Res. 2024, 16, 101066. [Google Scholar] [CrossRef]
- Garcia-Valle, D.E.; Bello-Perez, L.A.; Tovar, J. Addition of chickpea markedly increases the indigestible carbohydrate content in semolina pasta as eaten. J. Sci. Food Agric. 2021, 101, 2869–2876. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, L.; Zhang, X.; Wang, M.; Liu, H.; Zhu, Y. Nutritional components, volatile constituents and antioxidant activities of 6 chickpea species. Food Biosci. 2021, 41, 100964. [Google Scholar] [CrossRef]
- Segev, A.; Badani, H.; Kapulnik, Y.; Shomer, I.; Oren-Shamir, M.; Galili, S. Determination of polyphenols, flavonoids, and antioxidant capacity in colored chickpea (Cicer arietinum L.). J. Food. Sci. 2023, 72, S115–S119. [Google Scholar] [CrossRef] [PubMed]
- Megías, C.; Cortés-Giraldo, I.; Alaiz, M.; Vioque, J.; Girón-Calle, J. Isoflavones in chickpea (Cicer arietinum) protein concentrates. J. Funct. Foods 2015, 12, 516–525. [Google Scholar] [CrossRef]
- Mekky, R.H.; Contreras, D.M.; El-Gindi, M.R.; Abdel-Monem, A.R.; Abdel-Sattar, E.; Segura-Carretero, A. Profiling of phenolic and other compounds from Egyptian cultivars of chickpea (Cicer arietinum L.) and antioxidant activity: A comparative study. RSC Adv. 2015, 5, 17751–17767. [Google Scholar] [CrossRef]
- Santa Cruz Olivos, J.E.; De Noni, I.; Hidalgo, A.; Brandolini, A.; Yilmaz, V.A.; Cattaneo, S.; Ragg, E.M. Phenolic acid content and in vitro antioxidant capacity of einkorn water biscuits as affected by baking time. Eur. Food Res. Technol. 2021, 247, 677–686. [Google Scholar] [CrossRef]
- Segev, A.; Badani, H.; Galili, L.; Hovav, R.; Kapulnik, Y.; Shomer, I.; Galili, S. Effects of baking, roasting and frying on total polyphenols and antioxidant activity in colored chickpea seeds. Food Nutr. Sci. 2012, 3, 369–376. [Google Scholar] [CrossRef]
- Fallico, B.; Grasso, A.; Aren, E. Hazardous Chemical compounds in cookies: The role of sugars and the kinetics of their formation during baking. Foods 2022, 11, 4066. [Google Scholar] [CrossRef] [PubMed]
- Chatziharalambous, D.; Kaloteraki, C.; Potsaki, P.; Papagianni, O.; Giannoutsos, K.; Koukoumaki, D.I.; Sarris, D.; Gkatzionis, K.; Koutelidakis, A.E. Study of the total phenolic content, total antioxidant activity and in vitro digestibility of novel wheat crackers enriched with cereal, legume and agricultural by-product flours. Oxygen 2023, 3, 256–273. [Google Scholar] [CrossRef]
- Miśkiewicz, K.; Rosicka-Kaczmarek, J.; Nebesny, E. Effects of chickpea protein on carbohydrate reactivity in acrylamide formation in low humidity model systems. Foods 2020, 9, 167. [Google Scholar] [CrossRef] [PubMed]
- Mesías, M.; Morales, F.J. Effect of different flours on the formation of hydroxymethylfurfural, furfural, and dicarbonyl compounds in heated glucose/flour systems. Foods 2017, 6, 14. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Halford, N.G. Reducing the risk of acrylamide and other processing contaminant formation in wheat products. Foods 2023, 12, 3264. [Google Scholar] [CrossRef] [PubMed]
- Ameur, L.A.; Trystram, G.; Birlouez-Aragon, I. Accumulation of 5-hydroxymethyl-2-furfural in cookies during the backing process: Validation of an extraction method. Food Chem. 2006, 98, 790–796. [Google Scholar] [CrossRef]
- Sakač, M.; Jovanov, P.; Petrović, J.; Pezo, L.; Fišteš, A.; Lončarević, I.; Pajin, B. Hydroxymethylfurfural content and colour parameters of cookies with defatted wheat germ. Czech J. Food Sci. 2019, 37, 285–291. [Google Scholar] [CrossRef]
- Moussou, N.; Corzo-Martínez, M.; Sanz, M.L.; Zaidi, F.; Montilla, A.; Villamiel, M. Assessment of Maillard reaction evolution, prebiotic carbohydrates, antioxidant activity and a-amylase inhibition in pulse flours. J. Food Sci. Technol. 2017, 54, 890–900. [Google Scholar] [CrossRef] [PubMed]
- Gadallah, M.G.E.; Aljebreen, A.A. Effect of solid-state fermentation on the nutritional value of chickpea flour and physicochemical, antioxidant activity and sensory evaluation of pan bread. Alex. Sci. Exch. J. 2023, 44, 135–145. [Google Scholar] [CrossRef]
- Fratianni, F.; Cardinale, F.; Cozzolino, A.; Granese, T.; Albanese, D.; Di Matteo, M.; Zaccardellic, M.; Coppola, R.; Nazzaro, F. Polyphenol composition and antioxidant activity of different grass pea (Lathyrus sativus), lentils (Lens culinaris), and chickpea (Cicer arietinum) ecotypes of the Campania region (Southern Italy). J. Funct. Foods 2014, 7, 551–557. [Google Scholar] [CrossRef]
- Quintero-Soto, M.F.; Saracho-Peña, A.G.; Chavez-Ontiveros, J.; Garzon-Tiznado, J.A.; Pineda-Hidalgo, K.V.; Delgado-Vargas, F.; Lopez-Valenzuela, J.A. Phenolic profiles and their contribution to the antioxidant activity of selected chickpea genotypes from Mexico and ICRISAT collections. Plant Foods Hum. Nutr. 2018, 73, 122–129. [Google Scholar] [CrossRef] [PubMed]
Control 0 | Shortbread Cookies with Chickpea Flour | ||||
---|---|---|---|---|---|
25% | 50% | 75% | 100% | ||
Wheat flour [g] | 150 | 112.5 | 95 | 37.5 | 0 |
Chickpea flour [g] | 0 | 37.5 | 95 | 112.5 | 150 |
Icing sugar [g] | 50 | 50 | 50 | 50 | 50 |
Margarine [g] | 100 | 100 | 100 | 100 | 100 |
Eggs [it] * | 1 | 1 | 1 | 1 | 1 |
Salt [g] | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
Sample code | S0 | S25 | S50 | S75 | S100 |
Shortbread Cookies | |||||
---|---|---|---|---|---|
S0 | S25 | S50 | S75 | S100 | |
Appearance | 4.8 a ± 0.45 | 4.8 a ± 0.45 | 4.4 ab ± 0.45 | 4.2 ab ± 0.45 | 3.6 c ± 0.55 |
Color | 4.6 a ± 0.55 | 4.4 a ± 0.58 | 4.4 a ± 0.55 | 4.0 a ± 0.00 | 4.0 a ± 0.00 |
Taste | 5.0 a ± 0.00 | 5.0 a ± 0.00 | 4.2 b ± 0.45 | 4.0 b ± 0.00 | 3.4 c ± 0.55 |
Odor | 5.0 a ± 0.00 | 4.4 ab ± 0.55 | 4.2 b ± 0.45 | 4.0 b ± 0.00 | 3.6 c ± 0.55 |
Texture | 4.6 a ± 0.55 | 4.4 a ± 0.55 | 4.4 a ± 0.55 | 4.0 a± 0.00 | 3.6 b ± 0.55 |
Overall quality | 4.82 ± 0.41 very good | 4.62 ± 0.48 very good | 4.30 ± 0.48 good | 4.02 ± 0.20 good | 3.24 ± 0.49 sufficient |
Overall desirability | 9.0 a ± 0.00 | 7.8 b ± 0.45 | 7.8 b ± 0.45 | 7.0 c ± 0.00 | 5.8 d ± 0.45 |
Shortbread Cookies | |||||
---|---|---|---|---|---|
S0 | S25 | S50 | S75 | S100 | |
L* | 58.9 b ± 1.7 | 67.6 b ± 0.8 | 55.6 b ± 3.6 | 55.8 b ± 1.9 | 49.7 a ± 1.1 |
a* | 11.1 a ± 0.5 | 10.6 a ± 0.5 | 15.4 b ± 1.3 | 16.9 b ± 0.6 | 16.6 b ± 0.4 |
b* | 22.2 a ± 0.5 | 23.0 a ± 0.5 | 28.2 b ± 4.9 | 28.2 b ± 0.9 | 31.1 b ± 1.0 |
C* | 24.8 a ± 0.6 | 24.2 a ± 0.6 | 32.3 b ± 4.9 | 32.9 b ± 1.1 | 35.3 b ± 0.8 |
h* | 63.3 a ± 0.8 | 74.2 b ± 0.8 | 61.2 a ± 3.0 | 59.1 a ± 0.4 | 61.8 a ± 1.2 |
ΔE | - | 8.01 a ± 0.60 | 11.10 b ± 1.00 | 14.42 c ± 0.21 | 12.25 d ± 0.59 |
BI | 58.73 a ± 3.75 | 48.65 b ±1.17 | 98.52 c ± 6.54 | 105.12 c ± 1.63 | 100.70 c ± 1.95 |
Shortbread Cookies | |||||
---|---|---|---|---|---|
S0 | S25 | S50 | S75 | S100 | |
Hardness [N] | 6.16 a ± 0.06 | 6.92 ab ± 0.09 | 7.31 b ± 0.11 | 8.33 c ± 0.10 | 9.93 d ± 0.13 |
Crispness [N] | 0.17 a ± 0.01 | 0.18 a ± 0.03 | 0.18 a ± 0.01 | 0.19 a ± 0.02 | 0.19 a ± 0.04 |
Shortbread Cookies | |||||
---|---|---|---|---|---|
S0 | S25 | S50 | S75 | S100 | |
Moisture [g/100 g] | 11.61 a ± 1.10 | 12.63 a ± 1.61 | 12.04 a ± 0.29 | 11.48 a ± 0.43 | 10.93 a ± 0.31 |
Protein [g/100 g] | 7.35 a ± 0.14 | 7.30 ab ± 0.78 | 8.13 b ± 0.30 | 10.35 c ± 0.07 | 11.16 d ± 0.67 |
Fat [g/100 g] | 28.99 b ± 0.31 | 29.02 b ± 0.12 | 28.53 a ± 0.14 | 35.26 c ± 0.04 | 37.04 d ± 0.02 |
Carbohydrates [g/100 g] | 51.74 c ± 1.11 | 50.5 c ± 0.4 | 50.39 c ± 0.51 | 41.68 b ± 0.21 | 39.27 a ± 0.42 |
Starch and sugars [g/100 g] | 46.67 e ± 0.57 | 43.04 d ± 0.24 | 37.96 c ± 0.21 | 32.79 b ± 1.15 | 27.79 a ± 0.26 |
Ash [g/100 g] | 0.31 a ± 0.01 | 0.56 b ± 0.09 | 0.91 c ± 0.06 | 1.23 d ± 0.12 | 1.60 e ± 0.05 |
IDF [g/100 g] | 2.48 a ± 0.25 | 5.07 b ± 0.40 | 5.85 c ± 0.81 | 6.29 d ± 1.53 | 8.65 e ± 0.74 |
SDF [g/100 g] | 2.55 a ± 0.28 | 2.50 a ± 0.24 | 2.69 a ± 0.10 | 2.62 a ± 0.18 | 2.86 b ± 0.08 |
TDF [g/100 g] | 5.03 a ± 0.53 | 7.56 b ± 0.16 | 8.54 c ± 0.71 | 8.91 c ± 1.35 | 11.51 d ± 0.66 |
Water activity | 0.234 c ± 0.001 | 0.244 d ± 0.001 | 0.257 e ± 0.001 | 0.204 b ± 0.003 | 0.168 a ± 0.001 |
Shortbread Cookies | |||||
---|---|---|---|---|---|
S0 | S25 | S50 | S75 | S100 | |
TPC [µg GAE/g] | 207.9 a ± 4.6 | 273.6 b ± 3.7 | 383.7 c ± 13.7 | 453.6 d ± 2.2 | 534.7 e ± 2.7 |
TFC [µg QE/g] | 0.51 a ± 0.16 | 1.79 b ± 0.16 | 5.27 c ± 0.27 | 7.56 d ± 0.32 | 26.52 e ± 0.63 |
TCC [µg/100 g] | 4.30 a ± 0.100 | 10.17 b ± 0.153 | 14.17 c ± 0.115 | 18.37 d ± 0.153 | 21.67 e ± 0.250 |
TEAC [µmol TE/g] | 1.02 a ± 0.14 | 1.95 b ± 0.16 | 3.64 c ± 0.29 | 4.44 d ± 0.09 | 5.71 e ± 0.24 |
FRAP [µmol TE/g] | 13.6 a ± 0.6 | 29.4 b ± 0.4 | 44.7 c ± 0.7 | 66.6 d ± 0.6 | 87.0 e ± 1.2 |
RSA [µmol TE/g] | 0.102 a ± 0.004 | 0.279 b ± 0.009 | 0.410 c ± 0.003 | 0.560 d ± 0.056 | 0.616 e ± 0.028 |
FCA [µmol EDTA/g] | 0.036 a ± 0.008 | 0.119 b ± 0.027 | 0.349 c ± 0.013 | 0.522 d ± 0.030 | 1.121 e ± 0.041 |
Phytates [mg PA/g] | 0.030 a ± 0.005 | 0.035 a ± 0.005 | 0.036 a ± 0.009 | 0.035 a ± 0.004 | 0.037 a ± 0.005 |
HMF [µmol/100 g] | 17.46 a ± 1.05 | 32.81 b ± 3.29 | 95.65 c ± 2.57 | 75.51 d ± 1.77 | 64.43 e ± 2.65 |
S0 | S25 | S50 | S75 | S100 | |
---|---|---|---|---|---|
gallic acid mg/100 g | 4.14 a ± 0.30 | 4.08 a ± 0.13 | 7.64 b ± 0.29 | 9.41 c ± 0.10 | 13.33 d ± 0.38 |
protocatechuic acid mg/100 g | 3.04 a ± 0.24 | 4.17 b ± 0.29 | 7.62 c ± 0.15 | 10.95 d ± 0.77 | 18.46 e ± 0.29 |
chlorogenic acid mg/100 g | 48.00 a ± 1.58 | 63.58 b ± 1.41 | 114.5 c ± 4.1 | 206.8 d ± 12.1 | 2378.7 e ± 19.1 |
(+) catechin mg/100 g | nd | 34.00 a ± 1.88 | 144.1 b ± 2.1 | 291.9 c ± 7.5 | 540.7 d ± 21.3 |
hippuric acid mg/100 g | nd | 2.54 a ± 0.10 | 6.61 b ± 0.28 | 11.49 c ± 0.26 | 26.42 d ± 0.35 |
caffeic acid mg/100 g | nd | nd | 0.135 a ± 0.002 | 0.228 b ± 0.025 | 0.309 c ± 0.031 |
(−) epicatechin mg/100 g | 1.43 b ± 0.27 | 1.26 b ± 0.07 | 0.621 a± 0.087 | 1.08 b ± 0.12 | 2.46 c ± 0.13 |
3-hydroxybenzoic acid mg/100 g | 3.24 b ± 0.34 | 2.72 a ± 0.07 | 5.49 c ± 0.05 | 7.48 d ± 0.31 | 15.48 e ± 0.18 |
p-coumaric acid mg/100 g | 0.145 c ± 0.034 | 0.092 a ± 0.004 | 0.077 a ± 0.008 | 0.080 a ± 0.009 | 0.118 b ± 0.013 |
quercetin mg/100 g | 0.124 b ± 0.003 | 0.124 b ± 0.007 | 0.087 a ± 0.007 | nd | nd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Felisiak, K.; Przybylska, S.; Tokarczyk, G.; Tabaszewska, M.; Słupski, J.; Wydurska, J. Effect of Chickpea (Cicer arietinum L.) Flour Incorporation on Quality, Antioxidant Properties, and Bioactive Compounds of Shortbread Cookies. Foods 2024, 13, 2356. https://doi.org/10.3390/foods13152356
Felisiak K, Przybylska S, Tokarczyk G, Tabaszewska M, Słupski J, Wydurska J. Effect of Chickpea (Cicer arietinum L.) Flour Incorporation on Quality, Antioxidant Properties, and Bioactive Compounds of Shortbread Cookies. Foods. 2024; 13(15):2356. https://doi.org/10.3390/foods13152356
Chicago/Turabian StyleFelisiak, Katarzyna, Sylwia Przybylska, Grzegorz Tokarczyk, Małgorzata Tabaszewska, Jacek Słupski, and Joanna Wydurska. 2024. "Effect of Chickpea (Cicer arietinum L.) Flour Incorporation on Quality, Antioxidant Properties, and Bioactive Compounds of Shortbread Cookies" Foods 13, no. 15: 2356. https://doi.org/10.3390/foods13152356
APA StyleFelisiak, K., Przybylska, S., Tokarczyk, G., Tabaszewska, M., Słupski, J., & Wydurska, J. (2024). Effect of Chickpea (Cicer arietinum L.) Flour Incorporation on Quality, Antioxidant Properties, and Bioactive Compounds of Shortbread Cookies. Foods, 13(15), 2356. https://doi.org/10.3390/foods13152356