Comparative Study of the Antibacterial Effects of S-Nitroso-N-acetylcysteine and Sodium Nitrite against Escherichia coli and Their Application in Beef Sausages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. SNAC Preparation
2.3. Bacterial Strain and Bacterial Suspension Preparation
2.4. Sample Treatment
2.5. Determination of Inhibition Zone and Colony Counting of E. coli
2.5.1. Inhibition Zone
2.5.2. Colony Counting
2.6. Determination of the NO Content in E. coli Suspension and E. coli Cells
2.7. Scanning Electron Microscopy (SEM) Analysis of E. coli Cells
2.8. Determination of ROS and RNS in E. coli Cells
2.9. Fluorescence Staining of E. coli with Propidium Iodide (PI)
2.10. Determination of Lipid Peroxidation (LPO) in E. coli Cells
2.11. Application of SNAC and NaNO2 in Beef Sausages
2.11.1. Beef Sausage Preparation
2.11.2. Determination of Total Colony Count
2.11.3. Determination of Carbonyl Content
2.11.4. Determination of TBARS
2.11.5. Determination of pH
2.11.6. Determination of Color
2.12. Data Analysis
3. Results and Discussion
3.1. Inhibition Zone
3.2. Colony Counting Analysis of E. coli
3.3. Release Behavior of NO
3.4. Morphological Changes in E. coli Cells
3.5. ROS Changes in E. coli Cells
3.6. RNS Changes in E. coli Cells
3.7. Lipid Peroxidation in E. coli Cells
3.8. Fluorescence Staining Analysis of E. coli Cells
3.9. Application of SNAC and NaNO2 in Beef Sausages
3.9.1. Total Colony Counting
3.9.2. Carbonyl Content
3.9.3. TBARS Value
3.9.4. pH
3.9.5. Color
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhattacharjee, R.; Nandi, A.; Mitra, P.; Saha, K.; Patel, P.; Jha, E.; Panda, P.K.; Singh, S.K.; Dutt, A.; Mishra, Y.K.; et al. Theragnostic application of nanoparticle and CRISPR against food-borne multi-drug resistant pathogens. Mater. Today Bio 2022, 15, 100291. [Google Scholar] [CrossRef]
- Elbehiry, A.; Abalkhail, A.; Marzouk, E.; Elmanssury, A.E.; Almuzaini, A.M.; Alfheeaid, H.; Alshahrani, M.T.; Huraysh, N.; Ibrahem, M.; Alzaben, F.; et al. An overview of the public health challenges in diagnosing and controlling human foodborne pathogens. Vaccines 2023, 11, 725. [Google Scholar] [CrossRef]
- Pateiro, M.; Munekata, P.E.S.; Sant’Ana, A.S.; Dominguez, R.; Rodriguez-Lazaro, D.; Lorenzo, J.M. Application of essential oils as antimicrobial agents against spoilage and pathogenic microorganisms in meat products. Int. J. Food Microbiol. 2021, 337, 108966. [Google Scholar] [CrossRef]
- Guyon, C.; Meynier, A.; de Lamballerie, M. Protein and lipid oxidation in meat: A review with emphasis on high-pressure treatments. Trends Food Sci. Technol. 2016, 50, 131–143. [Google Scholar] [CrossRef]
- Zhang, M.; Pan, X.; Dong, F.; Liu, N.; An, X.; Wang, L.; Xu, J.; Wu, X.; Zheng, Y. Distribution, migration and changes of typical chemical preservatives on orange during storage and processing. Food Chem. 2023, 415, 135728. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Jia, J.; Peng, H.; Qian, Q.; Pan, Z.; Liu, D. Nitrite and nitrate in meat processing: Functions and alternatives. Curr. Res. Food Sci. 2023, 6, 100470. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Zhang, M.; Lim Law, C.; Mujumdar, A.S. Novel strategies for controlling nitrite content in prepared dishes: Current status, potential benefits, limitations and future challenges. Food Res. Int. 2023, 170, 112984. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tian, X.; Jiao, Y.; Wang, Y.; Dong, J.; Yang, N.; Yang, Q.; Qu, W.; Wang, W. Free iron rather than heme iron mainly induces oxidation of lipids and proteins in meat cooking. Food Chem. 2022, 382, 132345. [Google Scholar] [CrossRef] [PubMed]
- Bedale, W.; Sindelar, J.J.; Milkowski, A.L. Dietary nitrate and nitrite: Benefits, risks, and evolving perceptions. Meat Sci. 2016, 120, 85–92. [Google Scholar] [CrossRef]
- Ghabraie, M.; Vu, K.D.; Tnani, S.; Lacroix, M. Antibacterial effects of 16 formulations and irradiation against Clostridium sporogenes in a sausage model. Food Control 2016, 63, 21–27. [Google Scholar] [CrossRef]
- Lamas, A.; Miranda, J.M.; Vazquez, B.; Cepeda, A.; Franco, C.M. An evaluation of alternatives to nitrites and sulfites to inhibit the growth of Salmonella enterica and Listeria monocytogenes in meat products. Foods 2016, 5, 74. [Google Scholar] [CrossRef]
- Tian, X.; Yang, N.; Sun, M.; Li, Y.; Wang, W. Preparation, physicochemical, and antibacterial properties of bovine serum albumin microspheres loaded with sodium nitrite. LWT 2022, 154, 112835. [Google Scholar] [CrossRef]
- Jo, K.; Lee, S.; Yong, H.I.; Choi, Y.-S.; Jung, S. Nitrite sources for cured meat products. LWT 2020, 129, 109583. [Google Scholar] [CrossRef]
- Gassara, F.; Kouassi, A.P.; Brar, S.K.; Belkacemi, K. Green alternatives to nitrates and nitrites in meat-based products-A review. Crit. Rev. Food Sci. Nutr. 2016, 56, 2133–2148. [Google Scholar] [CrossRef]
- Gou, M.; Liu, X.; Qu, H. The role of nitric oxide in the mechanism of lactic acid bacteria substituting for nitrite. CyTA—J. Food 2019, 17, 593–602. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, Z.; Li, L.L. Advanced nitric oxide donors: Chemical structure of NO drugs, NO nanomedicines and biomedical applications. Nanoscale 2021, 13, 444–459. [Google Scholar] [CrossRef]
- Navale, G.R.; Singh, S.; Ghosh, K. NO donors as the wonder molecules with therapeutic potential: Recent trends and future perspectives. Coord. Chem. Rev. 2023, 481, 215052. [Google Scholar] [CrossRef]
- Yang, L.; Feura, E.S.; Ahonen, M.J.R.; Schoenfisch, M.H. Nitric oxide-releasing macromolecular scaffolds for antibacterial applications. Adv. Healthc. Mater. 2018, 7, e1800155. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Li, L.; Chen, M.; Peng, S.; Aiyiti, W.; Shuai, C. Sustained endogenous nitric oxide catalytic system endows skin scaffolds with antibiofilm and antibacterial activities. ACS Appl. Polym. Mater. 2023, 5, 8450–8458. [Google Scholar] [CrossRef]
- Kanner, J.; Shpaizer, A.; Nelgas, L.; Tirosh, O. S-Nitroso-N-acetylcysteine (NAC-SNO) as an antioxidant in cured meat and stomach medium. J. Agric. Food Chem. 2019, 67, 10930–10936. [Google Scholar] [CrossRef]
- Shpaizer, A.; Nussinovich, A.; Kanner, J.; Tirosh, O. S-Nitroso-N-acetylcysteine generates less carcinogenic N-nitrosamines in meat products than nitrite. J. Agric. Food Chem. 2018, 66, 11459–11467. [Google Scholar] [CrossRef] [PubMed]
- Hoang Thi, T.T.; Lee, Y.; Le Thi, P.; Park, K.D. Nitric oxide-releasing injectable hydrogels with high antibacterial activity through in situ formation of peroxynitrite. Acta Biomater. 2018, 67, 66–78. [Google Scholar] [CrossRef] [PubMed]
- Mendhi, J.; Asgari, M.; Ratheesh, G.; Prasadam, I.; Yang, Y.; Xiao, Y. Dose controlled nitric oxide-based strategies for antibacterial property in biomedical devices. Appl. Mater. Today 2020, 19, 100562. [Google Scholar] [CrossRef]
- Ramos, S.; Silva, V.; Dapkevicius, M.d.L.E.; Caniça, M.; Tejedor-Junco, M.T.; Igrejas, G.; Poeta, P. Escherichia coli as commensal and pathogenic bacteria among food-producing animals: Health implications of Extended Spectrum β-Lactamase (ESBL) production. Animals 2020, 10, 2239. [Google Scholar] [CrossRef] [PubMed]
- Schulz, E.; Goes, A.; Garcia, R.; Panter, F.; Koch, M.; Müller, R.; Fuhrmann, K.; Fuhrmann, G. Biocompatible bacteria-derived vesicles show inherent antimicrobial activity. J. Control. Release 2018, 290, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Olvera-Aguirre, G.; Piñeiro-Vázquez, Á.T.; Sanginés-García, J.R.; Sánchez Zárate, A.; Ochoa-Flores, A.A.; Segura-Campos, M.R.; Vargas-Bello-Pérez, E.; Chay-Canul, A.J. Using plant-based compounds as preservatives for meat products: A review. Heliyon 2023, 9, e17071. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Shao, L.; Yu, Q.; Liu, Y.; Li, X.; Dai, R. Evaluation of structural changes and intracellular substance leakage of Escherichia coli O157:H7 induced by ohmic heating. J. Appl. Microbiol. 2019, 127, 1430–1441. [Google Scholar] [CrossRef] [PubMed]
- Cariello, A.J.; Bispo, P.J.; de Souza, G.F.; Pignatari, A.C.; de Oliveira, M.G.; Hofling-Lima, A.L. Bactericidal effect of S-nitrosothiols against clinical isolates from keratitis. Clin. Ophthalmol. 2012, 6, 1907–1914. [Google Scholar] [CrossRef] [PubMed]
- Shpaizer, A.; Kanner, J.; Tirosh, O. S-Nitroso-N-acetylcysteine (NAC-SNO) vs. nitrite as an anti-clostridial additive for meat products. Food Funct. 2021, 12, 2012–2019. [Google Scholar] [CrossRef]
- Du, J.; Filipovic, M.R.; Wagner, B.A.; Buettner, G.R. Ascorbate mediates the non-enzymatic reduction of nitrite to nitric oxide. Adv. Redox Res. 2023, 9, 100079. [Google Scholar] [CrossRef]
- Carlsson, S.; Wiklund, N.P.; Engstrand, L.; Weitzberg, E.; Lundberg, J.O.N. Effects of pH, nitrite, and ascorbic acid on nonenzymatic nitric oxide generation and bacterial growth in urine. Nitric Oxide 2001, 5, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Kwon, N.; Kim, D.; Swamy, K.M.K.; Yoon, J. Metal-coordinated fluorescent and luminescent probes for reactive oxygen species (ROS) and reactive nitrogen species (RNS). Coord. Chem. Rev. 2021, 427, 213581. [Google Scholar] [CrossRef]
- Li, Q.; Yuan, L.; Liu, Y. Effects of adding sodium nitrite and tea polyphenols on the characterizations and cytotoxicity of carbon nanoparticles from fried pork. Food Chem. 2021, 365, 130464. [Google Scholar] [CrossRef] [PubMed]
- Ozcan, A.; Ogun, M. Biochemistry of reactive oxygen and nitrogen species. In Basic Principles and Clinical Significance of Oxidative Stress; IntechOpen: Rijeka, Croatia, 2015. [Google Scholar]
- Ding, M.; Shao, K.; Wu, L.; Jiang, Y.; Cheng, B.; Wang, L.; Shi, J.; Kong, X. A NO/ROS/RNS cascaded-releasing nano-platform for gas/PDT/PTT/immunotherapy of tumors. Biomater. Sci. 2021, 9, 5824–5840. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kim, J.; Singha, K.; Han, D.K.; Park, H.; Kim, W.J. Nitric oxide integrated polyethylenimine-based tri-block copolymer for efficient antibacterial activity. Biomaterials 2013, 34, 8766–8775. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Wang, F.; Du, L.; Zhao, T.; Doyle, M.P.; Wang, D.; Zhang, X.; Sun, Z.; Xu, W. Antibacterial and antibiofilm activity of phenyllactic acid against Enterobacter cloacae. Food Control 2018, 84, 442–448. [Google Scholar] [CrossRef]
- Cardozo, V.F.; Lancheros, C.A.; Narciso, A.M.; Valereto, E.C.; Kobayashi, R.K.; Seabra, A.B.; Nakazato, G. Evaluation of antibacterial activity of nitric oxide-releasing polymeric particles against Staphylococcus aureus and Escherichia coli from bovine mastitis. Int. J. Pharm. 2014, 473, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Yim, D.G.; Jin, S.K.; Hur, S.J. Microbial changes under packaging conditions during transport and comparison between sampling methods of beef. J. Anim. Sci. Technol. 2019, 61, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Honikel, K.O. The use and control of nitrate and nitrite for the processing of meat products. Meat Sci. 2008, 78, 68–76. [Google Scholar] [CrossRef]
- Feng, X.; Li, C.; Jia, X.; Guo, Y.; Lei, N.; Hackman, R.M.; Chen, L.; Zhou, G. Influence of sodium nitrite on protein oxidation and nitrosation of sausages subjected to processing and storage. Meat Sci. 2016, 116, 260–267. [Google Scholar] [CrossRef]
- Andrade, B.F.; Guimaraes, A.S.; do Carmo, L.R.; Tanaka, M.S.; Fontes, P.R.; Ramos, A.L.S.; Ramos, E.M. S-nitrosothiols as nitrite alternatives: Effects on residual nitrite, lipid oxidation, volatile profile, and cured color of restructured cooked ham. Meat Sci. 2024, 209, 109397. [Google Scholar] [CrossRef] [PubMed]
- Kanner, J.; Juven, B.J. S-nitrosocysteine as an antioxidant, color-developing, and anticlostridial agent in comminuted turkey meat. J. Food Sci. 1980, 45, 1105–1112. [Google Scholar] [CrossRef]
- Gomez, I.; Janardhanan, R.; Ibanez, F.C.; Beriain, M.J. The effects of processing and preservation technologies on meat quality: Sensory and nutritional aspects. Foods 2020, 9, 1416. [Google Scholar] [CrossRef]
- Wang, D.; Cheng, F.; Wang, Y.; Han, J.; Gao, F.; Tian, J.; Zhang, K.; Jin, Y. The changes occurring in proteins during processing and storage of fermented meat products and their regulation by lactic acid bacteria. Foods 2022, 11, 2427. [Google Scholar] [CrossRef] [PubMed]
Time (Days) | Treatment | ||
---|---|---|---|
Control | SNAC | NaNO2 | |
0 | 4.76 ± 0.56 Ba | 13.14 ± 0.77 Aa | 12.74 ± 1.20 Aa |
3 | 4.72 ± 0.94 Ca | 13.09 ± 0.62 Aa | 11.72 ± 0.76 Bb |
6 | 4.62 ± 0.82 Ba | 11.95 ± 1.20 Ab | 11.64 ± 0.63 Ab |
9 | 4.57 ± 0.63 Ba | 11.79 ± 1.17 Ab | 11.38 ± 0.78 Ab |
12 | 4.42 ± 0.90 Ba | 11.72 ± 1.11 Abc | 11.28 ± 0.59 Abc |
15 | 4.04 ± 0.78 Bab | 11.63 ± 0.45 Abc | 10.82 ± 0.73 Abcd |
18 | 3.26 ± 0.78 Cb | 11.14 ± 0.48 Abc | 10.35 ± 0.38 Bcd |
21 | 2.26 ± 0.52 Bc | 10.64 ± 0.88 Ac | 10.00 ± 0.79 Ad |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Li, Z.; Zhang, Y.; Tian, X.; Shao, L.; Wang, W. Comparative Study of the Antibacterial Effects of S-Nitroso-N-acetylcysteine and Sodium Nitrite against Escherichia coli and Their Application in Beef Sausages. Foods 2024, 13, 2383. https://doi.org/10.3390/foods13152383
Guo J, Li Z, Zhang Y, Tian X, Shao L, Wang W. Comparative Study of the Antibacterial Effects of S-Nitroso-N-acetylcysteine and Sodium Nitrite against Escherichia coli and Their Application in Beef Sausages. Foods. 2024; 13(15):2383. https://doi.org/10.3390/foods13152383
Chicago/Turabian StyleGuo, Jingjing, Zhiyi Li, Yujun Zhang, Xiaojing Tian, Lele Shao, and Wenhang Wang. 2024. "Comparative Study of the Antibacterial Effects of S-Nitroso-N-acetylcysteine and Sodium Nitrite against Escherichia coli and Their Application in Beef Sausages" Foods 13, no. 15: 2383. https://doi.org/10.3390/foods13152383
APA StyleGuo, J., Li, Z., Zhang, Y., Tian, X., Shao, L., & Wang, W. (2024). Comparative Study of the Antibacterial Effects of S-Nitroso-N-acetylcysteine and Sodium Nitrite against Escherichia coli and Their Application in Beef Sausages. Foods, 13(15), 2383. https://doi.org/10.3390/foods13152383