Comprehensive Nutritional and Functional Characterization of Novel Mycoprotein Derived from the Bioconversion of Durvillaea spp.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production of the Alternative Protein or Mycoprotein
2.2. Nutritional Characterization of the Raw Material
2.2.1. Proximal Composition
2.2.2. Analysis of Amino Acids
2.2.3. Ergosterol Content
2.2.4. Estimation of β-Glucan Content
2.3. Total Phenolic Compounds
2.3.1. Preparation of Extracts
2.3.2. Total Phenolic Content
2.3.3. Identification of Phenolic Compounds
2.4. Bioactivity Assay
2.4.1. In Vitro Antioxidant Activity
2.4.2. α-Glucosidase Inhibitory Effect
2.4.3. Lipase Inhibitory Activity
2.5. Untargeted Metabolomics Using UPLC-Q-TOF-HRMS/MS
2.5.1. Extraction
2.5.2. UHPLC-MS/MS Data Acquisition and Molecular Networking
2.6. Techno-Functional Properties
2.6.1. Emulsifying Capacity (EC) and Emulsion Stability (ES)
2.6.2. Microstructure Observation of the Emulsions
2.7. Statistical Analysis
3. Results and Discussion
3.1. Nutritional Components
3.2. Estimation of Beta-Glucan and Ergosterol Contents
3.3. Phenolic Compounds and Bioactivity In Vitro
3.4. Metabolomic Differences between Myco 1, Myco 2, and Durvillaea spp.
3.5. Emulsion Capacity (EC) and Emulsion Stability (ES)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Surya Ulhas, R.; Ravindran, R.; Malaviya, A.; Priyadarshini, A.; Tiwari, B.K.; Rajauria, G. A Review of Alternative Proteins for Vegan Diets: Sources, Physico-Chemical Properties, Nutritional Equivalency, and Consumer Acceptance. Food Res. Int. 2023, 173, 113479. [Google Scholar] [CrossRef] [PubMed]
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019: Highlights; United Nations: New York, NY, USA, 2019.
- Huling, R. Applications of Fungi for Alternative Protein. In Fungi and Fungal Products in Human Welfare and Biotechnology; Springer Nature: Singapore, 2023; pp. 365–395. [Google Scholar]
- Moura, M.A.F.e.; Martins, B.d.A.; de Oliveira, G.P.; Takahashi, J.A. Alternative Protein Sources of Plant, Algal, Fungal and Insect Origins for Dietary Diversification in Search of Nutrition and Health. Crit. Rev. Food Sci. Nutr. 2023, 63, 10691–10708. [Google Scholar] [CrossRef] [PubMed]
- Petre, M.; Petre, V. Biotechnology of Mushroom Growth through Submerged Cultivation. In Mushroom Biotechnology; Academic Press: Cambridge, MA, USA, 2016; pp. 1–18. ISBN 9780128027943. [Google Scholar]
- Pilafidis, S.; Tsouko, E.; Sougleri, G.; Diamantopoulou, P.; Gkatzionis, K.; Ioannou, Z.; Sarris, D. Submerged Cultivation of Selected Macro-Fungi to Produce Mycelia Rich in β-Glucans and Other Bioactive Compounds, Valorizing Side Streams of the Food Industry. Carbon Resour. Convers. 2024, 7, 100198. [Google Scholar] [CrossRef]
- Setyawan, R.H.; Ardiansyah, A.; Solihat, N.N.; Elfirta, R.R.; Saskiawan, I.; Ningrum, R.S.; Widhyastuti, N.; Kasirah, K.; Saksono, B.; Sondari, D.; et al. Chemical Structure Characterization of Edible Mushroom-Extracted Beta-Glucan and Its Bioactivity. Bioact. Carbohydr. Diet. Fibre 2024, 31, 100411. [Google Scholar] [CrossRef]
- Dudekula, U.T.; Doriya, K.; Devarai, S.K. A Critical Review on Submerged Production of Mushroom and Their Bioactive Metabolites. 3 Biotech 2020, 10, 337. [Google Scholar] [CrossRef]
- Nandi, S.; Sikder, R.; Rapior, S.; Arnould, S.; Simal-Gandara, J.; Acharya, K. A Review for Cancer Treatment with Mushroom Metabolites through Targeting Mitochondrial Signaling Pathway: In Vitro and In Vivo Evaluations, Clinical Studies and Future Prospects for Mycomedicine. Fitoterapia 2024, 172, 105681. [Google Scholar] [CrossRef] [PubMed]
- Finnigan, T.; Wall, B.; Wilde, P.; Stephens, F.; Taylor, S.; Freedman, M.R. Mycoprotein: The Future of Nutritious Nonmeat Protein, a Symposium Review. Curr. Dev. Nutr. 2019, 3, nzz021. [Google Scholar] [CrossRef]
- Bartholomai, B.M.; Ruwe, K.M.; Thurston, J.; Jha, P.; Scaife, K.; Simon, R.; Abdelmoteleb, M.; Goodman, R.E.; Farhi, M. Safety Evaluation of Neurospora crassa Mycoprotein for Use as a Novel Meat Alternative and Enhancer. Food Chem. Toxicol. 2022, 168, 113342. [Google Scholar] [CrossRef] [PubMed]
- Zeng, B.; Nilsson, K.; Teixeira, P.G.; Bergenståhl, B. Study of Mycoprotein Extraction Methods and Its Functional Properties. Colloids Surf. A Physicochem. Eng. Asp. 2023, 659, 130800. [Google Scholar] [CrossRef]
- de Laat, W.T.A.M.; Knobel, K.C.C.; Kleine Haar, M. Fermotein®: A Novel Versatile Protein- and Fiber-Rich Food Ingredient Based on Fungal Fermentation. In Sustainable Protein Sources; Elsevier: Amsterdam, The Netherlands, 2024; pp. 567–579. [Google Scholar]
- Zhang, C.; Wu, X.; Chen, J.; Zhou, J. Novel Fungal Alternative Proteins from Penicillium Limosum for Enhancing Structural and Functional Properties of Plant-Based Meat Analogues. Food Chem. 2024, 444, 138627. [Google Scholar] [CrossRef]
- Hamza, A.; Mylarapu, A.; Krishna, K.V.; Kumar, D.S. An Insight into the Nutritional and Medicinal Value of Edible Mushrooms: A Natural Treasury for Human Health. J. Biotechnol. 2024, 381, 86–99. [Google Scholar] [CrossRef] [PubMed]
- Barzee, T.J.; Cao, L.; Pan, Z.; Zhang, R. Fungi for Future Foods. J. Futur. Foods 2021, 1, 25–37. [Google Scholar] [CrossRef]
- Petre, M.; Teodorescu, A.; Ţuluca, E.; Bejan, C.; Andronescu, A. Biotechnology of Mushroom Pellets Producing by Controlled Submerged Fermentation. Rom. Biotechnol. Lett. 2010, 15, 50–55. [Google Scholar]
- Cooray, S.T.; Ning, W. Valorization of Brewer’ s Spent Grain Using Fungi Solid-State Fermentation to Enhance Nutritional Value. J. Funct. Foods 2018, 42, 85–94. [Google Scholar] [CrossRef]
- Stoffel, F.; Santana, W.d.O.; Novello, J.G.; Ledur, T.; Fontana, R.C.; Camassola, M. Production of Edible Mycoprotein Using Agroindustrial Wastes: Influence on Nutritional, Chemical and Biological Properties. Innov. Food Sci. Emerg. Technol. 2019, 58, 102227. [Google Scholar] [CrossRef]
- Landeta, C.; Muñoz, R.; Blanco, A.; Lienqueo, M.E. Valorization and Upgrading of the Nutritional Value of Seaweed and Seaweed Waste Using the Marine Fungi Paradendryphiella salina to Produce Mycoprotein. Algal Res. 2021, 53, 102135. [Google Scholar] [CrossRef]
- Landeta-Salgado, C.; Cicatiello, P.; Lienqueo, M.E. Mycoprotein and Hydrophobin like Protein Produced from Marine Fungi Paradendryphiella salina in Submerged Fermentation with Green Seaweed ulva spp. Algal Res. 2021, 56, 102314. [Google Scholar] [CrossRef]
- Landeta-Salgado, C.; Cicatiello, P.; Stanzione, I.; Medina, D.; Berlanga Mora, I.; Gomez, C.; Lienqueo, M.E. The Growth of Marine Fungi on Seaweed Polysaccharides Produces Cerato-Platanin and Hydrophobin Self-Assembling Proteins. Microbiol. Res. 2021, 251, 126835. [Google Scholar] [CrossRef]
- Wang, Y.; Barth, D.; Tamminen, A.; Wiebe, M.G. Growth of Marine fungi on Polymeric Substrates. BMC Biotechnol. 2016, 16, 3. [Google Scholar] [CrossRef]
- Pilgaard, B.; Wilkens, C.; Herbst, F.A.; Vuillemin, M.; Rhein-Knudsen, N.; Meyer, A.S.; Lange, L. Proteomic Enzyme Analysis of the Marine Fungus Paradendryphiella salina Reveals Alginate Lyase as a Minimal Adaptation Strategy for Brown Algae Degradation. Sci. Rep. 2019, 9, 12338. [Google Scholar] [CrossRef]
- Laurens, L.; Lane, M.; Nelson, R. Sustainable Seaweed Biotechnology Solutions for Carbon Capture, Composition, and Deconstruction. Trends Biotechnol. 2020, 38, 1232–1244. [Google Scholar] [CrossRef] [PubMed]
- Poblete-Castro, I.; Hoffmann, S.L.; Becker, J.; Wittmann, C. Cascaded Valorization of Seaweed Using Microbial Cell Factories. Curr. Opin. Biotechnol. 2020, 65, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Camus, C.; Infante, J.; Buschmann, A.H. Revisiting the Economic pro Fi Tability of Giant Kelp Macrocystis pyrifera (Ochrophyta) Cultivation in Chile. Aquaculture 2019, 502, 80–86. [Google Scholar] [CrossRef]
- Fraser, C.I.; Velásquez, M.; Nelson, W.A.; Macaya, E.C.; Hay, C.H. The Biogeographic Importance of Buoyancy in Macroalgae: A Case Study of the Southern Bull-Kelp Genus Durvillaea (Phaeophyceae), Including Descriptions of Two New Species 1. J. Phycol. 2020, 56, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Fraser, C.I.; Morrison, A.; Olmedo Rojas, P. Biogeographic Processes Influencing Antarctic and Sub-Antarctic Seaweeds. In Antarctic Seaweeds; Springer International Publishing: Cham, Switzerland, 2020; pp. 43–57. [Google Scholar]
- Mateluna, C.; Figueroa, V.; Ortiz, J.; Aguilera, J.M. Effect of Processing on Texture and Microstructure of the Seaweed Durvillaea antarctica. J. Appl. Phycol. 2020, 32, 4211–4219. [Google Scholar] [CrossRef]
- Burgos-Díaz, C.; Opazo-Navarrete, M.; Palacios, J.L.; Verdugo, L.; Anguita-Barrales, F.; Bustamante, M. Food-Grade Bioactive Ingredient Obtained from the Durvillaea incurvata Brown Seaweed: Antibacterial Activity and Antioxidant Activity. Algal Res. 2022, 68, 102880. [Google Scholar] [CrossRef]
- FAO. Food Energy: Methods of Analysis and Conversion Factors; Report of a Technical Workshop; FAO: Roma, Italy, 2003. [Google Scholar]
- Astorga-España, M.S.; Rodríguez-Galdón, B.; Rodríguez-Rodríguez, E.M.; Díaz-Romero, C. Amino Acid Content in Seaweeds from the Magellan straits (Chile). J. Food Compos. Anal. 2016, 53, 77–84. [Google Scholar] [CrossRef]
- Cohen, S.A.; Michaud, D.P. Synthesis of a Fluorescent Derivatizing Reagent, 6-Aminoquinolyl-N-Hydroxysuccinimidyl Carbamate, and Its Application for the Analysis of Hydrolysate Amino Acids via High-Performance Liquid Chromatography. Anal. Biochem. 1993, 211, 279–287. [Google Scholar] [CrossRef]
- Souilem, F.; Fernandes, Â.; Calhelha, R.C.; Barreira, J.C.M.; Barros, L.; Skhiri, F.; Martins, A.; Ferreira, I.C.F.R. Wild Mushrooms and Their Mycelia as Sources of Bioactive Compounds: Antioxidant, Anti-Inflammatory and Cytotoxic Properties. Food Chem. 2017, 230, 40–48. [Google Scholar] [CrossRef]
- McCleary, B.V.; Draga, A. Measurement of β-Glucan in Mushrooms and Mycelial Products. J. AOAC Int. 2016, 99, 364–373. [Google Scholar] [CrossRef]
- Subbiah, V.; Ebrahimi, F.; Agar, O.T.; Dunshea, F.R.; Barrow, C.J.; Suleria, H.A.R. Comparative Study on the Effect of Phenolics and Their Antioxidant Potential of Freeze-Dried Australian Beach-Cast Seaweed Species upon Different Extraction Methodologies. Pharmaceuticals 2023, 16, 773. [Google Scholar] [CrossRef]
- Ariffin, F.; Heong Chew, S.; Bhupinder, K.; Karim, A.A.; Huda, N. Antioxidant Capacity and Phenolic Composition of Fermented Centella Asiatica Herbal Teas. J. Sci. Food Agric. 2011, 91, 2731–2739. [Google Scholar] [CrossRef] [PubMed]
- Noriega, F.; Mardones, C.; Fischer, S.; García-Viguera, C.; Moreno, D.A.; López, M.D. Seasonal Changes in White Strawberry: Effect on Aroma, Phenolic Compounds and Its Biological Activity. J. Berry Res. 2021, 11, 103–118. [Google Scholar] [CrossRef]
- Malod, K.; Archer, C.R.; Karsten, M.; Cruywagen, R.; Howard, A.; Nicolson, S.W.; Weldon, C.W. Exploring the Role of Host Specialisation and Oxidative Stress in Interspecific Lifespan Variation in Subtropical Tephritid Flies. Sci. Rep. 2020, 10, 5601. [Google Scholar] [CrossRef] [PubMed]
- Costamagna, M.S.; Zampini, I.C.; Alberto, M.R.; Cuello, S.; Torres, S.; Pérez, J.; Quispe, C.; Schmeda-Hirschmann, G.; Isla, M.I. Polyphenols Rich Fraction from Geoffroea decorticans Fruits Flour Affects Key Enzymes Involved in Metabolic Syndrome, Oxidative Stress and Inflammatory Process. Food Chem. 2016, 190, 392–402. [Google Scholar] [CrossRef] [PubMed]
- López-Belchí, M.D.; Caamaño, E.F.; Pascual, G.; Noriega, F.; Fierro-Morales, P.; Romero-Román, M.E.; Jara, P.; Schoebitz, M.; Serra, I.; Moreno, D.A. Spray-Dried Formulations Rich in Malvidin from Tintorera Grape Wastes: Characterization, Stability, and Storage. Processes 2021, 9, 518. [Google Scholar] [CrossRef]
- Santos, A.L.; Soares, M.G.; de Medeiros, L.S.; Ferreira, M.J.P.; Sartorelli, P. Identification of Flavonoid-3- O -glycosides from Leaves of Casearia arborea (Salicaceae) by UHPLC-DAD-ESI-HRMS/MS Combined with Molecular Networking and NMR. Phytochem. Anal. 2021, 32, 891–898. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.; et al. Sharing and Community Curation of Mass Spectrometry Data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34, 828–837. [Google Scholar] [CrossRef] [PubMed]
- Opazo-Navarrete, M.; Burgos-Díaz, C.; Garrido-Miranda, K.A.; Acuña-Nelson, S. Effect of Enzymatic Hydrolysis on Solubility and Emulsifying Properties of Lupin Proteins (Lupinus luteus). Colloids Interfaces 2022, 6, 82. [Google Scholar] [CrossRef]
- Caballero, E.; Flores, A.; Olivares, A. Sustainable Exploitation of Macroalgae Species from Chilean Coast: Characterization and Food Applications. Algal Res. 2021, 57, 102349. [Google Scholar] [CrossRef]
- Kover, A.; Kraljić, D.; Marinaro, R.; Rene, E.R. Processes for the Valorization of Food and Agricultural Wastes to Value-Added Products: Recent Practices and Perspectives. Syst. Microbiol. Biomanuf. 2022, 2, 50–66. [Google Scholar] [CrossRef]
- Wainaina, S.; Kisworini, A.D.; Fanani, M.; Wikandari, R.; Millati, R.; Niklasson, C.; Taherzadeh, M.J. Utilization of Food Waste-Derived Volatile Fatty Acids for Production of Edible Rhizopus oligosporus Fungal Biomass. Bioresour. Technol. 2020, 310, 123444. [Google Scholar] [CrossRef]
- Stoffel, F.; De Oliveira, W.; Claudete, R.; Guilherme, J.; Gregolon, N.; Ledur, T.B.; Gonçalves, F.; Siqueira, D.; Mendonça, S.; Camassola, M. Chemical Features and Bioactivity of Grain Flours Colonized by Macrofungi as a Strategy for Nutritional Enrichment. Food Chem. 2019, 297, 124988. [Google Scholar] [CrossRef]
- Tang, C.-Y.; Wang, J.; Liu, X.; Chen, J.-B.; Liang, J.; Wang, T.; Simpson, W.R.; Li, Y.-L.; Li, X.-Z. Medium Optimization for High Mycelial Soluble Protein Content of Ophiocordyceps Sinensis Using Response Surface Methodology. Front. Microbiol. 2022, 13, 1055055. [Google Scholar] [CrossRef] [PubMed]
- Souza Filho, P.F. Fungal Protein. Adv. Food Nutr. Res. 2022, 101, 153–179. [Google Scholar]
- Suraiya, S.; Min, J.; Jin, H.; Je, W.; Kim, D.; Kim, Y.; Kong, I. Monascus Spp. Fermented Brown Seaweeds Extracts Enhance Bio-Functional Activities. Food Biosci. 2018, 21, 90–99. [Google Scholar] [CrossRef]
- Souza Filho, P.F.; Nair, R.B.; Andersson, D.; Lennartsson, P.R.; Taherzadeh, M.J. Vegan-Mycoprotein Concentrate from Pea-Processing Industry Byproduct Using Edible Filamentous Fungi. Fungal Biol. Biotechnol. 2018, 5, 5. [Google Scholar] [CrossRef]
- Fatemeh, S.; Reihani, S.; Khosravi-darani, K. Mycoprotein Production from Date Waste Using Fusarium venenatum in a Submerged Culture. Appl. Food Biotechnol. 2018, 5, 243–252. [Google Scholar]
- Finnigan, T.; Mach, K.; Edlin, A. Mycoprotein: A Healthy New Protein with a Low Environmental Impact. In Sustainable Protein Sources; Elsevier: Amsterdam, The Netherlands, 2024; pp. 539–566. [Google Scholar]
- Rajput, S.D.; Pandey, N.; Sahu, K. A Comprehensive Report on Valorization of Waste to Single Cell Protein: Strategies, Challenges, and Future Prospects. Environ. Sci. Pollut. Res. 2024, 31, 26378–26414. [Google Scholar] [CrossRef]
- Xiao, Y.; Xing, G.; Rui, X.; Li, W.; Chen, X.; Jiang, M.; Dong, M. LWT—Food Science and Technology Effect of Solid-State Fermentation with Cordyceps Militaris SN-18 on Physicochemical and Functional Properties of Chickpea (Cicer arietinum L.) Fl Our. LWT—Food Sci. Technol. 2015, 63, 1317–1324. [Google Scholar] [CrossRef]
- Watkinson, S.C. Physiology and Adaptation. In The Fungi, 3rd ed.; Elsevier Ltd.: Oxford, UK, 2016; pp. 141–187. ISBN 9780123820341. [Google Scholar]
- Sun, L.b.; Zhang, Z.y.; Xin, G.; Sun, B.x.; Bao, X.j.; Wei, Y.y.; Zhao, X.m.; Xu, H.r. Advances in Umami Taste and Aroma of Edible Mushrooms. Trends Food Sci. Technol. 2020, 96, 176–187. [Google Scholar] [CrossRef]
- Zade, S.V.; Rastegar, H.; Hashempour-Baltork, F. Mycoproteins for Use in Meat Analogs: A Scientific Description and Potential Utilities. In Handbook of Plant-Based Meat Analogs; Elsevier: Amsterdam, The Netherlands, 2024; pp. 81–97. [Google Scholar]
- Mirończuk-Chodakowska, I.; Kujawowicz, K.; Witkowska, A.M. Beta-Glucans from Fungi: Biological and Health-Promoting Potential in the COVID-19 Pandemic Era. Nutrients 2021, 13, 3960. [Google Scholar] [CrossRef] [PubMed]
- Mirończuk-Chodakowska, I.; Witkowska, A.M. Evaluation of Polish Wild Mushrooms as Beta-Glucan Sources. Int. J. Environ. Res. Public Health 2020, 17, 7299. [Google Scholar] [CrossRef] [PubMed]
- Bobadilla, F.; Rodriguez-Tirado, C.; Imarai, M.; Galotto, M.J.; Andersson, R. Soluble β-1,3/1,6-Glucan in Seaweed from the Southern Hemisphere and Its Immunomodulatory Effect. Carbohydr. Polym. 2013, 92, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Cerletti, C.; Esposito, S.; Iacoviello, L. Edible Mushrooms and Beta-Glucans: Impact on Human Health. Nutrients 2021, 13, 2195. [Google Scholar] [CrossRef] [PubMed]
- Timm, T.G.; Costa, T.M.; Alberton, M.D.; Helm, C.V.; Tavares, L.B.B. Mushroom β-Glucans: Application and Innovation for Food Industry and Immunotherapy. Appl. Microbiol. Biotechnol. 2023, 107, 5035–5049. [Google Scholar] [CrossRef] [PubMed]
- Kadakal, Ç.; Tepe, T.K. Is Ergosterol a New Microbiological Quality Parameter in Foods or Not? Food Rev. Int. 2019, 35, 155–165. [Google Scholar] [CrossRef]
- Cardwell, G.; Bornman, J.; James, A.; Black, L. A Review of Mushrooms as a Potential Source of Dietary Vitamin D. Nutrients 2018, 10, 1498. [Google Scholar] [CrossRef] [PubMed]
- Barajas-Aceves, M.; Hassan, M.; Tinoco, R.; Vazquez-Duhalt, R. Effect of Pollutants on the Ergosterol Content as Indicator of Fungal Biomass. J. Microbiol. Methods 2002, 50, 227–236. [Google Scholar] [CrossRef]
- He, W.-S.; Cui, D.; Li, L.; Tong, L.-T.; Rui, J.; Li, H.; Zhang, H.; Liu, X. Cholesterol-Reducing Effect of Ergosterol Is Modulated via Inhibition of Cholesterol Absorption and Promotion of Cholesterol Excretion. J. Funct. Foods 2019, 57, 488–496. [Google Scholar] [CrossRef]
- Volkman, J. Sterols in Microorganisms. Appl. Microbiol. Biotechnol. 2003, 60, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Leyton, A.; Mikkola, J.; Lienqueo, M.E. Improvement in Carbohydrate and Phlorotannin Extraction from Macrocystis Pyrifera Using Carbohydrate Active Enzyme from Marine Alternaria sp. as Pretreatment. J. Appl. Phycol. 2017, 29, 2039–2048. [Google Scholar] [CrossRef]
- Balabanova, L.; Slepchenko, L.; Son, O.; Tekutyeva, L.; Gomez-casati, D.F. Biotechnology Potential of Marine Fungi Degrading Plant and Algae Polymeric Substrates. Front. Microbiol. 2018, 9, 1527. [Google Scholar] [CrossRef] [PubMed]
- Reboleira, J.; Silva, S.; Chatzifragkou, A.; Niranjan, K.; Lemos, M.F.L. Seaweed Fermentation within the Fields of Food and Natural Products. Trends Food Sci. Technol. 2021, 116, 1056–1073. [Google Scholar] [CrossRef]
- Abdelshafy, A.M.; Belwal, T.; Liang, Z.; Wang, L.; Li, D.; Luo, Z.; Li, L. A Comprehensive Review on Phenolic Compounds from Edible Mushrooms: Occurrence, Biological Activity, Application and Future Prospective. Crit. Rev. Food Sci. Nutr. 2022, 62, 6204–6224. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.I.; Farooq, S.; Alhamoud, Y.; Li, C.; Zhang, H. A Review on Mycoprotein: History, Nutritional Composition, Production Methods, and Health Benefits. Trends Food Sci. Technol. 2022, 121, 14–29. [Google Scholar] [CrossRef]
- Nowacka, N.; Nowak, R.; Drozd, M.; Olech, M.; Los, R.; Malm, A. Antibacterial, Antiradical Potential and Phenolic Compounds of Thirty-One Polish Mushrooms. PLoS ONE 2015, 10, e0140355. [Google Scholar] [CrossRef] [PubMed]
- Lomartire, S.; Cotas, J.; Pacheco, D.; Marques, J.C.; Pereira, L.; Gonçalves, A.M.M. Environmental Impact on Seaweed Phenolic Production and Activity: An Important Step for Compound Exploitation. Mar. Drugs 2021, 19, 245. [Google Scholar] [CrossRef] [PubMed]
- Lü, J.; Lin, P.H.; Yao, Q.; Chen, C. Chemical and Molecular Mechanisms of Antioxidants: Experimental Approaches and Model Systems. J. Cell. Mol. Med. 2010, 14, 840–860. [Google Scholar] [CrossRef]
- Bahadori, M.B.; Sarikurkcu, C.; Yalcin, O.U.; Cengiz, M.; Gungor, H. Metal Concentration, Phenolics Profiling, and Antioxidant Activity of Two Wild Edible Melanoleuca Mushrooms (M. cognata and M. stridula). Microchem. J. 2019, 150, 104172. [Google Scholar] [CrossRef]
- Gao, X.; Qi, J.; Ho, C.-T.; Li, B.; Xie, Y.; Chen, S.; Hu, H.; Chen, Z.; Wu, Q. Purification, Physicochemical Properties, and Antioxidant Activities of Two Low-Molecular-Weight Polysaccharides from Ganoderma leucocontextum Fruiting Bodies. Antioxidants 2021, 10, 1145. [Google Scholar] [CrossRef]
- Sharpe, E.; Farragher-Gnadt, A.P.; Igbanugo, M.; Huber, T.; Michelotti, J.C.; Milenkowic, A.; Ludlam, S.; Walker, M.; Hanes, D.; Bradley, R.; et al. Comparison of Antioxidant Activity and Extraction Techniques for Commercially and Laboratory Prepared Extracts from Six Mushroom Species. J. Agric. Food Res. 2021, 4, 100130. [Google Scholar] [CrossRef]
- Ruiz-Domínguez, M.C.; Mendiola, J.A.; Sánchez-Martínez, J.D.; Bueno, M.; Cerezal-Mezquita, P.; Ibáñez, E. Evaluation of the Antioxidant and Neuroprotective Activity of the Seaweed Durvillaea antarctica (Cochayuyo) Extracts Using Pressurized Liquids. J. Appl. Phycol. 2023, 35, 835–847. [Google Scholar] [CrossRef]
- Tundis, R.; Loizzo, M.R.; Menichini, F. Natural Products as α-Amylase and α-Glucosidase Inhibitors and Their Hypoglycaemic Potential in the Treatment of Diabetes: An Update. Mini-Rev. Med. Chem. 2010, 10, 315–331. [Google Scholar] [CrossRef]
- Su, C.; Hsu, C.; Ng, L. Inhibitory Potential of Fatty Acids on Key Enzymes Related to Type 2 Diabetes. BioFactors 2013, 39, 415–421. [Google Scholar] [CrossRef]
- Wunjuntuk, K.; Ahmad, M.; Techakriengkrai, T.; Chunhom, R.; Jaraspermsuk, E.; Chaisri, A.; Kiwwongngam, R.; Wuttimongkolkul, S.; Charoenkiatkul, S. Proximate Composition, Dietary Fibre, Beta-Glucan Content, and Inhibition of Key Enzymes Linked to Diabetes and Obesity in Cultivated and Wild Mushrooms. J. Food Compos. Anal. 2022, 105, 104226. [Google Scholar] [CrossRef]
- Bitou, N.; Ninomiya, M.; Tsujita, T.; Okuda, H. Screening of Lipase Inhibitors from Marine Algae. Lipids 1999, 34, 441–445. [Google Scholar] [CrossRef]
- Jeong, S.-M.; Ryu, S.-H.; Lee, J.-E.; Kang, W.-S.; Xu, X.; Ahn, D.-H. Effects of Seaweed Extracts on Lipase, Urease, and Lipoxygenase Inhibition, DPPH Radical Scavenging Activity and Shelf-Life of Scomber japonius during Storage. KSBB J. 2020, 35, 135–142. [Google Scholar] [CrossRef]
- Balasubramaniam, V.; Mustar, S.; Mustafa Khalid, N.; Abd Rashed, A.; Mohd Noh, M.F.; Wilcox, M.D.; Chater, P.I.; Brownlee, I.A.; Pearson, J.P. Inhibitory Activities of Three Malaysian Edible Seaweeds on Lipase and α-Amylase. J. Appl. Phycol. 2013, 25, 1405–1412. [Google Scholar] [CrossRef]
- Kim, J.H.; Jang, M.J.; Park, Y.J. In Vitro α-Amylase, α-Glucosidase, Pancreatic Lipase, Xanthine Oxidase Inhibiting Activity of Agaricus bisporus Extracts. Mycobiology 2023, 51, 60–66. [Google Scholar] [CrossRef]
- Nothias, L.-F.; Petras, D.; Schmid, R.; Dührkop, K.; Rainer, J.; Sarvepalli, A.; Protsyuk, I.; Ernst, M.; Tsugawa, H.; Fleischauer, M.; et al. Feature-Based Molecular Networking in the GNPS Analysis Environment. Nat. Methods 2020, 17, 905–908. [Google Scholar] [CrossRef]
- Kusumah, D.; Wakui, M.; Murakami, M.; Xie, X.; Yukihito, K.; Maeda, I. Linoleic Acid, α-Linolenic Acid, and Monolinolenins as Antibacterial Substances in the Heat-Processed Soybean Fermented with Rhizopus oligosporus. Biosci. Biotechnol. Biochem. 2020, 84, 1285–1290. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.-M.; Lee, S.A.; Hong, J.H.; Kim, J.-S.; Kim, D.K.; Kim, C.S. Oleamide Suppresses Inflammatory Responses in LPS-Induced RAW264.7 Murine Macrophages and Alleviates Paw Edema in a Carrageenan-Induced Inflammatory Rat Model. Int. Immunopharmacol. 2018, 56, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Mukerjee, S.; Saeedan, A.S.; Ansari, M.N.; Singh, M. Polyunsaturated Fatty Acids Mediated Regulation of Membrane Biochemistry and Tumor Cell Membrane Integrity. Membranes 2021, 11, 479. [Google Scholar] [CrossRef] [PubMed]
- Watkins, S.M.; Bruce, G.J. Unsaturated Fatty Acids. In Food Lipids; Taylor & Francis: Oxford, UK, 2002; p. 30. [Google Scholar]
- Pacwa-Płociniczak, M.; Płaza, G.A.; Piotrowska-Seget, Z.; Cameotra, S.S. Environmental Applications of Biosurfactants: Recent Advances. Int. J. Mol. Sci. 2011, 12, 633–654. [Google Scholar] [CrossRef]
- Burgos-Díaz, C.; Rubilar, M.; Morales, E.; Medina, C.; Acevedo, F.; Marqués, A.M.; Shene, C. Naturally Occurring Protein–Polysaccharide Complexes from Linseed (Linum usitatissimum) as Bioemulsifiers. Eur. J. Lipid Sci. Technol. 2016, 118, 165–174. [Google Scholar] [CrossRef]
- Burgos-Díaz, C.; Leal-Calderon, F.; Mosi-Roa, Y.; Chacón-Fuentes, M.; Garrido-Miranda, K.; Opazo-Navarrete, M.; Quiroz, A.; Bustamante, M. Enhancing the Retention and Oxidative Stability of Volatile Flavors: A Novel Approach Utilizing O/W Pickering Emulsions Based on Agri-Food Byproducts and Spray-Drying. Foods 2024, 13, 1326. [Google Scholar] [CrossRef]
Sample | Nutritional Composition (% Dry Weight) | ||||
---|---|---|---|---|---|
Ash | Moisture | Protein | Carbohydrate | Fat | |
Myco 1 | 12.3 ± 0.12 a | 10.2 ± 0.083 a | 36.5 ± 0.189 c | 38.2 ± 0.260 a | 3.2 ± 0.029 c |
Myco 2 | 13.5 ± 0.133 a | 11.2 ± 0.061 a | 33.8 ± 0.170 b | 39.1 ± 0.113 a | 2.2 ± 0.016 b |
Principal Fatty Acids in Myco 1 | mg/100 g (dw) |
---|---|
Saturated fatty acids | 491.9 |
C16:0 (Palmitic acid) | 326.1 |
C18:0 (Stearic acid) | 113.4 |
Monounsaturated fatty acids | 374.8 |
9c-18:1 | 314.8 |
Polyunsaturated fatty acids | 815.9 |
C18:2n-6 (Linoleic acid) | 703.1 |
C18:3n6 (gamma-Linoleic acid) | 8.5 |
C18:3n3 (alpha-Linoleic acid) | 34.8 |
C18:4n3 (derived from omega-3 fatty acids) | 15.9 |
C20:4n3 (derived from omega-3 fatty acids) | 1.5 |
C20:5n3 EPA (Eicosapentaenoic acid omega-3 fatty acids) | 13.3 |
C20:4n6 (derived from omega-6 fatty acids) | 1.0 |
Amino Acid (mg/g of Sample dw) | Myco 1 | Myco 2 | Durvillaea spp. | |
---|---|---|---|---|
Essential amino acids | Histidine | 10.98 ± 0.31 b | 9.57 ± 0.31 b | 1.16 ± 0.02 a |
Threonine + Arginine | 36.91 ± 1.12 b | 33.27 ± 1.55 b | 11.9 ± 0.26 a | |
Tyrosine | 11.37 ± 0.14 b | 11.97 ± 0.11 b | 9.32 ± 0.18 a | |
Alanine | 21.26 ± 0.51 b | 15.20 ± 0.25 b | 2.90 ± 0.06 a | |
Methionine | 13.02 ± 0.26 c | 14.80 ± 0.10 b | 6.09 ± 0.15 a | |
Valine | 16.83 ± 0.30 b | 14.88 ± 0.18 ab | 11.47 ± 0.14 a | |
Phenylalanine | 14.66 ± 2.06 b | 14.06 ± 0.74 b | 3.41 ± 0.08 a | |
Leucine | 20.92 ± 0.15 b | 20.20 ± 0.58 b | 6.07 ± 0.12 a | |
Isoleucine | 19.91 ± 0.36 b | 19.00 ± 1.4 b | 5.62 ± 0.13 a | |
Essential sum | 165.09 | 152.99 | 58.04 | |
Nonessential | Serine | 17.62 ± 0.04 c | 13.67 ± 0.22 b | 3.15 ± 0.02 a |
Aspartic acid | 34.65 ± 0.83 b | 25.26 ± 0.41 b | 3.93 ± 0.07 a | |
Glutamic acid | 15.54 ± 0.45 b | 13.65 ± 0.45 b | 7.24 ± 0.15 a | |
Glycine | 12.45 ± 0.30 c | 9.30 ± 0.30 b | 4.66 ± 0.13 a | |
Total sum | 246.10 c | 214.90 b | 77.04 a |
Sample | Total Phenolic (mg GAE/g) | Antioxidant Activity (µmol TE/g) | α-Glucosidase Inhibition IC 50 (mg/mL) | Lipase Inhibition IC 50 (mg/mL) |
---|---|---|---|---|
Myco 1 | 1.05 ± 0.09 b | 21.5 ± 1.7 a | 1.65 ± 75.2 a | 1.05 ± 34.2 b |
Myco 2 | 1.32 ± 0.03 c | 25.5 ± 1.5 a | 2.21 ± 42.1 b | 1.19 ± 77.6 c |
Durvillaea spp. | 0.83 ± 0.06 a | 22.7 ± 1.5 a | 5.26 ± 85.3 c | 0.32 ± 81.5 a |
Concentration ± SD (µg/g Sample dw) | |||
---|---|---|---|
Phenolic Acids and Derivatives | Myco 1 | Myco 2 | Durvillaea spp. |
4-Hydroxybenzoic acid | 2.921 ± 0.050 | 3.170 ± 0.019 | N.D |
Vanillic acid | 0.250 ± 0.014 | 0.240 ± 0.022 | N.D |
3,4-dihydroxyphenylglycol | 38.826 ± 0.703 | 16.485 ± 0.851 | 13.747 ± 1.21 |
Gallic acid | N.D | 0.685 ± 0.34 | 0.410 ± 0.005 |
3-Hydroxytyrosol | 7.16 ± 0.688 | N.D | |
Flavan-3-ol | |||
Catechin | 0.056 ± 0.001 | N.D | N.D |
Epicatechin | 0.552 ± 0.022 | 0.437 ± 0.012 | N.D |
Flavones and Flavonols | |||
Salicylic acid | N.D | 0.483 ± 0.015 | N.D |
Pinocembrin | 0.485 ± 0.008 | 0.469 ± 0.058 | 4.091 ± 2.612 |
Sample | Compound | Classification | Molecular Formula |
---|---|---|---|
Myco 1 | Monoelaidin | Monoacylglycerol | C21H40O4 |
Monolinolenin | Monoacylglycerol | C21H34O4 | |
Linoleoylglycerol | Monoacylglycerol | C21H38O4 | |
Oxobutanoic acid | Organic acids | C4H6O3 | |
Myco 2 | Phytomonic acid | Fatty acids | C16H30O2 |
9-octadecenamide (Oleamide) | Fatty acids | C18H35NO | |
N-Cyclohexanecarbonylpentadecylamine | C22H43NO | ||
13-docosenamide (Erucamide) | Fatty acids | C22H43NO | |
Durvillaea spp. | Palmitoyl | Fatty acids | C16H31O2 |
Concentration Myco 1 | pH 7 | pH 5 | pH 3 |
---|---|---|---|
1% | EC0: 79.93 ± 0.40 a,A ES: 88.79 ± 1.06 a,A | EC0: 82.36 ± 0.56 b,A ES: 95.93 ± 0.90 b,A | EC0: 79.87 ± 0.81 a,A ES: 95.18 ± 1.05 b,A |
2% | EC0: 82.38 ± 2.51 ab,A ES: 92.57 ± 2.50 a,AB | EC0: 86.80 ± 1.59 b,B ES: 98.47 ± 1.50 b,AB | EC0: 80.64 ± 2.51 a,A ES: 97.59 ± 2.50 b,AB |
3% | EC0: 87.21 ± 2.55 a,B ES: 93.86 ± 3.43 a,AB | EC0: 93.16 ± 2.75 b,C ES: 97.07 ± 2.00 a,AB | EC0: 89.47 ± 2.25 ab,B ES: 97.06 ± 1.68 a,AB |
4% | EC0: 92.84 ± 2.57 a,C ES: 94.21 ± 1.94 a,B | EC0: 96.59 ± 1.51 a,D ES: 98.96 ± 0.07 b,B | EC0: 92.94 ± 2.61 a,B ES: 96.03 ± 1.00 a,AB |
5% | EC0: 100 ± 0,00 a,D ES: 92.09 ± 2.60 a,B | EC0: 100 ± 0.00 a,E ES: 95.08 ± 3.00 ab,B | EC0: 98.01 ± 1.74 a,C ES: 98.63 ± 1.52 b,B |
Concentration Myco 2 | pH 7 | pH 5 | pH 3 |
1% | EC0: 79.65 ± 3.06 ab,A ES: 87.97 ± 2.63 a,A | EC0: 84.01 ± 4.00 b,A ES: 98.72 ± 0.63 b,C | EC0: 75.55 ± 1.27 a,A ES: 97.49 ± 2.50 b,A |
2% | EC0: 85.97 ± 2.00 b,B ES: 86.80 ± 2.78 a,A | EC0: 89.79 ± 2.03 b,A ES: 98.85 ± 0.79 b,C | EC0: 79.61 ± 3.08 a,AB ES: 98.44 ± 2.14 bA |
3% | EC0: 87.29 ± 2.53 a,B ES: 87.92 ± 2.74 a,A | EC0: 94.80 ± 2.55 b,B ES: 98.21 ± 1.06 b,BC | EC0: 83.05 ± 2.68 a,B ES: 98.84 ± 1.61 b,A |
4% | EC0: 93.47 ± 3.01 ab,C ES: 90.68 ± 2.52 a,A | EC0: 97.58 ± 1.51 b,B ES: 96.05 ± 1.00 b,AB | EC0: 88.63 ± 3.18 a,C ES: 99.63 ± 0.64 c,A |
5% | EC0: 93.86 ± 3.43 a,C ES: 96.07 ± 2.00 a,B | EC0: 100 ± 0.00 b,B ES: 95.65 ± 2.51 a,A | EC0: 95.75 ± 2.54 ab,D ES: 99.31 ± 1.20 a,A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Landeta-Salgado, C.; Salas-Wallach, N.; Munizaga, J.; González-Troncoso, M.P.; Burgos-Díaz, C.; Araújo-Caldas, L.; Sartorelli, P.; Martínez, I.; Lienqueo, M.E. Comprehensive Nutritional and Functional Characterization of Novel Mycoprotein Derived from the Bioconversion of Durvillaea spp. Foods 2024, 13, 2376. https://doi.org/10.3390/foods13152376
Landeta-Salgado C, Salas-Wallach N, Munizaga J, González-Troncoso MP, Burgos-Díaz C, Araújo-Caldas L, Sartorelli P, Martínez I, Lienqueo ME. Comprehensive Nutritional and Functional Characterization of Novel Mycoprotein Derived from the Bioconversion of Durvillaea spp. Foods. 2024; 13(15):2376. https://doi.org/10.3390/foods13152376
Chicago/Turabian StyleLandeta-Salgado, Catalina, Nicolás Salas-Wallach, Javiera Munizaga, María Paz González-Troncoso, César Burgos-Díaz, Lhaís Araújo-Caldas, Patricia Sartorelli, Irene Martínez, and María Elena Lienqueo. 2024. "Comprehensive Nutritional and Functional Characterization of Novel Mycoprotein Derived from the Bioconversion of Durvillaea spp." Foods 13, no. 15: 2376. https://doi.org/10.3390/foods13152376
APA StyleLandeta-Salgado, C., Salas-Wallach, N., Munizaga, J., González-Troncoso, M. P., Burgos-Díaz, C., Araújo-Caldas, L., Sartorelli, P., Martínez, I., & Lienqueo, M. E. (2024). Comprehensive Nutritional and Functional Characterization of Novel Mycoprotein Derived from the Bioconversion of Durvillaea spp. Foods, 13(15), 2376. https://doi.org/10.3390/foods13152376